Response of Biochemical Properties in Agricultural Soils Polluted with 4-Chloro-2-methylphenoxyacetic Acid (MCPA) under Severe Drought Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils and Herbicide Properties
2.2. Experimental Design
- SA, Typic Xerofluvent soil non-polluted with MCPA
- SA+H, Typic Xerofluvent soil polluted with MCPA
- SB, Typic Haploxeralf soil non-polluted with MCPA
- SB+H, Typic Haploxeralf soil polluted with MCPA
- SC, Vertic Chromoxert soil non-polluted with MCPA
- SC+H, Vertic Chromoxert soil polluted with MCPA
- SAD, Typic Xerofluvent soil non-polluted with MCPA
- SAD+H, Typic Xerofluvent soil polluted with MCPA
- SBD, Typic Haploxeralf soil non-polluted with MCPA
- SBD+H, Typic Haploxeralf soil polluted with MCPA
- SCD, Vertic Chromoxert soil non-polluted with MCPA
- SCD+H, Vertic Chromoxert soil polluted with MCPA
2.3. Soil Analysis
2.4. Statistical Analysis
3. Results
3.1. Watered Soils
3.2. Non-Watered Soils
4. Discussion
4.1. Watered Soils
4.2. Non-Watered Soils
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Solomon, S.; Manning, M.; Marquis, M.; Qin, D. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Linares, C.; Díaz, J.; Negev, M.; Martínez, G.S.; Debono, R.; Paz, S. Impacts of climate change on the public health of the Mediterranean Basin population—Current situation, projections, preparedness and adaptation. Environ. Res. 2020, 182, 109107. [Google Scholar] [CrossRef]
- Curiel Yuste, J.; Fernandez-Gonzalez, A.J.; Fernandez-Lopez, M.; Ogaya, R.; Peñuelas, J.; Sardans, J.; Lloret, F. Strong functional stability of soil microbial communities under semiarid Mediterranean conditions and subjected to long-term shifts in baseline precipitation. Soil Biol. Biochem. 2014, 69, 223–233. [Google Scholar] [CrossRef]
- Cammarano, D.; Ceccarelli, S.; Grando, S.; Romagosa, I.; Benbelkacem, A.; Akar, T.; Al-Yassin, A.; Pecchioni, N.; Francia, E.; Ronga, D. The impact of climate change on barley yield in the Mediterranean basin. Eur. J. Agron. 2019, 106, 1–11. [Google Scholar] [CrossRef]
- Dakhlaoui, H.; Seibert, J.; Hakala, K. Sensitivity of discharge projections to potential evapotranspiration estimation in Northern Tunisia. Reg. Environ. Chang. 2020, 20, 34. [Google Scholar] [CrossRef]
- Franco-Andreu, L.; Gómez, I.; Parrado, J.; García, C.; Hernández, T.; Tejada, M. Behavior of two pesticides in a soil subjected to severe drought. Effects on soil biology. Appl. Soil Ecol. 2016, 105, 17–24. [Google Scholar] [CrossRef]
- Wang, X.Q.; Liu, J.; Zhang, N.; Yang, H. Adsorption, mobility, biotic and abiotic metabolism and degradation of pesticide exianliumi in three types of farmland. Chemosphere 2020, 254, 126741. [Google Scholar] [CrossRef]
- Rasool, S.; Rasool, T.; Gani, K.M. A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chem. Eng. J. Adv. 2022, 11, 100301. [Google Scholar] [CrossRef]
- Cabrera, A.; Cox, L.; Spokas, K.A.; Celis, R.; Hermosín, M.C.; Cornejo, J.; Koskinen, W.C. Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents. J. Agric. Food Chem. 2011, 59, 12550–12560. [Google Scholar] [CrossRef]
- Essandoh, M.; Wolgemuth, D.; Pittman, C.U.; Mohan, D.; Mlsna, T. Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere 2017, 174, 49–57. [Google Scholar] [CrossRef]
- Wu, D.; Ren, C.; Wu, C.; Li, Y.; Deng, X.; Li, Q. Mechanisms by which different polar fractions of dissolved organic matter affect sorption of the herbicide MCPA in ferralsol. J. Hazard. Mater. 2021, 416, 125774. [Google Scholar] [CrossRef]
