Pine Chip and Poultry Litter Derived Biochars Affect C and N Dynamics in Two Georgia, USA, Ultisols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set Up
2.2. Sampling and Analyses
2.3. Statistical Analyses
3. Results
3.1. Overview of Significant Effects
3.2. Soil pH
3.3. Total SOC and N, and C:N Ratio
3.4. Soluble and Microbial Soil Properties
3.5. Basal Soil Respiration
4. Discussion
4.1. Carbon Dynamics
4.2. Nitrogen Dynamics
4.3. Priming Effects
4.4. Utility of Short-Term Incubations
- Soil pH changes. Application of the generally neutral pH PC biochar had a moderate effect on the moderately acidic Cecil soil and highly acidic Tifton soil, regardless of the application rate. Conversely, the highly alkaline PL biochar had significant effects on both soils in generating alkaline biochemical behaviors (e.g., NH3 production [54]) at increasing application rates. As soil pH did not decline during this 28-day incubation, the application rates of PL biochar should probably be limited, unless transience is determined by further investigation.
- Nutrient availability. The current incubation study supplied sufficient information to determine if the biochar tested would improve N availability. Additionally, the incubation indicated that this aspect required interpretation with respect to changes in soil pH. Of particular concern was the potential for NH3 volatilization, which was probably the main reason nitrification processes were inhibited. Of important note, biochar pH can be controlled by pyrolysis temperature and feedstock selection [6]. In the Mandal et al. [56] study cited above, better reduction of NH3 volatilization was provided by the poultry manure biochars produced at or below 350 °C compared to those produced at or above 450 °C due to a greater increase in soil pH from these biochars.
- C sequestration. Both biochars initially increased soil organic C, but only the PL biochar added a soluble source of OC that was probably available to the microbial community. The microbial community was generally unaffected by the addition of PC biochar to either soil. With lack of substantial response in N processes, and the short-term nature of the C priming effect probably responsible for the SOC loss, this biochar could be considered generally inert to microbially driven processes, making it a more appropriate amendment to improve the C sequestration capacity of either soil. In contrast, the PL biochar did add soluble OC, which resulted in an initial increase in microbial biomass, but due to the observed lack of impact on nitrification processes, it was probably negatively affected diversity-wise by further incubation under adverse conditions. Due to the complexity of C and N processes exposed with application of the PL to the Tifton soil, additional lab or small-scale field incubations are probably necessary to determine its true nature before large-scale deployment was conducted.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adaptat. Strat. Global Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Noack, A.G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochem. Cycl. 2000, 14, 777–793. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Brockamp, R.L.; Weyers, S.L. Chapter 8—Biochar amendments show potential for restoration of degraded, contaminated, and infertile soils in agricultural and forested landscapes. In Soils and Landscape Restoration; Stanturf, J.A., Callaham, M.A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 209–236. [Google Scholar] [CrossRef]
- Cheng, N.; Wang, B.; Wu, P.; Lee, X.; Xing, Y.; Chen, M.; Gao, B. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environ. Pollut. 2021, 273, 116448. [Google Scholar] [CrossRef] [PubMed]
- Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.W.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N.S.; Ok, Y.S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 2016, 148, 276–291. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Das, K.C.; Garcia-perez, M.; Bibens, B.; Melear, N. Slow pyrolysis of poultry litter and pine woody biomass: Impact of chars and bio-oils on microbial growth. J. Environ. Sci. Health Part A 2008, 43, 714–724. [Google Scholar] [CrossRef]
- Wardle, D.A.; Nilsson, M.C.; Zackrisson, O. Fire-derived charcoal causes loss of forest humus. Science 2008, 320, 629. [Google Scholar] [CrossRef]
