Identification Method of Corn Leaf Disease Based on Improved Mobilenetv3 Model
Abstract
:1. Introduction
- In the Mobilenetv3 model, we have replaced the cross-entropy loss function with the Bias Loss function, which can reduce problems the random predictions can cause during optimization;
- We have replaced the SE module in the model with the efficient channel attention (ECA) module, which can reduce the parameters of the model and improve its accuracy of the model;
- The cross-layer connections are introduced between Mobile modules, introducing the shallow features into deep layers. It enables effectively comprehensive utilization of local features and deep features, and the extracted features are more extensive;
- The dilated convolutions are introduced in the first and last convolution of the model, increasing the receptive field so that convolution can extract more information;
- The experimental results can verify the validity of the improved model, and it can reduce the model’s parameters and shorten the model’s running time, improving its accuracy.
2. Materials and Methods
2.1. Data Sources
2.2. Data Preprocessing
- By flipping, adding noise, rotation, blurring, etc., dwarf mosaic virus image data has increased six-fold, a total of 5586 images after enhancement;
- By adding noise and flipping, Gray spot image data doubled, totaling 7176 images after enhancement. A total of 33,409 images of the enhanced corn leaf disease dataset.
2.3. Experiment Method
2.3.1. Mobilenetv3 Network
2.3.2. Dilated Convolution
2.3.3. Bias Loss Function
2.3.4. ECA Module
2.3.5. Evaluation Index
3. Results
3.1. Experimental Environment and Parameter Settings
3.2. Ablation Experiment
3.3. Comparative Experiment
3.4. Feature Attention Visualization
3.5. Confusion Matrix
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhiyong, Z. Analysis and suggestions on the current situation of corn production in my country. Grain Oil Feed. Sci. Technol. 2022, 3, 4–8. (In Chinese) [Google Scholar]
- Manyi, D.; Qingkui, M.; Fang, G.; Biao, G.; Yaohua, H. Rapid identification of potato late blight based on machine vision. Trans. Chin. Soc. Agric. Eng. 2020, 36, 193–200. (In Chinese) [Google Scholar]
- Kai, X.; Qiliang, Y.; Chunxi, Y.; Xiaogang, L.; Huanhao, H.; Ping, Z. Predict Panax notoginseng disease incidence based on meteorological factors during a high disease incidence period. Trans. Chin. Soc. Agric. Eng. 2020, 36, 170–176. (In Chinese) [Google Scholar]
- Baofeng, S.; Yulin, L.; Yanchuan, H.; Rui, W.; Xiaofeng, C.; Dejun, H. Dynamic UAV remote sensing monitoring method for the incidence of population wheat stripe rust. Trans. Chin. Soc. Agric. Eng. 2021, 37, 127–135. (In Chinese) [Google Scholar]
- Peisen, Y.; Yifei, C.; Qianli, M.; Haoyun, W.; Huanliang, X. Research on the rice bacterial leaf spot identification method based on Random Forest. Trans. Chin. Soc. Agric. Mach. 2021, 52, 139–145+208. (In Chinese) [Google Scholar]
- Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. 2020, 9, 381–386. [Google Scholar]
- Shruthi, U.; Nagaveni, V.; Raghavendra, B.K. A review on machine learning classification techniques for plant disease detection. In Proceedings of the 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 281–284. [Google Scholar]