- Tejada, M. Evolution of soil biological properties after addition of glyphosate, diflufenican and glyphosate-diflufenican herbicides. Chemosphere 2009, 76, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Wołejko, E.; Jabłońska-Trypuć, A.; Wydro, U.; Butarewicz, A.; Łozowicka, B. Soil biological activity as an indicator of soil pollution with pesticides—A review. Appl. Soil Ecol. 2020, 147, 103356. [Google Scholar] [CrossRef]
- Kumar, G.; Lal, S.; Soni, S.K.; Maurya, S.K.; Shukla, P.K.; Chaudhary, P.; Bhattacherjee, A.K.; Garg, N. Mechanism and kinetics of chlorpyrifos co-metabolism by using environment restoring microbes isolated from rhizosphere of horticultural crops under subtropics. Front. Microbiol. 2022, 13, 891870. [Google Scholar] [CrossRef] [PubMed]
- Bayranvand, M.; Akbarinia, M.; Salehi Jouzani, G.; Gharechahi, J.; Baldrian, P. Distribution of soil extracellular enzymatic, microbial, and biological functions in the C and N-cycle pathways along a forest altitudinal gradient. Front. Microbiol. 2021, 12, 660603. [Google Scholar] [CrossRef]
- Tejada, M.; Gómez, I.; Paneque, P.; Toro, M.d.; García-Quintanilla, A.; Parrado, J. Use of biostimulants obtained from sewage sludge for the restoration of soils polluted by diuron: Effect on soil biochemical properties. Agronomy 2023, 13, 24. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; An, N.; Jiang, D.; Cao, B.; Jiang, Z.; Yan, Y.; Ming, C.; Meng, Q.M.; Han, W. Short-term response of soil enzyme activities and bacterial communities in black soil to a herbicide mixture: Atrazine and acetochlor. Appl. Soil Ecol. 2023, 181, 104652. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 4th ed.; SMSS Technical Monograph No. 6: Blacksburg, Virginia, 1990; p. 432. [Google Scholar]
- Gómez, I.; Rodríguez-Morgado, B.; Parrado, J.; García, C.; Hernández, T.; Tejada, M. Behavior of oxyfluorfen in soils amended with different sources of organic matter. Effects on soil biology. J. Hazard. Mater. 2014, 273, 207–214. [Google Scholar] [CrossRef]
- MAPA; Ministerio de Agricultura, Pesca y Alimentación. Métodos Oficiales de Análisis; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 1994; Volume 3, p. 662. [Google Scholar]
- García, C.; Hernandez, T.; Costa, F. Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Commun. Soil. Sci. Plan. Anal. 1997, 28, 123–134. [Google Scholar] [CrossRef]
- Kandeler, E.; Gerber, G. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Eivazi, F.; Zakaria, A. β-Glucosidase activity in soils amended with sewage sludge. Agric. Ecosyst. Environ. 1993, 43, 155–161. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenol phosphate in assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- López-Piñero, A.; Peña, D.; Albarrán, A.; Sánchez-Llerena, J.; Becerra, D. Behavior of MCPA in four intensive cropping soils amended with fresh, composted, and aged olive mil waste. J. Contam. Hydrol. 2013, 152, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Tejada, M.; García-Martínez, A.M.; Gómez, I.; Parrado, J. Application of MCPA herbicide on soils amended with biostimulants: Short-time effects on soil biological properties. Chemosphere 2010, 80, 1088–1094. [Google Scholar] [CrossRef]
- Wolinska, A.; Stepniewska, Z. Dehydrogenase activity in the soil environment. In Dehydrogenases; Canuto, R.A., Ed.; Intech: Rijeka, Croatia, 2012; Available online: http://www.ebook3000.com/ (accessed on 23 January 2023).
