Global Evolution of Research on Silvopastoral Systems through Bibliometric Analysis: Insights from Ecuador
Abstract
:1. Introduction
2. Materials and Methods
- I.
- Database Selection and Search Criteria
- II.
- Exclusion criteria
- III.
- Software and Data Selection
- IV.
- Interpretation of Data
- Performance analysis
- Bibliometric Mapping
3. Results and Discussion
3.1. Annual Scientific Production by Period
- Period I (1983–1993)—Silvopasture Characterization.
- Period II (1994–2003)—Best Practices
- Period III (2004–2013)—Ecosystem Services
- Period IV (2014–2022)—Landscape Restoration
3.2. Country Classification by Publications
3.3. Journals with the Largest Number of Documents
3.4. The 10 Most Frequently Cited Documents
Ranking | Authors | Article | Journal | Citations |
---|---|---|---|---|
1 | Shrestha et al. [88] | Exploring the potential for silvopasture adoption in south-central Florida: An application of SWOT-AHP method | Agricultural Systems | 197 |
2 | Pagiola et al. [34] | Paying for the environmental services of silvopastoral practices in Nicaragua | Ecological Economics | 171 |
3 | Haile et al. [39] | Carbon storage of different soil-size fractions in Florida silvopastoral systems | Journal of Environmental Quality | 118 |
4 | Pagiola et al. [35] | Can the poor participate in payments for environmental services? Lessons from the Silvopastoral Project in Nicaragua | Environment and Development Economics | 89 |
5 | Cubbage et al. [62] | Comparing silvopastoral systems and prospects in eight regions of the world | Agroforestry Systems | 78 |
6 | Giraldo et al. [48] | The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian Andes | Insect Conservation and Diversity | 77 |
7 | Haile et al. [40] | Contribution of trees to carbon storage in soils of silvopastoral systems in Florida, United States | Global Change Biology | 77 |
8 | Plieninger et al. [89] | Land-use legacies in the forest structure of silvopastoral oak woodlands in the Eastern Mediterranean | Regional Environmental Change | 76 |
9 | Wedderburn et al. [87] | Litter decomposition by four functional tree types for use in silvopastoral systems | Soil Biology and Biochemistry | 72 |
10 | Kumar et al. [86] | Comparison of biomass production, tree allometry and nutrient use efficiency of multipurpose trees grown in woodlot and silvopastoral experiments in Kerala, India | Forest Ecology and Management | 72 |
3.5. Collaboration Networks
3.6. Analysis of Ecuador
3.6.1. Scientific Production and Distribution by Province
3.6.2. Most Relevant Documents
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Buena Gobernanza En La Tenencia y La Administracion de Tierras/Good Governance in Land Tenure and Administration; Food & Agriculture Organization: Rome, Italy, 2007; Volume 9, ISBN 925305753X. [Google Scholar]
- Torres, B.; Eche, D.; Torres, Y.; Bravo, C.; Velasco, C.; García, A. Identification and Assessment of Livestock Best Management Practices (BMPs) Using the REDD+ Approach in the Ecuadorian Amazon. Agronomy 2021, 11, 1336. [Google Scholar] [CrossRef]
- Rangel, J.; Perea, J.; De-Pablos-heredero, C.; Espinosa-García, J.A.; Mujica, P.T.; Feijoo, M.; Barba, C.; García, A. Structural and Technological Characterization of Tropical Smallholder Farms of Dual-Purpose Cattle in Mexico. Animals 2020, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Mancilla-Leytón, J.M.; Gribis, D.; Pozo-Campos, C.; Morales-Jerrett, E.; Mena, Y.; Cambrollé, J.; Vicente, Á.M. Ecosystem Services Provided by Pastoral Husbandry: A Bibliometric Analysis. Land 2022, 11, 2083. [Google Scholar] [CrossRef]
- Villarroel-Molina, O.; Barba Capote, C.; García Martínez, A.R.; Rangel, J. Use of Social Networks to Explore Smallholder’s Adoption of Technologies in Dual Purpose Farms. Esic Mark. Econ. Bus. J. 2019, 50, 233–257. [Google Scholar]
- Bastanchury-López, M.T.; De-Pablos-Heredero, C. A Bibliometric Analysis on Smart Cities Related to Land Use. Land 2022, 11, 2132. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Ellegaard, O.; Wallin, J.A. The Bibliometric Analysis of Scholarly Production: How Great Is the Impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef]
- Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef]
- Velastegui-Montoya, A.; Montalván-Burbano, N.; Peña-Villacreses, G.; de Lima, A.; Herrera-Franco, G. Land Use and Land Cover in Tropical Forest: Global Research. Forests 2022, 13, 1709. [Google Scholar] [CrossRef]
- Huang, L.; Zhou, M.; Lv, J.; Chen, K. Trends in Global Research in Forest Carbon Sequestration: A Bibliometric Analysis. J. Clean. Prod. 2020, 252, 119908. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Moher, D. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Introduction to Sensitivity Analysis. Glob. Sensit. Anal. Prim. 2008, 50, 1–51. [Google Scholar]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, W. A Tale of Two Databases: The Use of Web of Science and Scopus in Academic Papers. Scientometrics 2020, 123, 321–335. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The Journal Coverage of Web of Science, Scopus and Dimensions: A Comparative Analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Baas, J.; Schotten, M.; Plume, A.; Côté, G.; Karimi, R. Scopus as a Curated, High-Quality Bibliometric Data Source for Academic Research in Quantitative Science Studies. Quant. Sci. Stud. 2020, 1, 377–386. [Google Scholar] [CrossRef]
- Thelwall, M. Dimensions: A Competitor to Scopus and the Web of Science? J. Informetr. 2018, 12, 430–435. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Ormazábal, C.S. Silvopastoral Systems in Arid and Semiarid Zones of Northern Chile. Agrofor. Syst. 1991, 14, 207–217. [Google Scholar] [CrossRef]
- Wairiu, M.; Mullins, C.E.; Campbell, C.D. Soil Physical Factors Affecting the Growth of Sycamore (Acer pseudoplatanus L.) in a Silvopastoral System on a Stony Upland Soil in North-East Scotland. Agrofor. Syst. 1993, 24, 295–306. [Google Scholar] [CrossRef]
- Peñaloza, R.; Hervé, M.; Sobarzo, L. Applied Research on Multiple Land Use through Silvopastoral System in Southern Chile. Agrofor. Syst. 1985, 3, 59–77. [Google Scholar] [CrossRef]
- Garrison, M.; Pita, M. An Evaluation of Silvopastoral Systems in Pine Plantations in the Central Highlands of Ecuador. Agrofor. Syst. 1992, 18, 1–16. [Google Scholar] [CrossRef]
- Knowles, R.L. New Zealand Experience with Silvopastoral Systems: A Review. For. Ecol. Manag. 1991, 45, 251–267. [Google Scholar] [CrossRef]
- Kaur, B.; Gupta, S.R.; Singh, G. Carbon Storage and Nitrogen Cycling in Silvopastoral Systems on a Sodic Soil in Northwestern India. Agrofor. Syst. 2002, 54, 21–29. [Google Scholar] [CrossRef]
- Menezes, R.S.C.; Salcedo, I.H.; Elliott, E.T. Microclimate and Nutrient Dynamics in a Silvopastoral System of Semiarid Northeastern Brazil. Agrofor. Syst. 2002, 56, 27–38. [Google Scholar] [CrossRef]
- Cardinael, R.; Chevallier, T.; Cambou, A.; Béral, C.; Barthès, B.G.; Dupraz, C.; Durand, C.; Kouakoua, E.; Chenu, C. Increased Soil Organic Carbon Stocks under Agroforestry: A Survey of Six Different Sites in France. Agric. Ecosyst. Environ. 2017, 236, 243–255. [Google Scholar] [CrossRef]
- Husak, A.L.; Grado, S.C. Monetary Benefits in a Southern Silvopastoral System. South J. Appl. For. 2002, 26, 159–164. [Google Scholar] [CrossRef]
- Grado, S.C.; Hovermale, C.H.; St. Louis, D.G. A Financial Analysis of a Silvopasture System in Southern Mississippi. Agrofor. Syst. 2001, 53, 313–322. [Google Scholar] [CrossRef]
- Rapey, H.; Lifran, R.; Valadier, A. Identifying Social, Economic and Technical Determinants of Silvopastoral Practices in Temperate Uplands: Results of a Survey in the Massif Central Region of France. Agric. Syst. 2001, 69, 119–135. [Google Scholar] [CrossRef]
- Morrison, B.J.; Gold, M.A.; Lantagne, D.O. Incorporating Indigenous Knowledge of Fodder Trees into Small-Scale Silvopastoral Systems in Jamaica. Agrofor. Syst. 1996, 34, 101–117. [Google Scholar] [CrossRef]
- ONU. United Nations Millennium Declaration; United Nations: Washington, DC, USA, 2000. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Pagiola, S.; Ramírez, E.; Gobbi, J.; de Haan, C.; Ibrahim, M.; Murgueitio, E.; Ruíz, J.P. Paying for the Environmental Services of Silvopastoral Practices in Nicaragua. Ecol. Econ. 2007, 64, 374–385. [Google Scholar] [CrossRef]
- Pagiola, S.; Rios, A.R.; Arcenas, A. Can the Poor Participate in Payments for Environmental Services? Lessons from the Silvopastoral Project in Nicaragua. Environ. Dev. Econ. 2008, 13, 299–325. [Google Scholar]