- Panigrahi, K.P.; Das, H.; Sahoo, A.K.; Moharana, S.C. Maize leaf disease detection and classification using machine learning algorithms. In Progress in Computing, Analytics, and Networking; Springer: Singapore, 2020; pp. 659–669. [Google Scholar]
- Shrivastava, V.K.; Pradhan, M.K. Rice plant disease classification using color features: A machine learning paradigm. J. Plant Pathol. 2021, 103, 17–26. [Google Scholar] [CrossRef]
- Xian, T.S.; Ngadiran, R. Plant diseases classification using machine learning. J. Phys. 2021, 1962, 012024. [Google Scholar] [CrossRef]
- Rong, Z.; Weiping, L.; Tong, M. A review of deep learning research. Inf. Control. 2018, 47, 385–397+410. (In Chinese) [Google Scholar]
- Liu, J.; Wang, X. Plant diseases and pests detection based on deep learning: A review. Plant Methods 2021, 17, 1–18. [Google Scholar] [CrossRef]
- Divakar, S.; Bhattacharjee, A.; Priyadarshini, R. Smote-DL: A deep learning based plant disease detection method. In Proceedings of the 6th International Conference for Convergence in Technology (I2CT), Maharashtra, India, 2–4 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Shruthi, U.; Nagaveni, V.; Arvind, C.S.; Sunil, G.L. Tomato plant disease classification using deep learning architectures: A review. In Proceedings of the 2nd International Conference on Advances in Computer Engineering and Communication Systems, Hyderabad, India, 11–12 August 2022; Springer: Singapore, 2022; pp. 153–169. [Google Scholar]
- Changji, W.; Qirui, W.; Hongrui, C.; Jianshuang, W.; Jun, N.; Ce, Y.; Hengqiang, S. Large-scale and multi-category pest identification model. Trans. Chin. Soc. Agric. Eng. 2022, 38, 169–177. (In Chinese) [Google Scholar]
- Ji, H.; Yu, J.; Lao, F.; Zhuang, Y.; Wen, Y.; Teng, G. Automatic position detection and posture recognition of grouped pigs based on deep learning. Agriculture 2022, 12, 1314. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, X.; Sun, Z.; Zheng, Y.; Su, S.; Chen, F. Identification of oil tea (Camellia oleifera C. Abel) cultivars using efficientnet-B4 CNN model with attention mechanism. Forests 2022, 13, 1. [Google Scholar] [CrossRef]
- Alokasi, H.; Ahmad, M.B. Deep learning-based frameworks for semantic segmentation of road scenes. Electronics 2022, 11, 1884. [Google Scholar] [CrossRef]
- Bangyal, W.H.; Rehman, N.U.; Nawaz, A.; Nisar, K.; Ibrahim AA, A.; Shakir, R.; Rawat, D.B. Constructing domain ontology for alzheimer disease using deep learning based approach. Electronics 2022, 11, 1890. [Google Scholar] [CrossRef]
- Pereira, T.D.; Tabris, N.; Matsliah, A.; Turner, D.M.; Li, J.; Ravindranath, S.; Papadoyannis, S.; Nirmad, E.; Deutsch, D.S.; Wang, Z.Y.; et al. SLEAP: A deep learning system for multi-animal pose tracking. Nat. Methods 2022, 19, 486–495. [Google Scholar] [CrossRef]
- Bingzhen, L.; Ke, L.; Jiaojiao, G.; Wenzhi, J. A review of convolutional neural network research. Comput. Age 2021, 4, 8–12+17. [Google Scholar]
- Sun, H.; Zhang, S.; Ren, R.; Su, L. Surface defect detection of “Yuluxiang” pear using convolutional neural network with class-balance loss. Agronomy 2022, 12, 2076. [Google Scholar] [CrossRef]
- Zhang, B.; Zeng, K. A lightweight method for vehicle classification based on improved binarized convolutional neural network. Electronics 2022, 11, 1852. [Google Scholar] [CrossRef]
- Rao, D.S.; Ch, R.B.; Kiran, V.S.; Rajasekhar, N.; Srinivas, K.; Akshay, P.S.; Mohan, S.G.; Bharadwaj, B.L. Plant disease classification using deep bilinear cnn. Intell. Autom. Soft Comput. 2022, 31, 161–176. [Google Scholar]
- Koklu, M.; Unlersen, M.F.; Ozkan, I.A.; Aslan, M.F.; Sabanci, K. A CNN-SVM study based on selected in-depth features for grapevine leaves classification. Measurement 2022, 188, 110425. [Google Scholar] [CrossRef]
- Jinghui, X.; Mingye, S.; Yichen, W.; Wenting, H. Image recognition of corn diseases based on convolutional neural network based on transfer learning. Trans. Chin. Soc. Agric. Mach. 2020, 51, 230–236+253. (In Chinese) [Google Scholar]
- Shougang, R.; Fuwei, J.; Xingjian, G.; Peisen, Y.; Wei, X.; Huanliang, X. Deconvolution guided tomato leaf disease identification and lesion segmentation model. Trans. Chin. Soc. Agric. Eng. 2020, 36, 186–195. (In Chinese) [Google Scholar]
- Anagnostis, A.; Asiminari, G.; Papageorgiou, E.; Bochtis, D. A convolutional neural networks-based method for anthracnose infected walnut tree leaves identification. Appl. Sci. 2020, 10, 469. [Google Scholar] [CrossRef] [Green Version]
- Maeda-Gutiérrez, V.; Galvan-Tejada, C.E.; Zanella-Calzada, L.A.; Celaya-Padilla, J.M.; Galván-Tejada, J.I.; Gamboa-Rosales, H.; Luna-Garcia, H.; Magallanes-Quintar, R.; Guerrero Méndez, C.A.; Olvera-Olvera, C.A. Comparison of convolutional neural network architectures for classification of tomato plant diseases. Appl. Sci. 2020, 10, 1245. [Google Scholar] [CrossRef] [Green Version]
- Wenxia, B.; Xuefeng, H.; Gensheng, H.; Dong, L. Recognition of corn leaf diseases based on improved convolutional neural network model. Trans. Chin. Soc. Agric. Eng. 2021, 37, 160–167. (In Chinese) [Google Scholar]
- Hassan, S.M.; Jasinski, M.; Leonowicz, Z.; Jasinska, E.; Maji, A.K. Plant disease identification using shallow convolutional neural network. Agronomy 2021, 11, 2388. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, J.; Gao, H. Corn disease recognition based on attention mechanism network. Axioms 2022, 11, 480. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreeto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, CA, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, CA, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Türkmen, S.; Heikkilä, J. An efficient solution for semantic segmentation: Shufflenet v2 with dilated separable convolutions. In Proceedings of the Scandinavian Conference on Image Analysis, Norrköping, Sweden, 11–13 June 2019; Springer: Cham, Switzerland, 2019; pp. 41–53. [Google Scholar]
- Mi, Z.; Zhang, X.; Su, J.; Han, D.; Su, B. Wheat stripe rust grading by deep learning with attention mechanism and images from mobile devices. Front. Plant Sci. 2020, 11, 558126. [Google Scholar] [CrossRef]
- Chao, X.; Sun, G.; Zhao, H.; Li, M.; He, D. Identifying apple tree leaf diseases based on deep learning models. Symmetry 2020, 12, 1065. [Google Scholar] [CrossRef]
- Yang, L.; Guoqin, G. Using the improved SqueezeNet model to identify multiple leaf diseases. Trans. Chin. Soc. Agric. Eng. 2021, 37, 187–195. (In Chinese) [Google Scholar]
- Jun, S.; Weidong, Z.; Yuanqiu, L.; Jifeng, S.; Yide, C.; Xin, Z. Identification of field crop leaf diseases based on improved MobileNet-V2. Trans. Chin. Soc. Agric. Eng. 2021, 37, 161–169. (In Chinese) [Google Scholar]
- Shuqin, L.; Cong, C.; Tong, Z.; Bin, L. Plant leaf disease identification based on a lightweight residual network. Trans. Chin. Soc. Agric. Mach. 2022, 53, 243–250. (In Chinese) [Google Scholar]
- Zeng, T.; Li, C.; Zhang, B.; Wang, R.; Fu, W.; Wang, J.; Zhang, X. Rubber leaf disease recognition based on improved deep convolutional neural networks with a cross-scale attention mechanism. Front. Plant Sci. 2022, 13, 829479. [Google Scholar] [CrossRef]
- Eunice, J.; Popescu, D.E.; Chowdary, M.K.; Hemanth, J. Deep learning-based leaf disease detection in crops using images for agricultural applications. Agronomy 2022, 12, 2395. [Google Scholar] [CrossRef]
- Yang, L.; Quan, F.; Shuzhi, W. Plant disease identification method and mobile application based on lightweight CNN. Trans. Chin. Soc. Agric. Eng. 2019, 35, 194–204. (In Chinese) [Google Scholar]
- Xiaodong, Y.; Mengji, Y.; Haiqing, Z.; Dan, L.; Yiqian, T.; Xi, Y. Research and application of crop pest detection method based on transfer learning. Trans. Chin. Soc. Agric. Mach. 2020, 51, 252–258. (In Chinese) [Google Scholar]
- Xiangpeng, F.; Yan, X.; Jianping, Z.; Zhilei, L.; Xuan, P.; Xiaorong, W. Grape leaf disease detection system based on transfer learning and improved CNN. Trans. Chin. Soc. Agric. Eng. 2021, 37, 151–159. (In Chinese) [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for Mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision on Seoul, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, CA, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Hughes, D.; Salathé, M. An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv 2015, arXiv:1511.08060. [Google Scholar]
- Singh, D.; Jain, N.; Jain, P.; Kayal, P.; Kumawat, S.; Batra, N. PlantDoc: A dataset for visual plant disease detection. In Proceedings of the 7th ACM IKDD CoDS and 25th COMAD on Goa, Hyderabad, India, 5–7 January 2020; pp. 249–253. [Google Scholar]
- Wei, Y.; Xiao, H.; Shi, H.; Jie, Z.; Feng, J.; Huang, T.S. Revisiting dilated convolution: A simple approach for weakly and semi-supervised semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, CA, USA, 18–23 June 2018; pp. 7268–7277. [Google Scholar]
- Abrahamyan, L.; Ziatchin, V.; Chen, Y.; Deligiannis, N. Bias loss for mobile neural networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 6556–6566. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. Supplementary material for 'ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 13–19. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Gao, Y.; Wang, H.; Li, M.; Su, W.-H. Automatic tandem dual blendmask networks for severity assessment of wheat fusarium head blight. Agriculture 2022, 12, 1493. [Google Scholar] [CrossRef]
- Liu, B.Y.; Fan, K.J.; Su, W.H.; Peng, Y. Two-stage convolutional neural networks for diagnosing the severity of alternaria leaf blotch disease of the apple tree. Remote Sens. 2022, 14, 2519. [Google Scholar] [CrossRef]
- Zhang, J.L.; Su, W.H.; Zhang, H.Y.; Peng, Y. SE-YOLOv5x: An optimized model based on transfer learning and visual attention mechanism for identifying and localizing weeds and vegetables. Agronomy 2022, 12, 2061. [Google Scholar] [CrossRef]
Disease Class | Original Image | Enhanced Image | Sample Label |
---|---|---|---|
Common rust | 6125 | 6125 | 1 |
Gray leaf spot | 3588 | 7176 | 2 |
Dwarf mosaic virus | 931 | 5586 | 3 |
Healthy | 7757 | 7757 | 4 |