- Łozowicka, B.; Wołejko, E.; Kaczyński, P.; Konecki, R.; Iwaniuk, P.; Drągowski, W.; Łozowicki, J.; Tujtebajeva, G.; Wydro, U.; Jablońska-Trypuć, A. Effect of microorganism on behaviour of two commonly used herbicides in wheat/soil system. Appl. Soil Ecol. 2021, 162, 103879. [Google Scholar] [CrossRef]
- Järvan, M.; Edesi, L.; Adamson, A.; Võsa, T. Soil microbial communities and dehydrogenase activity depending on farming systems. Plant Soil Environ. 2014, 60, 459–463. [Google Scholar] [CrossRef]
- Schellenberger, S.; Drake, H.L.; Kolb, S. Impairment of cellulose- and cellobiose-degrading soil bacteria by two acidic herbicides. FEMS Microbiol. Lett. 2012, 327, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Medo, J.; Maková, J.; Medová, J.; Lipkov, N.; Cinkocki, R.; Omelka, R.; Soňa Javoreková, S. Changes in soil microbial community and activity caused by application of dimethachlor and linuron. Sci. Rep. 2021, 11, 12786. [Google Scholar] [CrossRef]
- Alister, C.A.; Araya, M.A.; Kogan, M. Adsorption and desorption variability of four herbicides used in paddy rice productions. J. Environ. Sci. Health B 2011, 46, 62–68. [Google Scholar] [CrossRef]
- Paszko, T. Modeling of pH-dependent adsorption and leaching of MCPA in profiles of Polish mineral soils. Sci. Total Environ. 2014, 494, 229–240. [Google Scholar] [CrossRef]
- Hiller, E.; Tatarková, V.; Šimonovičová, A.; Bartal, M. Sorption, desorption, and degradation of (4-chloro-2-methylphenoxy) acetic acid in representative soils of the Danubian Lowland Slovakia. Chemosphere 2012, 87, 437–444. [Google Scholar] [CrossRef]
- Hiller, E.; Bartal, M.; Milička, J.; Čerňanský, S. Environmental fate of the herbicide MCPA in two soils as affected by the presence of wheat ash. Water Air Soil Pollut. 2009, 197, 395–402. [Google Scholar] [CrossRef]
- Tejada, M.; Gómez, I.; del Toro, M. Use of organic amendments as a bioremediation strategy to reduce the bioavailability of chlorpyrifos insecticide in soils. Effects on soil biology. Ecotoxicol. Environ. Saf. 2011, 74, 2075–2081. [Google Scholar] [CrossRef] [PubMed]