- Kolb, S.E.; Fermanich, K.J.; Dornbush, M.E. Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci. Soc. Am. J. 2009, 73, 1173–1181. [Google Scholar] [CrossRef]
- Smith, J.L.; Collins, H.P.; Bailey, V.L. The effect of young biochar on soil respiration. Soil Biol. Biochem. 2010, 42, 2345–2347. [Google Scholar] [CrossRef]
- Weil, R.R.; Magdoff, F. Significance of soil organic matter to soil quality and health. In Soil Organic Matter in Sustainable Agriculture; Magdoff, F., Weil, R.R., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 1–44. [Google Scholar]
- Jones, D.L.; Murphy, D.V. Microbial response time to sugar and amino acid additions to soil. Soil Biol. Biochem. 2007, 39, 2178–2182. [Google Scholar] [CrossRef]
- Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C. Mycorrhizal responses to biochar in soil: Concepts and mechanisms. Plant Soil 2007, 300, 9–20. [Google Scholar] [CrossRef]
- Luo, Y.; Durenkamp, M.; De Nobili, M.; Lin, Q.; Devonshire, B.J.; Brookes, P.C. Microbial biomass growth, following incorporation of biochars produced at 350 C or 700 C, in a silty-clay loam soil of high and low pH. Soil Biol. Biochem. 2013, 57, 513–523. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Wong, J.T.F.; Hashimoto, Y.; Huang, L.; Rinklebe, J.; Chang, S.X.; Bolan, N.; Wang, H.; Ok, Y.S. Response of microbial communities to biochar-amended soils: A critical review. Biochar 2019, 1, 3–22. [Google Scholar] [CrossRef]
- Major, J.; Lehmann, J.; Rondon, M.; Goodale, C. Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. Glob. Chang. Biol. 2010, 16, 1366–1379. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Watts, D.W.; Laird, D.A.; Ahmedna, M.A.; Niandou, M.A.S. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma 2010, 154, 281–288. [Google Scholar] [CrossRef]
- Steinbeiss, S.; Gleixner, G.; Antonietti, M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem. 2009, 41, 1301–1310. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Sikder, S.; Joardar, J.C. Biochar production from poultry litter as management approach and effects on plant growth. Int. J. Recycl. Org. Waste Agric. 2019, 8, 47–58. [Google Scholar] [CrossRef]
- Robertson, S.J.; Rutherford, P.M.; López-Gutiérrez, J.C.; Massicotte, H.B. Biochar enhances seedling growth and alters root symbioses and properties of sub-boreal forest soils. Can. J. Soil Sci. 2012, 92, 329–340. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Speir, R.A.; Harris, K.; Das, K.C.; Lee, R.D.; Morris, L.A.; Fisher, D.S. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron. J. 2010, 102, 623–633. [Google Scholar] [CrossRef]
- Crane-Droesch, A.; Abiven, S.; Jeffery, S.; Torn, M.S. Heterogeneous global crop yield response to biochar: A meta-regression analysis. Environ. Res. Lett. 2013, 8, 044049. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Gaskin, J.; Steiner, C.; Harris, K.C.; Das, K.; Bibens, B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. ASABE 2008, 51, 2061–2069. [Google Scholar] [CrossRef]
- Liesch, A.M.; Weyers, S.L.; Gaskin, J.C.; Das, K.C. Impact of two different biochars on earthworm growth and survival. Ann. Environ. Sci. 2010, 4, 1–9. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Wagner, S.W.; Hanson, J.D.; Olness, A.; Voorhees, W.B. A volumetric inorganic carbon analysis system. Soil Sci. Soc. Am. J. 1998, 62, 690–693. [Google Scholar] [CrossRef]
- Mulvaney, R.L. Nitrogen—Inorganic Forms. In Methods of Soil Analysis, Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 1123–1184. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT 15.1 User’s Guide; SAS Institute: Cary, NC, USA, 2016. [Google Scholar]
- Thies, J.E.; Rillig, M.C.; Graber, E.R. Biochar effects on the abundance, activity and diversity of the soil biota. In Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: London, UK; New York, NY, USA, 2015; pp. 327–389. [Google Scholar]
- Mukherjee, A.; Zimmerman, A.R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma 2013, 193–194, 122–130. [Google Scholar] [CrossRef]
- Beesley, L.; Dickinson, N. Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biol. Biochem. 2011, 43, 188–196. [Google Scholar] [CrossRef]
- Quan, G.; Fan, Q.; Zimmerman, A.R.; Sun, J.; Cui, L.; Wang, H.; Gao, B.; Yan, J. