Evaluation of the Effect of Conventional and Stabilized Nitrogen Fertilizers on the Nutritional Status of Several Maize Cultivars (Zea mays L.) in Critical Growth Stages Using Plant Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field
2.2. Soil Conditions
2.3. Thermal and Moisture Conditions
2.4. Observations and Measurements
2.4.1. Determination of Dry Matter Accumulation Dynamics during the Early Maize Growing Season
- Single plant dry matter at the 5–6 leaf stage (BBCH 15/16)
- Determination of dry matter content at the 5–6 leaf stage (BBCH 15/16)
- Plant dry matter yield at the 5–6 leaf stage (BBCH 15/16)
2.4.2. N Content in Plants dm at the 5–6 Leaf Stage (BBCH 15/16)
2.4.3. N, P, K, Mg and Ca Contents in Leaf Dry Matter at the Tassel Flowering Stage (BBCH 65)
2.4.4. Chlorophyll Fluorescence Measurements (BBCH 65)
2.5. Statistical Analysis
3. Results
3.1. Dynamics of the Initial Growth of Maize Expressed by Dry Matter Accumulation at the BBCH 15/16 Stage
3.2. Macronutrient Contents
3.3. Parameters of Chlorophyll Fluorescence and Relative Chlorophyll Content
3.4. Dependence of Maize Grain Yield on the Content of N, P, K, Mg and Ca in Maize Ear Leaves at the BBCH 65 Stage
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elahi, E.; Khalid, Z.; Zubair Tauni, M.; Zhang, H.; Lirong, X. Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z. Estimating smart energy inputs packages using hybrid optimization technique to mitigate environmental emissions of commercial fish farms. Appl. Energy 2022, 326, 119602. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Zhang, Z. Understanding farmers intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture. Appl. Energy 2022, 309, 118459. [Google Scholar] [CrossRef]
- Abbas, A.; Zhao, C.; Wasem, M.; Ahmed Khan, K.; Ahmed, R. Analysis of energy input—Output of farms and assessment of greenhouse gas emissions: A case study of cotton growers. Front. Environ. Sci. 2021, 9, 826838. [Google Scholar] [CrossRef]
- Abbas, A.; Zhao, C.; Ullah, W.; Ahmad, R.; Waseem, M.; Zhu, J. Towards sustainable farm production system: A case study of corn farming. Sustainability 2021, 13, 9243. [Google Scholar] [CrossRef]
- Milander, J.J. Maize Yield and Components as Influenced by Environment and Agronomic Management. Master’s Thesis, University of Nebraska, Lincoln, NE, USA, 2015; p. 86. [Google Scholar]
- Urioste, A.; Hevia, G.; Hepper, E.; Anton, L.; Bono, A.; Buschiazzo, D. Cultivation effects on the distribution of organic carbon, total nitrogen and phosphorus in soils of the semiarid region of Argentinian Pampas. Geoderma 2006, 136, 621–630. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, D.; Hu, K.; Willett, I.R.; Langford, J. Policy incentives for reducing nitrate leaching from intensive agriculture in desert oases of Alxa, Inner Mongolia, China. Agric. Water Manag. 2009, 96, 1114–1119. [Google Scholar] [CrossRef]
- Heffer, P.; Prud’homme, M. Fertilizer Outlook 2017–2021. In Proceedings of the 85th IFA Annual Conference, Marrakech, Morocco, 21–23 May 2017. [Google Scholar]
- Cantarella, H.; Trivelin, P.C.O.; Contin, T.L.M.; Dias, F.L.F.; Rossetto, R.; Marcelino, R.; Coimbra, R.B.; Quaggio, J.A. Ammonia volatilisation from urease inhibitor-treated urea applied to sugarcane trash blankets. Sci Agric. 2008, 65, 397–401. [Google Scholar] [CrossRef]
- Drury, C.F.; Yang, X.; Reynolds, W.D.; Calder, W.; Oloya, T.O.; Woodley, A.L. Combining Urease and Nitrification Inhibitors with Incorporation Reduces Ammonia and Nitrous Oxide Emissions and Increases Corn Yields. J. Environ. Qual. 2017, 46, 939–949. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO A J. Hum. Environ. 2002, 31, 132–140. [Google Scholar] [CrossRef]
- Sawyer, J.; Nafziger, E.; Randall, G.; Bundy, L.; Rehm, G.; Joern, B. Concepts and Rationale for Regional Nitrogen Rate Guidelines for Corn; Iowa State University-University Extension: Ames, IA, USA, 2006; pp. 6–24. [Google Scholar]
- Taggert, B.I.; Walker, C.; Chen, D.; Wille, U. Substituted 1,2,3-triazoles: A new class of nitrification inhibitors. Sci. Rep. 2021, 11, 14980. [Google Scholar] [CrossRef] [PubMed]
- Cantarella, H.; Otto, R.; Soares, J.R.; Silva, A.G.B. Agronomic efficiency of NBPT as a urease inhibitor: A review. J. Adv. Res. 2018, 13, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Chien, S.H.; Prochnow, L.I.; Cantarella, H. Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv. Agron. 2009, 102, 267–322. [Google Scholar] [CrossRef]
- Gillette, K.; Malone, R.W.; Kaspar, T.C.; Ma, L.; Parkin, T.B.; Jaynes, D.B.; Fang, Q.X.; Hatfield, J.L.; Feyereisen, G.W.; Kersebaum, K.C. N loss to drain flow and N2O emissions from a corn-soybean rotation with winter rye. Sci. Total Environ. 2017, 618, 982–997. [Google Scholar] [CrossRef] [PubMed]
- Bundy, L.G. Managing Urea-Containing Fertilizers. 2001 Area Fertilizer Dealer Meetings, Nov. 27-Dec. 6; University of Wisconsin-Madison: Madison, WI, USA, 2001. [Google Scholar]
- Watson, C.J. Urease inhibitors. In Proceedings of the IFA International Workshop on Enhanced—Efficiency Fertilizers, Frankfurt, Germany, 27–30 June 2005; International Fertilizer Industry Association: Paris, France, 2005; Watson, C.J. Urease Activity and Inhibition—Principles and Practice; Proceedings 454; International Fertiliser Society: York, UK, 2005; p. 40. [Google Scholar]
- Cantarella, H.; Quaggio, J.A.; Gallo, P.B.; Bolonhezi, D.; Rossetto, R.; Martins, J.L.M.; Paulino, V.J.; Alcantara, P.B. Ammonia losses of NBPT-treated urea under Brazilian soil conditions. In IFA International Workshop on Enhanced-Efficiency Fertilizers, Frankfurt; International Fertilizer Industry Association: Paris, France, 2005. [Google Scholar]
- Kiss, S.; Simihaian, M. Improving Efficiency of Urea Fertilizers by Inhibition of Soil Urease Activity; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Pan, B.; Lam, S.K.; Mosier, A.; Luo, Y.; Chen, D. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agric. Ecosyst. Environ. 2016, 232, 283–289. [Google Scholar] [CrossRef]
- Silva, A.G.B.; Sequeira, C.H.; Sermarini, R.A.; Otto, R. Urease inhibitor NBPT on ammonia volatilization and crop productivity: A meta-analysis. Agron. J. 2017, 109, 636–645. [Google Scholar] [CrossRef]
- Mira, A.B.; Cantarella, H.; Souza-Netto, G.J.M.; Moreira, L.A.; Kamogawa, M.Y.; Otto, R. Optimizing urease inhibitor usage to reduce ammonia emission following urea application over crop residues. Agric. Ecosyst. Environ. 2017, 248, 105–112. [Google Scholar] [CrossRef]
- Engel, R.E.; Williams, E.; Wallander, R.; Hilmer, J. Apparent persistence of N-(n-butyl) thiophosphoric triamide is greater in alkaline soils. Soil Sci. Soc. Am. J. 2013, 77, 1424–1429. [Google Scholar] [CrossRef]
- Soares, J.R. Efeito de Inibidores de Urease e de Nitrificação na Volatilização de NH3 pela Aplicação Superficial de Ureia no solo [Dissertação]; Instituto Agrônomico de Campinas: Campinas, Brazil, 2011. [Google Scholar]
- Watson, C.J.; Miller, H.; Poland, P.; Kilpatrick, D.J.; Allen, M.D.B.; Garrett, M.K.; Christianson, C.B. Soil properties and the ability of the urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) to reduce ammonia volatilization from surface-applied urea. Soil Biol. Biochem. 1994, 26, 1165–1171. [Google Scholar] [CrossRef]
- Molga, M. Basics of Agricultural Climatology; PWRiL: Warszawa, Poland, 1986. (In Polish) [Google Scholar]
- Gaj, R.; Szulc, P.; Siatkowski, I.; Waligóra, H. Assessment of the effect of the mineral fertilization system on the nutritional status of maize plants and grain yield prediction. Agriculture 2020, 10, 404. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar]
- Subedi, K.D.; Ma, B.L. Nitrogen uptake and partitioning in stay-green and leafy maize hybrids. Crop. Sci. 2005, 45, 740–747. [Google Scholar] [CrossRef]
- Szulc, P.; Bocianowski, J.; Nowosad, K.; Michalski, T.; Waligóra, H.; Olejarski, P. Assessment of the influence of fertilization and environment al conditions on maize health. Plant Prot. Sci. 2018, 54, 174–182. [Google Scholar] [CrossRef]
- Yanai, J.; Linehan, D.J.; Robinson, D.; Young, I.M.; Hackett, C.A.; Kyuma, K.; Kosaki, T. Effects of inorganic nitrogen application on the dynamics of the soil solution composition in the root zone of maize. Plant Soil 1996, 180, 1–9. [Google Scholar] [CrossRef]
- Kruczek, A.; Szulc, P. Effect of fertilization method on the uptake and accumulation of mineral components in the initial period of maize development. Int. Agrophysics 2006, 20, 11–22. [Google Scholar]
- Wierzbowska, J.; Sienkiewicz, S.; Światły, A. Yield and nitrogen status of maize (Zea mays L.) fertilized with solution of urea-ammonium nitrate enriched with P, Mg or S. Agronomy 2022, 12, 2099. [Google Scholar] [CrossRef]
- Ravazzolo, L.; Trevisan, S.; Forestan, C.; Varotto, S.; Sut, S.; Dallacqua, S.; Malagoli, M.; Quaggiotti, S. Nitrate and ammonium affect the overall maize response to nitrogen availability by triggering specific and common transcriptional signatures in roots. Int. J. Mol. Sci. 2020, 21, 686. [Google Scholar] [CrossRef]
- Grant, C.A.; Derksen, D.A.; McLaren, D.; Irvine, R.B. Nitrogen fertilizer and urease inhibitor effects on canola seed quality in a one-pass seeding and fertilizing system. Field Crop. Res. 2011, 121, 201–208. [Google Scholar] [CrossRef]
- Qi, X.; Wu, W.; Shah, F.; Peng, S.; Huang, J.; Cui, K.; Liu, H.; Nie, L. Ammonia volatilization from urea-application influenced germination and early seedling growth of dry direct-seeded rice. Sci. World J. 2012, 857472. [Google Scholar] [CrossRef]
- Cruchaga, S.; Lasa, B.; Jauregui, I.; Gonzáles-Murua, C.; Aparicio-Tejo, P.M.; Ariz, I. Inhibition of endogenous urease activity by NBPT application reveals differential N metabolism responses to ammonium or nitrate nutrition in pea plants: A physiological study. Plant Soil 2013, 373, 813–827. [Google Scholar] [CrossRef]
- Artola, E.; Cruchaga, S.; Ariz, I.; Moran, J.F.; Garnica, M.; Houdusse, F.; Maria, J.; Irigoyen, I.; Lasa, B.; Aparicio-Tejo, P.M. Effect of N-(n-butyl) thiophosphoric triamide on urea metabolism and the assimilation of ammonium byTriticum aestivumL. Plant Growth Regul. 2011, 63, 73–79. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Prystupa, P.; Ferraris, G.; Courenot, L.; Maganano, L.; Dignani, D.B.; Guttierrez-Bemoem, F. N:P:S stoichiometry in grains and physiological attributes associated with grain yield in maize as affected by phosphorus and sulfur nutrition. Field Crops Res. 2017, 203, 128–138. [Google Scholar] [CrossRef]
- Roberts, T.L. Improving nutrient use efficiency. Turk. J. Agric. 2008, 32, 177–182. [Google Scholar]
- Duffy, C.D.P.; Ruban, A.V. Dissipative pathways in the photosystem-II antenna in. plants. J. Photochem. Photobiol. B Biol. 2015, 152, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Szczepaniak, W.; Grzebisz, W.; Potarzycki, J. An assessment of the effect of potassium fertilizing systems on maize nutritional status in critical stages of growth by plant analysis. J. Elem. 2014, 538–548. [Google Scholar] [CrossRef]
- Szulc, P.; Ambroży-Deręgowska, K.; Waligóra, H.; Mejza, I.; Grześ, S.; Zielewicz, W.; Wróbel, B. Dry matter yield of maize (Zea mays L.) as an indicator of mineral fertilizer efficiency. Plants 2021, 10, 535. [Google Scholar] [CrossRef]
- Bandurska, H.; Grzebisz, W.; Farat, R. Pierwiastki w środowisku. Potas 4. Potas a stresy abiotyczne: Susza. J. Elem. 2004, 9, 37–48. [Google Scholar]
Years | H2O | KCl | % N | % C | % Humus | C:N |
---|---|---|---|---|---|---|
pH | ||||||
2017 | 7.01 | 6.52 | 0.086 | 1.037 | 1.79 | 12.1 |
2018 | 6.96 | 6.56 | 0.086 | 1.037 | 1.79 | 12.1 |
2019 | 7.07 | 6.45 | 0.085 | 0.987 | 1.70 | 11.6 |
Years | K+ | Na+ | Mg2+ | Ca2+ | Suma (S) TEB | Hw | T = S + Hw CEC | V(%) = S/T ∗ 100 |
---|---|---|---|---|---|---|---|---|
2017 | 0.23 | 0.07 | 0.67 | 6.19 | 7.16 | 0.90 | 8.06 | 88.4 |
2018 | 0.22 | 0.08 | 0.70 | 6.05 | 7.05 | 0.98 | 8.03 | 87.8 |
2019 | 0.22 | 0.08 | 0.68 | 6.15 | 7.13 | 0.96 | 8.09 | 88.1 |
Average | 0.22 | 0.08 | 0.68 | 6.13 | 7.11 | 0.95 | 8.06 | 88.1 |
Years | Conductometry uS·cm−1 1:5 | Biocarbonates (HCO3) | Na+ | K+ | Mg2+ | Ca2+ |
---|---|---|---|---|---|---|
mg∙kg−1 | ||||||
2017 | 57.3 | 5.2 | 11.1 | 59.7 | 13.5 | 122.0 |
2018 | 56.2 | 5.0 | 10.9 | 59.4 | 13.2 | 119.0 |
2019 | 46.8 | 4.5 | 9.4 | 56.9 | 11.4 | 97.0 |
Years | Cu | Zn | Ni | Cr | Mn | Fe | Mg | Al | P |
---|---|---|---|---|---|---|---|---|---|
mg·kg−1 | |||||||||
2017 | 3.44 | 30.2 | 5.93 | 11.38 | 335.2 | 462.3 | 895.1 | 3622.3 | 436.2 |
2018 | 3.27 | 29.3 | 6.30 | 11.40 | 327.8 | 4691.5 | 987.6 | 3626.6 | 429.6 |
2019 | 4.20 | 30.5 | 5.73 | 11.37 | 340.0 | 4511.7 | 821.2 | 3606.6 | 444.0 |
Average | 3.64 | 30.0 | 5.99 | 11.38 | 334.3 | 3221.8 | 901.3 | 3618.5 | 436.6 |
Years | IV | V | VI | VII | VIII | IX | X | Sum/Average |
---|---|---|---|---|---|---|---|---|
Temperatures [°C] | ||||||||
2017 | 6.9 | 15.0 | 16.8 | 17.4 | 18.0 | 13.0 | 9.8 | 13.8 |
2018 | 12.4 | 17.0 | 18.2 | 20.1 | 20.9 | 16.3 | 10.6 | 16.5 |
2019 | 9.8 | 12.1 | 21.7 | 18.8 | 20.6 | 14.4 | 10.6 | 15.4 |
Many years (2007–2019) | 9.0 | 13.7 | 17.4 | 19.1 | 19.3 | 13.7 | 8.6 | 14.4 |
Precipitation [mm] | ||||||||
2017 | 30 | 85 | 62 | 134 | 143 | 64 | 99 | 617 |
2018 | 49 | 5 | 45 | 120 | 14 | 32 | 25 | 290 |
2019 | 3 | 72 | 18 | 25 | 44 | 84 | 31 | 277 |
Many years (2007–2019) | 26 | 56 | 58 | 92 | 60 | 40 | 43 | 375 |
The Sielianinov hydrothermal coefficient of water availability (1) | ||||||||
2017 | 1.4 | 1.8 | 1.2 | 2.5 | 2.6 | 1.6 | 3.2 | 2.1 |
2018 | 1.3 | 0.1 | 0.8 | 1.9 | 0.2 | 0.7 | 0.8 | 0.8 |
2019 | 0.1 | 1.9 | 0.3 | 0.4 | 0.7 | 1.9 | 0.9 | 0.9 |
Many years (2007–2019) | 1.0 | 1.3 | 1.1 | 1.6 | 1.0 | 1.0 | 1.6 | 1.2 |
Factors | Levels of Factors | Single Plant Dry Weight [g] | Dry Matter Yield [kg·ha−1] | Dry Matter Content [%] |
---|---|---|---|---|
A | A1 | 2.38 a | 191.23 a | 17.21 a |
A2 | 1.61 b | 132.47 b | 17.13 a | |
A3 | 2.58 a | 214.19 a | 16.11 b | |
B | B1 | 1.82 b | 148.84 b | 16.43 ns |
B2 | 2.16 ab | 175.32 ab | 16.31 ns | |
B3 | 2.36 a | 191.49 a | 17.65 ns | |
B4 | 2.31 a | 187.92 a | 17.05 ns | |
B5 | 2.23 a | 184.58 a | 16.96 ns | |
B6 | 2.25 a | 186.31 a | 16.67 ns | |
B7 | 2.20 ab | 180.61 a | 16.61 ns |
A | B | Single Plant Dry Weight [g] | Dry Matter Yield [kg·ha−1] | Dry Matter Content [%] |
---|---|---|---|---|
A1 | B1 | 1.92 bcdefg | 152.61 bcdef | 15.12 ab |
B2 | 2.55 abc | 203.25 abc | 16.56 ab | |
B3 | 2.45 abcd | 194.14 abcde | 17.81 ab | |
B4 | 2.69 ab | 212.22 ab | 17.51 ab | |
B5 | 2.36 abcdefg | 194.72 abcde | 18.13 a | |
B6 | 2.38 abcdef | 194.70 abcde | 17.29 ab | |
B7 | 2.31 abcdefg | 186.98 abcdef | 18.03 ab | |
A2 | B1 | 1.71 defg | 141.30 cdef | 17.61 ab |
B2 | 1.54 g | 126.79 f | 17.57 ab | |
B3 | 1.68 defg | 135.79 def | 17.58 ab | |
B4 | 1.56 fg | 128.67 ef | 17.03 ab | |
B5 | 1.58 efg | 131.70 def | 16.48 ab | |
B6 | 1.63 defg | 135.09 def | 17.20 ab | |
B7 | 1.56 fg | 127.90 ef | 16.42 ab | |
A3 | B1 | 1.84 cdefg | 152.62 bcdef | 16.58 ab |
B2 | 2.39 abcde | 195.93 abcd | 14.79 b | |
B3 | 2.95 a | 244.52 a | 17.55 ab | |
B4 | 2.69 ab | 222.85 a | 16.62 ab | |
B5 | 2.73 ab | 227.33 a | 16.28 ab | |
B6 | 2.75 ab | 229.12 a | 15.53 ab | |
B7 | 2.73 ab | 226.96 a | 15.39 ab |
Factors | Levels of Factors | BBCH 15/16 * (Plant) | BBCH 65 * (Leaves) | ||||
---|---|---|---|---|---|---|---|
N [g·kg−1] | N | P | K | Mg | Ca | ||
[g·kg−1] | |||||||
A | A1 | 32.18 ns | 23.93 ns | 2.10 ns | 30.96 ns | 2.10 ns | 1.44 b |
A2 | 33.03 ns | 25.03 ns | 2.36 ns | 31.80 ns | 2.57 ns | 1.51 ab | |
A3 | 33.24 ns | 25.41 ns | 2.41 ns | 32.64 ns | 2.57 ns | 1.73 a | |
B | B1 | 33.45 ns | 23.20 c | 1.82 d | 28.51 b | 2.14 b | 1.61 a |
B2 | 33.05 ns | 23.36 bc | 2.03 d | 31.21 ab | 2.59 a | 0.78 b | |
B3 | 32.70 ns | 23.54 bc | 2.08 cd | 31.71 a | 2.52 ab | 1.76 a | |
B4 | 32.15 ns | 24.00 bc | 2.14 cd | 32.05 a | 2.31 ab | 1.71 a | |
B5 | 32.89 ns | 25.11 bc | 2.45 bc | 32.80 a | 2.42 ab | 0.87 b | |
B6 | 31.92 ns | 25.96 ab | 2.61 ab | 32.81 a | 2.45 ab | 2.24 a | |
B7 | 33.56 ns | 28.36 a | 2.89 a | 33.55 a | 2.47 ab | 1.94 a |
Factors | Levels of Factors | F0 | Fm | Fv | Fv/m | CCI |
---|---|---|---|---|---|---|
Y | 2018 | 169.11 b | 816.15 ns | 656.31 ns | 0.7932 a | 44.85 a |
2019 | 189.85 a | 851.72 ns | 659.80 ns | 0.7718 b | 32.57 b | |
A | A1 | 181.98 ns | 821.20 ns | 643.94 ns | 0.7769 ns | 34.18 b |
A2 | 180.57 ns | 824.05 ns | 651.51 ns | 0.7832 ns | 36.91 ab | |
A3 | 175.88 ns | 856.56 ns | 678.72 ns | 0.7874 ns | 45.04 a | |
B | B1 | 186.56 a | 825.25 ns | 651.94 ns | 0.7837 ns | 31.25 d |
B2 | 186.36 a | 821.36 ns | 638.50 ns | 0.7732 ns | 35.41 cd | |
B3 | 183.69 ab | 831.32 ns | 653.88 ns | 0.7822 ns | 36.50 bcd | |
B4 | 180.25 ab | 844.38 ns | 667.86 ns | 0.7847 ns | 38.63 bc | |
B5 | 174.15 ab | 840.86 ns | 671.88 ns | 0.7847 ns | 40.35 abc | |
B6 | 173.51 b | 836.22 ns | 661.63 ns | 0.7836 ns | 42.60 ab | |
B7 | 171.81 b | 838.17 ns | 660.69 ns | 0.7855 ns | 46.23 a |
Years | Pearson Correlation Coefficient (r) | Linear Regression Equation | Coefficient of Determination (R2) | p-Value |
---|---|---|---|---|
2017 | 0.6045 | y = 4.124 + 0.231x | 36.54% | 0.003702 |
2018 | 0.5380 | y = 2.376 + 0.2x | 28.95% | 0.011873 |
2019 | 0.3776 | - | - | 0.091458 |
2017–2019 | 0.3506 | y = 2.167 + 0.225x | 12.29% | 0.004842 |
Years | Pearson Correlation Coefficient (r) | Linear Regression Equation | Coefficient of Determination (R2) | p-Value |
---|---|---|---|---|
2017 | 0.6375 | y = 5.586 + 1.688x | 40.64% | 0.001878 |
2018 | 0.6508 | y = 4.928 + 1.277x | 42.36% | 0.001398 |
2019 | 0.6629 | y = 4.215 + 0.682x | 43.94% | 0.001058 |
2017–2019 | 0.4735 | y = 3.44 + 1.876x | 22.42% | 0.000089 |
Years | Pearson Correlation Coefficient (r) | Linear Regression Equation | Coefficient of Determination (R2) | p-Value |
---|---|---|---|---|
2017 | 0.7286 | y = 2.734 + 0.22x | 53.08% | 0.000180 |
2018 | 0.5106 | y = 0.76 + 0.222x | 26.07% | 0.018019 |
2019 | 0.5887 | y = −0.473 + 0.192x | 34.66% | 0.004993 |
2017–2019 | 0.2251 | - | - | 0.076058 |
Years | Pearson Correlation Coefficient (r) | Linear Regression Equation | Coefficient of Determination (R2) | p-Value |
---|---|---|---|---|
2017 | 0.6078 | y = 6.066 + 1.565x | 36.95% | 0.003467 |
2018 | 0.5687 | y = 5.457 + 0.919x | 32.34% | 0.007139 |
2019 | 0.2342 | - | - | 0.306917 |
2017–2019 | 0.1563 | - | - | 0.221239 |
Years | Pearson Correlation Coefficient (r) | Linear Regression Equation | Coefficient of Determination (R2) | p-Value |
---|---|---|---|---|
2017 | 0.2254 | - | - | 0.325911 |
2018 | 0.1902 | - | - | 0.408854 |
2019 | 0.3174 | - | - | 0.160918 |
2017–2019 | 0.4088 | y = 6.084 + 1.058x | 16.71% | 0.000879 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szulc, P.; Krauklis, D.; Ambroży-Deręgowska, K.; Wróbel, B.; Zielewicz, W.; Niedbała, G.; Kardasz, P.; Niazian, M. Evaluation of the Effect of Conventional and Stabilized Nitrogen Fertilizers on the Nutritional Status of Several Maize Cultivars (Zea mays L.) in Critical Growth Stages Using Plant Analysis. Agronomy 2023, 13, 480. https://doi.org/10.3390/agronomy13020480
Szulc P, Krauklis D, Ambroży-Deręgowska K, Wróbel B, Zielewicz W, Niedbała G, Kardasz P, Niazian M. Evaluation of the Effect of Conventional and Stabilized Nitrogen Fertilizers on the Nutritional Status of Several Maize Cultivars (Zea mays L.) in Critical Growth Stages Using Plant Analysis. Agronomy. 2023; 13(2):480. https://doi.org/10.3390/agronomy13020480
Chicago/Turabian StyleSzulc, Piotr, Daniel Krauklis, Katarzyna Ambroży-Deręgowska, Barbara Wróbel, Waldemar Zielewicz, Gniewko Niedbała, Przemysław Kardasz, and Mohsen Niazian. 2023. "Evaluation of the Effect of Conventional and Stabilized Nitrogen Fertilizers on the Nutritional Status of Several Maize Cultivars (Zea mays L.) in Critical Growth Stages Using Plant Analysis" Agronomy 13, no. 2: 480. https://doi.org/10.3390/agronomy13020480
APA StyleSzulc, P., Krauklis, D., Ambroży-Deręgowska, K., Wróbel, B., Zielewicz, W., Niedbała, G., Kardasz, P., & Niazian, M. (2023). Evaluation of the Effect of Conventional and Stabilized Nitrogen Fertilizers on the Nutritional Status of Several Maize Cultivars (Zea mays L.) in Critical Growth Stages Using Plant Analysis. Agronomy, 13(2), 480. https://doi.org/10.3390/agronomy13020480