- Tejada, M.; Rodríguez-Morgado, B.; Gómez, I.; Parrado, J. Degradation of chlorpyrifos using different biostimulants/biofertilizers: Effects on soil biochemical properties and microbial community. Appl. Soil Ecol. 2014, 84, 158–165. [Google Scholar] [CrossRef]
- Hueso, S.; Hernández, T.; García, C. Resistance and resilience of the soil microbial biomass to severe drought in semiarid soils: The importance of organic amendments. Appl. Soil Ecol. 2011, 50, 27–36. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, G.-L.; Yang, J.-L.; Li, D.-C.; Zhao, Y.-G.; Liu, F.; Yang, R.-M.; Yang, F. Organic matter controls of oil water retention in an alpine grassland and its significance for hydrological processes. J. Hydrol. 2014, 519, 3086–3093. [Google Scholar] [CrossRef]
SA | SB | SC | |
---|---|---|---|
pH (H2O) | 8.6 ± 0.2 | 7.1 ± 0.1 | 8.3 ± 0.1 |
Bulk density (Mg m−3) | 1.41 ± 0.09 | 1.46 ± 0.07 | 1.39 ± 0.05 |
Sand (g kg−1) | 350 ± 27 | 680 ± 33 | 159 ± 11 |
Silt (g kg−1) | 363 ± 22 | 147 ± 12 | 271 ± 17 |
Clay (g kg−1) | 287 ± 17 | 173 ± 15 | 570 ± 28 |
Textural class | Clay loam | Sandy loam | Clay |
Organic matter (g kg−1) | 5.2 ± 1.4 | 2.3 ± 0.6 | 9.4 ± 1.6 |
Humic-acid C (mg kg−1) | 1389 ± 24 | 1566 ± 38 | 2987 ± 51 |
Fulvic-acid C (mg kg−1) | 736 ± 15 | 824 ± 22 | 1208 ± 34 |
Kjeldahl-N (g kg−1) | 1.0 ± 0.3 | 0.6 ± 0.1 | 1.5 ± 0.3 |
Protein molecular weight (Daltons) | |||
>10,000 | 50.1 ± 5.5 | 45.9 ± 5.9 | 59.6 ± 4.2 |
10,000–5000 | 33.0 ± 3.6 | 32.6 ± 3.1 | 30.2 ± 2.4 |
5000–1000 | 10.1 ± 2.4 | 10.8 ± 2.3 | 5.1 ± 1.2 |
1000–300 | 3.5 ± 0.7 | 6.0 ± 1.1 | 3.0 ± 0.8 |
<300 | 3.3 ± 0.4 | 4.7 ± 0.7 | 2.1 ± 0.3 |
Dehydrogenase Activity (μg INTF g−1 h−1) | |||||||
---|---|---|---|---|---|---|---|
5 | 15 | 25 | 35 | 45 | 60 | 75 | |
Typic Xerofluvent | |||||||
SA | 2.1a ± 0.5 | 1.9a ± 0.4 | 1.9a ± 0.4 | 1.7a ± 0.5 | 1.9a ± 0.2 | 1.8a ± 0.4 | 1.9a ± 0.3 |
SA+H | 1.9a ± 0.4 | 1.5b ± 0.1 | 1.5b ± 0.1 | 0.93b ± 0.17 | 1.1b ± 0.3 | 1.4b ± 0.3 | 1.8a ± 0.5 |
SAD | 2.1a ± 0.5 | 1.7b ± 0.2 | 1.7b ± 0.2 | 1.3b ± 0.2 | 1.2b ± 0.1 | 1.2b ± 0.2 | 1.3b ± 0.5 |
SAD+H | 1.8a ± 0.3 | 1.4b ± 0.3 | 1.4b ± 0.3 | 1.1b ± 0.2 | 0.98b ± 0.11 | 1.0b ± 0.2 | 1.1b ± 0.3 |
Typic Haploxeralf | |||||||
SB | 1.5a ±0.3 | 1.4a ± 0.2 | 1.3a ± 0.3 | 1.3a ± 0.2 | 1.3a ± 0.2 | 1.2a ± 0.3 | 1.2a ± 0.2 |
SB+H | 1.2a ± 0.3 | 0.89b ± 0.15 | 0.77b ± 0.08 | 0.84b ± 0.10 | 0.96b ± 0.08 | 1.1a ± 0.2 | 1.3a ± 0.2 |
SBD | 1.5a ± 0.4 | 1.1a ± 0.1 | 1.0b ± 0.1 | 0.90b ± 0.09 | 0.80b ± 0.07 | 0.72b ± 0.11 | 0.68b ± 0.11 |
SBD+H | 1.1a ± 0.1 | 0.75b ± 0.11 | 0.64c ± 0.14 | 0.51c ± 0.10 | 0.59c ± 0.12 | 0.61b ± 0.15 | 0.63b ± 0.13 |
Vertic Chromoxert | |||||||
SC | 3.2a ± 0.7 | 3.0a ± 0.8 | 3.0a ± 0.5 | 3.0a ± 0.5 | 2.7a ± 0.2 | 2.9a ± 0.5 | 2.9a ± 0.6 |
SC+H | 2.7a ± 0.4 | 2.2b ± 0.5 | 2.1b ± 0.2 | 2.0b ± 0.3 | 1.9b ± 0.2 | 2.5a ± 0.1 | 2.8a ± 0.4 |
SCD | 3.0a ± 0.9 | 2.7a ± 0.3 | 2.5a ± 0.5 | 2.2b ± 0.2 | 2.1b ± 0.3 | 2.2b ± 0.3 | 2.2b ± 0.4 |
SCD+H | 2.8a ± 0.5 | 2.4b ± 0.6 | 2.2b ± 0.4 | 2.0b ± 0.4 | 1.9b ± 0.5 | 1.9b ± 0.2 | 1.9b ± 0.3 |
Urease Activity (µmol NH4+ g−1 h−1) | |||||||
---|---|---|---|---|---|---|---|
5 | 15 | 25 | 35 | 45 | 60 | 75 | |
Typic Xerofluvent | |||||||
SA | 1.5a ± 0.3 | 1.4a ± 0.2 | 1.3a ± 0.2 | 1.1a ± 0.1 | 1.2a ± 0.1 | 1.2a ± 0.2 | 1.2a ± 0.2 |
SA+H | 1.2a ± 0.2 | 0.90b ±0.11 | 0.80b ± 0.09 | 0.73b ± 0.05 | 0.82b ± 0.09 | 0.94b ± 0.10 | 1.0a ± 0.1 |
SAD | 1.5a ±0.4 | 1.0a ± 0.1 | 0.90b ± 0.10 | 0.83b ± 0.08 | 0.79b ± 0.10 | 0.74b ± 0.07 | 0.77b ± 0.13 |
SAD+H | 1.1a ± 0.2 | 0.89b ± 0.07 | 0.79b ± 0.07 | 0.70b ± 0.06 | 0.64c ± 0.06 | 0.65c ± 0.04 | 0.65c ± 0.10 |
Typic Haploxeralf | |||||||
SB | 1.3a ± 0.2 | 1.2a ± 0.3 | 1.3a ± 0.2 | 1.0a ± 0.1 | 1.0a ± 0.2 | 1.1a ± 0.2 | 1.0a ± 0.1 |
SB+H | 1.1a ± 0.2 | 0.78b ± 0.10 | 0.69b ± 0.10 | 0.72b ± 0.07 | 0.90b ± 0.08 | 1.0a ± 0.1 | 1.0a ± 0.2 |
SBD | 1.2a ± 0.1 | 1.0a ± 0.1 | 0.93b ± 0.08 | 0.86b ± 0.05 | 0.73b ± 0.06 | 0.62b ± 0.04 | 0.53c ± 0.10 |
SBD+H | 1.1a ± 0.1 | 0.69b ± 0.08 | 0.50c ± 0.05 | 0.37c ± 0.04 | 0.40c ± 0.03 | 0.42c ± 0.04 | 0.44c ± 0.07 |
Vertic Chromoxert | |||||||
SC | 2.1a ± 0.2 | 2.0a ± 0.4 | 1.8a ± 03 | 1.9a ± 0.4 | 1.6a ± 0.2 | 1.8a ± 0.3 | 1.6a ± 0.3 |
SC+H | 1.8a ± 0.2 | 1.4b ± 0.2 | 1.2b ± 0.1 | 1.1b ± 0.1 | 0.96b ± 0.07 | 1.3b ± 0.2 | 1.8a ± 0.3 |
SCD | 2.0a ± 0.3 | 1.8a ± 0.3 | 1.6a ± 0.3 | 1.4b ± 0.2 | 1.4b ± 0.2 | 1.4b ± 0.3 | 1.2b ± 0.2 |
SCD+H | 1.7a ± 0.1 | 1.3b ± 0.1 | 1.2b ± 0.2 | 1.2b ± 0.2 | 1.1b ± 0.1 | 1.1b ± 0.2 | 1.1b ± 0.1 |
β-glucosidase Activity (μmol PNP g−1 h−1) | |||||||
---|---|---|---|---|---|---|---|
5 | 15 | 25 | 35 | 45 | 60 | 75 | |
Typic Xerofluvent | |||||||
SA | 1.6a ± 0.3 | 1.7a ± 0.4 | 1.6a ± 0.2 | 1.3a ± 0.2 | 1.4a ± 0.3 | 1.4a ± 0.3 | 1.3a ± 0.2 |
SA+H | 1.4a ± 0.2 | 0.90b ± 0.08 | 0.85b ± 0.03 | 0.80b ± 0.04 | 0.90b ± 0.08 | 1.2a ± 0.1 | 1.4a ± 0.2 |
SAD | 1.7a ± 0.4 | 1.2a ± 0.1 | 1.0b ± 0.1 | 0.90b ± 0.08 | 0.84b ± 0.05 | 0.79b ± 0.06 | 0.77b ± 0.07 |
SAD+H | 1.4a ± 0.3 | 0.88b ± 0.10 | 0.80b ± 0.07 | 0.76b ± 0.05 | 0.73b ± 0.02 | 0.73b ± 0.04 | 0.74b ± 0.05 |
Typic Haploxeralf | |||||||
SB | 1.1a ± 0.1 | 1.2a ± 0.2 | 1.1a ± 0.2 | 1.0a ± 0.1 | 1.0a ± 0.2 | 0.99a ± 0.08 | 1.0a ± 0.1 |
SB+H | 0.92a ± 0.04 | 0.80b ± 0.08 | 0.66b ± 0.08 | 0.73b ± 0.07 | 0.90b ± 0.05 | 0.94a ± 0.05 | 0.95a ± 0.08 |
SBD | 1.0a ± 0.1 | 0.86b ± 0.07 | 0.80b ± 0.03 | 0.72b ± 0.06 | 0.66b ± 0.06 | 0.63b ± 0.02 | 0.57b ± 0.05 |
SBD+H | 0.93a ± 0.03 | 0.75b ± 0.04 | 0.57b ± 0.03 | 0.48c ± 0.03 | 0.50b ± 0.04 | 0.51b ± 0.03 | 0.51b ± 0.02 |
Vertic Chromoxert | |||||||
SC | 2.0a ± 0.3 | 2.2a ± 0.4 | 2.1a ± 0.4 | 2.0a ± 0.3 | 1.9a ± 0.3 | 1.8a ± 0.4 | 1.8a ± 0.3 |
SC+H | 1.9a ± 0.3 | 1.8a ± 0.3 | 1.5b ± 0.3 | 1.3b ± 0.2 | 1.3b ± 0.1 | 1.5b ± 0.3 | 1.8a ± 0.4 |
SCD | 1.8a ± 0.2 | 1.9a ± 0.3 | 1.7a ± 0.4 | 1.6ab ± 0.3 | 1.5b ± 0.3 | 1.4b ± 0.3 | 1.4b ± 0.2 |
SCD+H | 1.8a ± 0.3 | 1.6a ± 0.2 | 1.4b ± 0.2 | 1.4b ± 0.3 | 1.3b ± 0.2 | 1.2b ± 0.2 | 1.2b ± 0.3 |
Alkaline Phosphatase Activity (μmol PNP g−1 h−1) | |||||||
---|---|---|---|---|---|---|---|
5 | 15 | 25 | 35 | 45 | 60 | 75 | |
Typic Xerofluvent | |||||||
SA | 11.7a ± 2.3 | 11.6a ± 2.0 | 11.3a ± 2.1 | 10.7a ± 1.4 | 10.8a ± 1.8 | 11.1a ± 2.0 | 10.6a ± 1.3 |
SA+H | 10.5a ± 1.8 | 8.7b ± 1.5 | 7.2b ± 1.4 | 6.8b ± 1.2 | 7.6b ± 1.4 | 9.4a ± 1.2 | 10.8a ± 1.0 |
SAD | 11.2a ± 1.9 | 11.0a ± 1.8 | 9.0ab ± 1.3 | 8.2b ± 1.2 | 7.4b ± 1.2 | 7.2b ± 1.3 | 7.0b ± 1.2 |
SAD+H | 10.4a ± 2.0 | 9.3ab ± 1.1 | 6.9b ± 1.0 | 6.3b ± 1.1 | 6.0b ± 1.1 | 6.2b ± 1.0 | 6.2b ± 1.3 |
Typic Haploxeralf | |||||||
SB | 8.1a ± 1.4 | 7.7a ± 1.5 | 7.9a ± 1.3 | 7.8a ± 1.0 | 7.6a ± 1.2 | 7.9a ± 1.4 | 7.9a ± 1.3 |
SB+H | 7.5a ± 1.2 | 5.4b ± 1.1 | 4.8b ± 0.8 | 5.0b ± 1.1 | 6.7b ± 1.0 | 7.0b ± 1.0 | 7.5a ± 1.4 |
SBD | 8.2a ± 1.2 | 7.1a ± 1.2 | 6.7b ± 1.2 | 6.3b ± 1.1 | 6.0b ± 1.1 | 5.2b ± 1.2 | 4.7b ± 1.1 |
SBD+H | 7.6a ± 1.2 | 5.0b ± 1.0 | 4.0b ± 0.9 | 3.2c ± 0.9 | 3.3c ± 1.0 | 3.5c ± 0.8 | 3.8c ± 0.9 |
Vertic Chromoxert | |||||||
SC | 13.4a ± 2.2 | 13.2a ± 2.5 | 13.0a ± 2.4 | 12.7a ± 2.5 | 12.0a ± 1.8 | 12.2a ± 2.0 | 12.3a ± 2.3 |
SC+H | 12.5a ± 2.0 | 10.0b ± 1.8 | 9.0b ± 1.0 | 8.4b ± 1.3 | 7.5b ± 0.9 | 9.7b ± 1.6 | 12.0a ± 2.1 |
SCD | 13.2a ± 2.4 | 11.9ab ± 1.6 | 10.7b ± 1.5 | 9.6b ± 1.1 | 9.3b ± 1.0 | 9.0b ± 1.4 | 9.0b ± 1.0 |
SCD+H | 12.3a ± 2.2 | 9.6b ± 1.1 | 9.0b ± 0.9 | 9.0b ± 1.3 | 8.4b ± 1.1 | 8.0b ± 1.2 | 8.0b ± 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tejada, M.; Toro, M.d.; Paneque, P.; Gómez, I.; Parrado, J.; Benítez, C. Response of Biochemical Properties in Agricultural Soils Polluted with 4-Chloro-2-methylphenoxyacetic Acid (MCPA) under Severe Drought Conditions. Agronomy 2023, 13, 478. https://doi.org/10.3390/agronomy13020478
Tejada M, Toro Md, Paneque P, Gómez I, Parrado J, Benítez C. Response of Biochemical Properties in Agricultural Soils Polluted with 4-Chloro-2-methylphenoxyacetic Acid (MCPA) under Severe Drought Conditions. Agronomy. 2023; 13(2):478. https://doi.org/10.3390/agronomy13020478
Chicago/Turabian StyleTejada, Manuel, Marina del Toro, Patricia Paneque, Isidoro Gómez, Juan Parrado, and Concepción Benítez. 2023. "Response of Biochemical Properties in Agricultural Soils Polluted with 4-Chloro-2-methylphenoxyacetic Acid (MCPA) under Severe Drought Conditions" Agronomy 13, no. 2: 478. https://doi.org/10.3390/agronomy13020478
APA StyleTejada, M., Toro, M. d., Paneque, P., Gómez, I., Parrado, J., & Benítez, C. (2023). Response of Biochemical Properties in Agricultural Soils Polluted with 4-Chloro-2-methylphenoxyacetic Acid (MCPA) under Severe Drought Conditions. Agronomy, 13(2), 478. https://doi.org/10.3390/agronomy13020478