- Garbach, K.; Lubell, M.; DeClerck, F.A.J. Payment for Ecosystem Services: The Roles of Positive Incentives and Information Sharing in Stimulating Adoption of Silvopastoral Conservation Practices. Agric. Ecosyst. Environ. 2012, 156, 27–36. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Alavalapati, J.R.R. Valuing Environmental Benefits of Silvopasture Practice: A Case Study of the Lake Okeechobee Watershed in Florida. Ecol. Econ. 2004, 49, 349–359. [Google Scholar] [CrossRef]
- Pagiola, S.; Rios, A.R.; Arcenas, A. Poor Household Participation in Payments for Environmental Services: Lessons from the Silvopastoral Project in Quindío, Colombia. Environ. Resour. Econ. 2010, 47, 371–394. [Google Scholar] [CrossRef]
- Haile, S.G.; Ramachandran Nair, P.K.; Nair, V.D. Carbon Storage of Different Soil-Size Fractions in Florida Silvopastoral Systems. J. Environ. Qual. 2008, 37, 1789–1797. [Google Scholar] [CrossRef]
- Haile, S.G.; Nair, V.D.; Nair, P.K.R. Contribution of Trees to Carbon Storage in Soils of Silvopastoral Systems in Florida, United States. Glob. Chang. Biol. 2010, 16, 427–438. [Google Scholar] [CrossRef]
- Howlett, D.S.; Moreno, G.; Mosquera Losada, M.R.; Nair, P.K.R.; Nair, V.D. Soil Carbon Storage as Influenced by Tree Cover in the Dehesa Cork Oak Silvopasture of Central-Western Spain. J. Environ. Monit. 2011, 13, 1897–1904. [Google Scholar] [CrossRef]
- Tonucci, R.G.; Nair, P.K.R.; Nair, V.D.; Garcia, R.; Bernardino, F.S. Soil Carbon Storage in Silvopasture and Related Land-Use Systems in the Brazilian Cerrado. J. Environ. Qual. 2011, 40, 833–841. [Google Scholar] [CrossRef]
- Nair, V.D.; Nair, P.K.R.; Kalmbacher, R.S.; Ezenwa, I. V Reducing Nutrient Loss from Farms through Silvopastoral Practices in Coarse-Textured Soils of Florida, USA. Ecol. Eng. 2007, 29, 192–199. [Google Scholar] [CrossRef]
- Michel, G.-A.; Nair, V.D.; Nair, P.K.R. Silvopasture for Reducing Phosphorus Loss from Subtropical Sandy Soils. Plant Soil 2007, 297, 267–276. [Google Scholar] [CrossRef]
- Reis, G.L.; Lana, Â.M.Q.; Maurício, R.M.; Lana, R.M.Q.; Machado, R.M.; Borges, I.; Neto, T.Q. Influence of Trees on Soil Nutrient Pools in a Silvopastoral System in the Brazilian Savannah. Plant Soil 2010, 329, 185–193. [Google Scholar] [CrossRef]
- Nair, V.D.; Haile, S.G.; Michel, G.-A.; Nair, P.K.R. Environmental Quality Improvement of Agricultural Lands through Silvopasture in Southeastern United States. Sci. Agric. 2007, 64, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Montagnini, F.; Ibrahim, M.; Restrepo, E.M. Systèmes Silvopastoraux et Atténuation Du Changement Climatique En Amérique Latine. Bois Forets Trop. 2013, 316, 3–16. [Google Scholar] [CrossRef]
- Giraldo, C.; Escobar, F.; Chará, J.D.; Calle, Z. The Adoption of Silvopastoral Systems Promotes the Recovery of Ecological Processes Regulated by Dung Beetles in the Colombian Andes. Insect Conserv. Divers. 2011, 4, 115–122. [Google Scholar] [CrossRef]
- Poudel, S.; Bansal, S.; Podder, S.; Paneru, B.; Karki, S.; Fike, J.; Kumar, S. Conversion of Open Pasture to Hardwood Silvopasture Enhanced Soil Health of an Ultisol. Agrofor. Syst. 2022, 96, 1237–1247. [Google Scholar] [CrossRef]
- Kumar, R.V.; Roy, A.K.; Kumar, S.; Gautam, K.; Singh, A.K.; Ghosh, A.; Singh, H.V.; Koli, P. Silvopasture Systems for Restoration of Degraded Lands in a Semiarid Region of India. Land Degrad. Dev. 2022, 33, 2843–2854. [Google Scholar] [CrossRef]
- Aryal, D.R.; Morales-Ruiz, D.E.; López-Cruz, S.; Tondopó-Marroquín, C.N.; Lara-Nucamendi, A.; Jiménez-Trujillo, J.A.; Pérez-Sánchez, E.; Betanzos-Simon, J.E.; Casasola-Coto, F.; Martínez-Salinas, A. Silvopastoral Systems and Remnant Forests Enhance Carbon Storage in Livestock-Dominated Landscapes in Mexico. Sci. Rep. 2022, 12, 16769. [Google Scholar] [CrossRef]
- Zeppetello, L.R.V.; Cook-Patton, S.C.; Parsons, L.A.; Wolff, N.H.; Kroeger, T.; Battisti, D.S.; Bettles, J.; Spector, J.T.; Balakumar, A.; Masuda, Y.J. Consistent Cooling Benefits of Silvopasture in the Tropics. Nat. Commun. 2022, 13, 708. [Google Scholar] [CrossRef]
- Brook, R.; Forster, E.; Styles, D.; Mazzetto, A.M.; Arndt, C.; Esquivel, M.J.; Chadwick, D. Silvopastoral Systems for Offsetting Livestock Emissions in the Tropics: A Case Study of a Dairy Farm in Costa Rica. Agron. Sustain. Dev. 2022, 42, 101. [Google Scholar] [CrossRef]
- UN Sustainable Development Goals. Available online: https://sustainabledevelopment.un.org/content/documents/4538pressowg13.pdf (accessed on 30 December 2022).
- Iñamagua-Uyaguari, J.P.; Green, D.R.; Fitton, N.; Sangoluisa, P.; Torres, J.; Smith, P. Use of Unoccupied Aerial Systems to Characterize Woody Vegetation across Silvopastoral Systems in Ecuador. Remote Sens. 2022, 14, 3386. [Google Scholar] [CrossRef]
- Centobelli, P.; Cerchione, R.; Merigo, J.M. Mapping Knowledge Management Research: A Bibliometric Overview. Technol. Econ. Dev. Econ. 2022, 28, 239–267. [Google Scholar]
- McAllister, J.T.; Lennertz, L.; Atencio Mojica, Z. Mapping a Discipline: A Guide to Using VOSviewer for Bibliometric and Visual Analysis. Sci. Technol. Libr. 2022, 41, 319–348. [Google Scholar] [CrossRef]
- Jaureguiberry, P.; Titeux, N.; Wiemers, M.; Bowler, D.E.; Coscieme, L.; Golden, A.S.; Guerra, C.A.; Jacob, U.; Takahashi, Y.; Settele, J. The Direct Drivers of Recent Global Anthropogenic Biodiversity Loss. Sci. Adv. 2022, 8, eabm9982. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global Land Use Changes Are Four Times Greater than Previously Estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Lemes, A.P.; Garcia, A.R.; Pezzopane, J.R.M.; Brandão, F.Z.; Watanabe, Y.F.; Cooke, R.F.; Sponchiado, M.; de Paz, C.C.P.; Camplesi, A.C.; Binelli, M.; et al. Silvopastoral System Is an Alternative to Improve Animal Welfare and Productive Performance in Meat Production Systems. Sci. Rep. 2021, 11, 14092. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating Leaf Area Index and Aboveground Biomass of Grazing Pastures Using Sentinel-1, Sentinel-2 and Landsat Images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef]
- Cubbage, F.; Balmelli, G.; Bussoni, A.; Noellemeyer, E.; Pachas, A.N.; Fassola, H.; Colcombet, L.; Rossner, B.; Frey, G.; Dube, F. Comparing Silvopastoral Systems and Prospects in Eight Regions of the World. Agrofor. Syst. 2012, 86, 303–314. [Google Scholar] [CrossRef]
- Nyakatawa, E.Z.; Mays, D.A.; Naka, K.; Bukenya, J.O. Carbon, Nitrogen, and Phosphorus Dynamics in a Loblolly Pine-Goat Silvopasture System in the Southeast USA. Agrofor. Syst. 2012, 86, 129–140. [Google Scholar] [CrossRef]
- Huntsinger, L. Grazing in a California Silvopastoral System: Effects of Defoliation Season, Intensity, and Frequency on Deerbrush, Ceanothus Integerrimus Hook. & Arn. Agrofor. Syst. 1996, 34, 67–82. [Google Scholar] [CrossRef]
- Akau, G.; Detlefsen, G.; Imbach, A.; Jenkins, T.; Villanueva, C. Agronomic Qualities of Pennisetum Clandestinum in Association with Acacia Koa for the Mitigation of the Effects of Ranching and Promotion of Conservation in a Silvopastoral Context on the Island of Maui, Hawaii. Agroecol. Sustain. Food Syst. 2022, 46, 1047–1074. [Google Scholar] [CrossRef]
- Pezzopane, J.R.M.; Nicodemo, M.L.F.; Bosi, C.; Garcia, A.R.; Lulu, J. Animal Thermal Comfort Indexes in Silvopastoral Systems with Different Tree Arrangements. J. Therm. Biol. 2019, 79, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Deniz, M.; Schmitt Filho, A.L.; Farley, J.; de Quadros, S.F.; Hötzel, M.J. High Biodiversity Silvopastoral System as an Alternative to Improve the Thermal Environment in the Dairy Farms. Int. J. Biometeorol. 2019, 63, 83–92. [Google Scholar] [CrossRef]
- Carvalho, J.L.N.; Raucci, G.S.; Cerri, C.E.P.; Bernoux, M.; Feigl, B.J.; Wruck, F.J.; Cerri, C.C. Impact of Pasture, Agriculture and Crop-Livestock Systems on Soil C Stocks in Brazil. Soil Tillage Res. 2010, 110, 175–186. [Google Scholar] [CrossRef]
- Lira Junior, M.A.; Fracetto, F.J.C.; Ferreira, J.D.S.; Silva, M.B.; Fracetto, G.G.M. Legume-Based Silvopastoral Systems Drive C and N Soil Stocks in a Subhumid Tropical Environment. Catena 2020, 189, 104508. [Google Scholar] [CrossRef]
- Cá, J.; Lustosa Filho, J.F.; da Silva, N.R.; de Castro, C.R.T.; de Oliveira, T.S. C and N Stocks in Silvopastoral Systems with High and Low Tree Diversity: Evidence from a Twenty-Two Year Old Field Study. Sci. Total Environ. 2022, 833, 155298. [Google Scholar] [CrossRef]
- Bosi, C.; Pezzopane, J.R.M.; Sentelhas, P.C. Silvopastoral System with Eucalyptus as a Strategy for Mitigating the Effects of Climate Change on Brazilian Pasturelands. An. Acad. Bras. Cienc. 2020, 92. [Google Scholar] [CrossRef]
- Horst, E.H.; Ammar, H.; Ben Rhouma, R.; Khouja, M.; Khouja, M.L.; Giráldez, F.J.; López, S. Seasonal and Species Variations in the Nutritive Value of Eucalyptus Foliage as a Potential Feed Resource for Ruminants in Silvopastoral Systems. Agrofor. Syst. 2022, 96, 1189–1198. [Google Scholar] [CrossRef]
- De Oliveira, A.F.; Menezes, G.L.; Gonçalves, L.C.; de Araújo, V.E.; Ramirez, M.A.; Guimarães Júnior, R.; Jayme, D.G.; Lana, Â.M.Q. Pasture Traits and Cattle Performance in Silvopastoral Systems with Eucalyptus and Urochloa: Systematic Review and Meta-Analysis. Livest. Sci. 2022, 262, 104973. [Google Scholar] [CrossRef]
- de Macêdo Carvalho, C.B.; de Mello, A.C.L.; da Cunha, M.V.; de Oliveira Apolinário, V.X.; da Silva, V.J.; de Miranda Costa, S.B.; de Carvalho, R.O.; dos Santos, M.V.F. Initial Growth and Survival of Eucalyptus Spp. and Mimosa Caesalpiniifolia Benth. in Silvopastoral Systems and Their Impact on Herbage Accumulation of Urochloa Decumbens Stapf RD Webster. Agrofor. Syst. 2022, 96, 1053–1064. [Google Scholar]
- Rodriguez-Rigueiro, F.R.; Santiago-Freijanes, J.J.; Mosquera-Losada, M.R.; Castro, M.; Silva-Losada, P.; Pisanelli, A.; Pantera, A.; Rigueiro-Rodriguez, A.; Ferreiro-Dominguez, N. Silvopasture Policy Promotion in European Mediterranean Areas. PLoS ONE 2021, 16, e0245846. [Google Scholar] [CrossRef]
- Ferreiro-Domínguez, N.; Rodríguez-Rigueiro, F.J.; Rigueiro-Rodríguez, A.; González-Hernández, M.P.; Mosquera-Losada, M.R. Climate Change and Silvopasture: The Potential of the Tree and Weather to Modify Soil Carbon Balance. Sustainability 2022, 14, 4270. [Google Scholar] [CrossRef]
- López-Díaz, M.L.; Benítez, R.; Rolo, V.; Moreno, G. Managing High Quality Timber Plantations as Silvopastoral Systems: Tree Growth, Soil Water Dynamics and Nitrate Leaching Risk. New For. 2020, 51, 985–1002. [Google Scholar] [CrossRef]
- Pasalodos-Tato, M.; Pukkala, T.; Rigueiro-Rodríguez, A.; Fernández-Núñez, E.; Mosquera-Losada, M.R. Optimal Management of Pinus Radiata Silvopastoral Systems Established on Abandoned Agricultural Land in Galicia (North-Western Spain). Silva Fenn 2009, 43, 831–845. [Google Scholar] [CrossRef]
- Campos, P.; Ovando, P.; Mesa, B.; Oviedo, J.L. Environmental Income of Livestock Grazing on Privately-Owned Silvopastoral Farms in Andalusia, Spain. L. Degrad. Dev. 2018, 29, 250–261. [Google Scholar] [CrossRef]
- Rivest, D.; Rolo, V.; Lopez-Diaz, L.; Moreno, G. Shrub Encroachment in Mediterranean Silvopastoral Systems: Retama Sphaerocarpa and Cistus Ladanifer Induce Contrasting Effects on Pasture and Quercus Ilex Production. Agric. Ecosyst. Environ. 2011, 141, 447–454. [Google Scholar] [CrossRef]
- Mosquera-Losada, M.R.; Rigueiro-Rodríguez, A.; Ferreiro-Domínguez, N. Effect of Liming and Organic and Inorganic Fertilization on Soil Carbon Sequestered in Macro-and Microaggregates in a 17-Year Old Pinus Radiata Silvopastoral System. J. Environ. Manag. 2015, 150, 28–38. [Google Scholar] [CrossRef]
- Ferreiro-Domínguez, N.; Rigueiro-Rodríguez, A.; Rial-Lovera, K.E.; Romero-Franco, R.; Mosquera-Losada, M.R. Effect of Grazing on Carbon Sequestration and Tree Growth That Is Developed in a Silvopastoral System under Wild Cherry (Prunus avium L.). Catena 2016, 142, 11–20. [Google Scholar] [CrossRef]
- Mancilla-Leyton, J.M.; Sánchez-Lineros, V.; Martín Vicente, A. Influence of Grazing on the Decomposition of Pinus pinea L. Needles in a Silvopastoral System in Doñana, Spain. Plant Soil 2013, 373, 173–181. [Google Scholar]
- Mosquera-Losada, M.R.; Ferreiro-Domínguez, N.; Daboussi, S.; Rigueiro-Rodríguez, A. Sewage Sludge Stabilisation and Fertiliser Value in a Silvopastoral System Developed with Eucalyptus Nitens Maiden in Lugo (Spain). Sci. Total Environ. 2016, 566, 806–815. [Google Scholar] [CrossRef]
- Fernández-Núñez, E.; Rigueiro-Rodríguez, A.; Mosquera-Losada, M.R. Silvopastoral Systems Established with Pinus Radiata D. Don and Betula Pubescens Ehrh.: Tree Growth, Understorey Biomass and Vascular Plant Biodiversity. For. Int. J. For. Res. 2014, 87, 512–524. [Google Scholar] [CrossRef]
- Mohan Kumar, B.; Jacob George, S.; Jamaludheen, V.; Suresh, T.K. Comparison of Biomass Production, Tree Allometry and Nutrient Use Efficiency of Multipurpose Trees Grown in Woodlot and Silvopastoral Experiments in Kerala, India. For. Ecol. Manag. 1998, 112, 145–163. [Google Scholar] [CrossRef]
- Wedderburn, M.E.; Carter, J. Litter Decomposition by Four Functional Tree Types for Use in Silvopastoral Systems. Soil Biol. Biochem. 1999, 31, 455–461. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Alavalapati, J.R.R.; Kalmbacher, R.S. Exploring the Potential for Silvopasture Adoption in South-Central Florida: An Application of SWOT-AHP Method. Agric. Syst. 2004, 81, 185–199. [Google Scholar] [CrossRef]
- Plieninger, T.; Schaich, H.; Kizos, T. Land-Use Legacies in the Forest Structure of Silvopastoral Oak Woodlands in the Eastern Mediterranean. Reg. Environ. Chang. 2011, 11, 603–615. [Google Scholar] [CrossRef]
- Vallejo, V.E.; Arbeli, Z.; Terán, W.; Lorenz, N.; Dick, R.P.; Roldan, F. Effect of Land Management and Prosopis Juliflora (Sw.) DC Trees on Soil Microbial Community and Enzymatic Activities in Intensive Silvopastoral Systems of Colombia. Agric. Ecosyst. Environ. 2012, 150, 139–148. [Google Scholar] [CrossRef]
- Howlett, D.S.; Mosquera-Losada, M.R.; Nair, P.R.R.; Nair, V.D.; Rigueiro-Rodríguez, A. Soil Carbon Storage in Silvopastoral Systems and a Treeless Pasture in Northwestern Spain. J. Environ. Qual. 2011, 40, 825–832. [Google Scholar] [CrossRef]
- Sierra, J.; Nygren, P. Transfer of N Fixed by a Legume Tree to the Associated Grass in a Tropical Silvopastoral System. Soil Biol. Biochem. 2006, 38, 1893–1903. [Google Scholar] [CrossRef]
- Jose, S.; Walter, D.; Mohan Kumar, B. Ecological Considerations in Sustainable Silvopasture Design and Management. Agrofor. Syst. 2019, 93, 317–331. [Google Scholar] [CrossRef]
- Landholm, D.M.; Pradhan, P.; Wegmann, P.; Sánchez, M.A.R.; Salazar, J.C.S.; Kropp, J.P. Reducing Deforestation and Improving Livestock Productivity: Greenhouse Gas Mitigation Potential of Silvopastoral Systems in Caquetá. Environ. Res. Lett. 2019, 14, 114007. [Google Scholar] [CrossRef]
- Riedel, J.; Dorn, S.; Plath, M.; Mody, K. Growth, Herbivore Distribution, and Herbivore Damage of Timber Trees in a Tropical Silvopastoral Reforestation System. Ann. For. Sci. 2013, 70, 75–86. [Google Scholar] [CrossRef]
- Cárdenas, A.; Moliner, A.; Hontoria, C.; Schernthanner, H. Analysis of Land-Use/Land-Cover Changes in a Livestock Landscape Dominated by Traditional Silvopastoral Systems: A Methodological Approach. Int. J. Remote Sens. 2018, 39, 4684–4698. [Google Scholar] [CrossRef]
- Ferreiro-Domínguez, N.; Nair, V.D.; Freese, D. Phosphorous Dynamics in Poplar Silvopastoral Systems Fertilised with Sewage Sludge. Agric. Ecosyst. Environ. 2016, 223, 87–98. [Google Scholar] [CrossRef]
- Röhrig, N.; Hassler, M.; Roesler, T. Silvopastoral Production as Part of Alternative Food Networks: Agroforestry Systems in Umbria and Lazio, Italy. Agroecol. Sustain. Food Syst. 2021, 45, 654–672. [Google Scholar] [CrossRef]
- Pereira, M.; Morais, M.D.G.; Fernandes, P.B.; Santos, V.A.C.D.; Glatzle, S.; Almeida, R.G.D. Beef Cattle Production on Piatã Grass Pastures in Silvopastoral Systems: Producción de Ganado de Carne En Pasturas de Urochloa Brizantha Cv. BRS Piatã En Sistemas Silvopastoriles. Trop. Grassl. Trop. 2021, 9, 1–12. [Google Scholar] [CrossRef]
- Andrade, H.J.; Brook, R.; Ibrahim, M. Growth, Production and Carbon Sequestration of Silvopastoral Systems with Native Timber Species in the Dry Lowlands of Costa Rica. Plant Soil 2008, 308, 11–22. [Google Scholar] [CrossRef]
- Yamamoto, W.; Dewi, I.A.; Ibrahim, M. Effects of Silvopastoral Areas on Milk Production at Dual-Purpose Cattle Farms at the Semi-Humid Old Agricultural Frontier in Central Nicaragua. Agric. Syst. 2007, 94, 368–375. [Google Scholar] [CrossRef]
- Beckert, M.R.; Smith, P.; Lilly, A.; Chapman, S.J. Soil and Tree Biomass Carbon Sequestration Potential of Silvopastoral and Woodland-Pasture Systems in North East Scotland. Agrofor. Syst. 2016, 90, 371–383. [Google Scholar] [CrossRef]
- Fornara, D.A.; Olave, R.; Burgess, P.; Delmer, A.; Upson, M.; McAdam, J. Land Use Change and Soil Carbon Pools: Evidence from a Long-Term Silvopastoral Experiment. Agrofor. Syst. 2018, 92, 1035–1046. [Google Scholar] [CrossRef]
- Tschopp, M.; Ceddia, M.G.; Inguaggiato, C.; Bardsley, N.O.; Hernández, H. Understanding the Adoption of Sustainable Silvopastoral Practices in Northern Argentina: What Is the Role of Land Tenure? Land Use Policy 2020, 99, 105092. [Google Scholar] [CrossRef]
- Torres, B.; Bravo, C.; Torres, A.; Tipán-Torres, C.; Vargas, J.C.; Herrera-Feijoo, R.J.; Heredia, R.M.; Barba, C.; García, A. Carbon Stock Assessment in Silvopastoral Systems along an Elevational Gradient: A Study from Cattle Producers in the Sumaco Biosphere Reserve, Ecuadorian Amazon. Sustainability 2023, 15, 449. [Google Scholar] [CrossRef]
- Lerner, A.M.; Rudel, T.K.; Schneider, L.C.; McGroddy, M.; Burbano, D.V.; Mena, C.F. The Spontaneous Emergence of Silvo-Pastoral Landscapes in the Ecuadorian Amazon: Patterns and Processes. Reg. Environ. Chang. 2015, 15, 1421–1431. [Google Scholar] [CrossRef]
- Raes, L.; Speelman, S.; Aguirre, N. Farmers’ Preferences for PES Contracts to Adopt Silvopastoral Systems in Southern Ecuador, Revealed Through a Choice Experiment. Environ. Manag. 2017, 60, 200–215. [Google Scholar] [CrossRef] [PubMed]
- McGroddy, M.E.; Lerner, A.M.; Burbano, D.V.; Schneider, L.C.; Rudel, T.K. Carbon Stocks in Silvopastoral Systems: A Study from Four Communities in Southeastern Ecuador. Biotropica 2015, 47, 407–415. [Google Scholar] [CrossRef]
- Torres, B.; Vasco, C.; Günter, S.; Knoke, T. Determinants of Agricultural Diversification in a Hotspot Area: Evidence from Colonist and Indigenous Communities in the Sumaco Biosphere Reserve, Ecuadorian Amazon. Sustainability 2018, 10, 1432. [Google Scholar] [CrossRef]
- Hayes, T.; Murtinho, F.; Cárdenas Camacho, L.M.; Crespo, P.; McHugh, S.; Salmerón, D. Can Conservation Contracts Co-Exist with Change? Payment for Ecosystem Services in the Context of Adaptive Decision-Making and Sustainability. Environ. Manag. 2015, 55, 69–85. [Google Scholar]
- Cañadas, L.Á.; Andrade-Candell, J.; Domínguez, A.J.M.; Molina, H.C.; Schnabel, D.O.; Vargas-Hernández, J.J.; Wehenkel, C. Growth and Yield Models for Teak Planted as Living Fences in Coastal Ecuador. Forests 2018, 9, 55. [Google Scholar] [CrossRef] [Green Version]
- González Marcillo, R.L.; Castro Guamàn, W.E.; Guerrero Pincay, A.E.; Vera Zambrano, P.A.; Ortiz Naveda, N.R.; Guamàn Rivera, S.A. Assessment of Guinea Grass Panicum Maximum under Silvopastoral Systems in Combination with Two Management Systems in Orellana Province, Ecuador. Agriculture 2021, 11, 117. [Google Scholar] [CrossRef]
- Vargas-Tierras, Y.B.; Prado-Beltrán, J.K.; Nicolalde-Cruz, J.R.; Casanoves, F.; de Virginio-Filho, E.M.; Viera-Arroyo, W.F. Characterization and Role of Amazonian Fruit Crops in Family Farms in the Provinces of Sucumbíos and Orellana (Ecuador). Cienc. Tecnol. Agropec. 2018, 19, 501–515. [Google Scholar]
- Diana Rade, L.; Álvaro Cañadas, L.; Carlos Zambrano, Z.; Carlos Molina, H.; Alexandra Ormaza, M.; Wehenkel, C. Silvopastoral System Economical and Financial Feasibility with Jatropha Curcas L. in Manabí, Ecuador. Rev. MVZ Cordoba 2017, 22, 6241–6255. [Google Scholar] [CrossRef] [Green Version]
Period (y) | Publications (y) | Citations (y) | ||||
---|---|---|---|---|---|---|
Mean | SD 1 | CV 2 | Mean 1 | SD 1 | CV 2 | |
I 1983–1993 | 4.3 a | 3.4 | 79 | 103.7 a | 72.0 | 69 |
II 1994–2003 | 25.1 a | 15.0 | 60 | 718.2 a | 543.6 | 76 |
III 2004–2013 | 139.6 b | 61.4 | 44 | 4503.5 b | 1496.1 | 33 |
IV 2014–2022 | 446.4 c | 168.9 | 38 | 4751.2 b | 1965.1 | 41 |
Journal | Country | Editorial | Number of Documents | SJR 2021 | Quartile |
---|---|---|---|---|---|
Agroforestry Systems | The Netherlands | Springer | 533 | 0.59 | Q1 |
Forest Ecology and Management | The Netherlands | Elsevier | 161 | 1.11 | Q1 |
Agriculture Ecosystems and Environment | The Netherlands | Elsevier | 99 | 1.66 | Q1 |
Sustainability | Switzerland | MDPI | 92 | 0.66 | Q1 |
Livestock Research for Rural Development | Colombia | CIPAV | 84 | 0.25 | Q3 |
Forests | Switzerland | MDPI | 71 | 0.62 | Q1 |
Plant and Soil | The Netherlands | Springer | 62 | 1.12 | Q1 |
Science of the Total Environment | The Netherlands | Elsevier | 61 | 1.81 | Q1 |
Tropical and Subtropical Agroecosystems | Mexico | UADY | 58 | 0.2 | Q3 |
Land Use Policy | UK | Elsevier | 54 | 1.64 | Q1 |
Ranking | Authors | Article | Journal | Citations |
---|---|---|---|---|
1 | Lerner et al. [106] | The spontaneous emergence of silvo-pastoral landscapes in the Ecuadorian Amazon: Patterns and processes | Regional Environmental Change | 28 |
2 | Raes et al. [107] | Farmers’ Preferences for PES Contracts to Adopt Silvopastoral Systems in Southern Ecuador, Revealed Through a Choice Experiment | Environmental Management | 19 |
3 | McGroddy et al. [108] | Carbon Stocks in Silvopastoral Systems: A Study from Four Communities in Southeastern Ecuador | Biotropica | 19 |
4 | Torres et al. [109] | Determinants of agricultural diversification in a hotspot area: Evidence from colonist and indigenous communities in the Sumaco Biosphere Reserve, Ecuadorian Amazon | Sustainability | 18 |
5 | Hayes et al. [110] | Can Conservation Contracts Co-exist with Change? Payment for Ecosystem Services in the Context of Adaptive Decision-Making and Sustainability | Environmental Management | 15 |
6 | Cañadas-L et al. [111] | Growth and yield models for teak planted as living fences in coastal Ecuador | Forests | 14 |
7 | González Marcillo et al. [112] | Assessment of guinea grass panicum maximum under silvopastoral systems in combination with two management systems in Orellana province, Ecuador | Agriculture | 5 |
8 | Vargas-Tierras et al. [113] | Characterization and role of Amazonian fruit crops in family farms in the provinces of Sucumbíos and Orellana (Ecuador) | Ciencia y Tecnología Agropecuaria | 4 |
9 | Diana Rade et al. [114] | Silvopastoral System Economical and Financial Feasibility with Jatropha Curcas L. in Manabí, Ecuador | Revista MVZ Córdoba | 4 |
10 | Torres et al. [2] | Identification and assessment of livestock best management practices (BMPs) using the REDD+ approach in the Ecuadorian amazon | Agronomy | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, B.; Herrera-Feijoo, R.; Torres, Y.; García, A. Global Evolution of Research on Silvopastoral Systems through Bibliometric Analysis: Insights from Ecuador. Agronomy 2023, 13, 479. https://doi.org/10.3390/agronomy13020479
Torres B, Herrera-Feijoo R, Torres Y, García A. Global Evolution of Research on Silvopastoral Systems through Bibliometric Analysis: Insights from Ecuador. Agronomy. 2023; 13(2):479. https://doi.org/10.3390/agronomy13020479
Chicago/Turabian StyleTorres, Bolier, Robinson Herrera-Feijoo, Yenny Torres, and Antón García. 2023. "Global Evolution of Research on Silvopastoral Systems through Bibliometric Analysis: Insights from Ecuador" Agronomy 13, no. 2: 479. https://doi.org/10.3390/agronomy13020479
APA StyleTorres, B., Herrera-Feijoo, R., Torres, Y., & García, A. (2023). Global Evolution of Research on Silvopastoral Systems through Bibliometric Analysis: Insights from Ecuador. Agronomy, 13(2), 479. https://doi.org/10.3390/agronomy13020479