Northern leaf blight | 6765 | 6765 | 5 |
Total | 25,166 | 33,409 | 5 |
Model | LossValue | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Params |
---|---|---|---|---|---|---|
Mobilenetv3-large | 0.1314 | 95.54 | 95.71 | 95.69 | 95.61 | 5.48 M |
Mobilenetv3-large-bia | 0.0568 | 96.72 | 96.82 | 96.76 | 96.78 | 5.48 M |
Mobilenetv3-large-bia-eca | 0.0540 | 96.38 | 96.47 | 96.45 | 96.45 | 3.97 M |
Mobilenetv3-large-bia-eca-skip | 0.0400 | 97.47 | 97.51 | 97.51 | 97.51 | 4.36 M |
Mobilenetv3-large-bia-eca-skip-digconv (CD-Mobilenetv3) | 0.0285 | 98.23 | 98.26 | 98.26 | 98.26 | 4.36 M |
Model | Loss Value | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Params |
---|---|---|---|---|---|---|
ResNet50 | 0.1151 | 96.23 | 96.38 | 96.36 | 96.30 | 25.56 M |
ResNet101 | 0.1642 | 94.42 | 93.99 | 93.68 | 93.54 | 44.55 M |
ShuffleNet_x2 | 0.2139 | 91.84 | 92.70 | 92.19 | 92.06 | 7.39 M |
VGG16 | 0.0488 | 96.61 | 96.67 | 96.65 | 96.65 | 138.36 M |
Mobilenetv3-small | 0.1634 | 94.72 | 95.00 | 94.84 | 94.87 | 2.54 M |
SqueezeNet | 0.2129 | 92.34 | 92.02 | 91.84 | 91.59 | 1.24 M |
Mobilenetv3-large | 0.1314 | 95.54 | 95.71 | 95.69 | 95.61 | 5.48 M |
InceptionNetv3 | 0.1533 | 94.96 | 94.34 | 94.18 | 94.02 | 27.16 M |
CD-Mobilenetv3 | 0.0285 | 98.23 | 98.26 | 98.26 | 98.26 | 4.36 M |
Model | 1 | 2 | 3 | 4 | 5 | Accuracy (%) |
---|---|---|---|---|---|---|
Mobilenetv3 | 95.05 | 93.83 | 97.50 | 96.97 | 94.35 | 95.54 |
CD-Mobilenetv3 | 97.74 | 96.52 | 100.00 | 99.87 | 97.04 | 98.23 |
Ref | Plant Species | Dataset | Acquired Method | Model | Accuracy (%) |
---|---|---|---|---|---|
Sun J. et al. [40] | 4 kinds | 10,371 | Kaggle | Improved MobileNet-V2 | 92.20 |
Liu Y. et al. [44] | 14 kinds | 56,406 | PlantVillage | MobileNet Inception V3 | 95.02 95.62 |
Xu J. et al. [26] | corn | 5400 | Online + Field collect | Improved VGG-16 | 95.33 |
Hassan, S.M. et al. [31] | 3 kinds | 20,020 | PlantVillage + Field collect | Improved VGG | 95.70 |
Wang, Y. et al. [32] | corn | 10,785 | Field collect | Improved AlexNet | 99.35 |
Gao, Y. et al. [55] | wheat spikes wheat diseases | 690 3754 | Field collect | ResNet-50 | 85.56 99.32 |
Liu B Y. et al. [56] | Apples | 5382 | Field collect + Lab collect | MobileNet V2VGG | 99.15 95.84 |
Zhang J L, et al. [57] | Lettuce | 1918 | Field collect | You Only Look Once v5 | 97.60 |
Proposed | corn | 33,409 | PlantVillage + ai-challenger + PlantifyDr + PlantDoc | CD-Mobilenetv3 | 98.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, C.; Xu, S.; Hu, N.; Zhang, S.; Zhu, Z.; Yu, H. Identification Method of Corn Leaf Disease Based on Improved Mobilenetv3 Model. Agronomy 2023, 13, 300. https://doi.org/10.3390/agronomy13020300
Bi C, Xu S, Hu N, Zhang S, Zhu Z, Yu H. Identification Method of Corn Leaf Disease Based on Improved Mobilenetv3 Model. Agronomy. 2023; 13(2):300. https://doi.org/10.3390/agronomy13020300
Chicago/Turabian StyleBi, Chunguang, Suzhen Xu, Nan Hu, Shuo Zhang, Zhenyi Zhu, and Helong Yu. 2023. "Identification Method of Corn Leaf Disease Based on Improved Mobilenetv3 Model" Agronomy 13, no. 2: 300. https://doi.org/10.3390/agronomy13020300
APA StyleBi, C., Xu, S., Hu, N., Zhang, S., Zhu, Z., & Yu, H. (2023). Identification Method of Corn Leaf Disease Based on Improved Mobilenetv3 Model. Agronomy, 13(2), 300. https://doi.org/10.3390/agronomy13020300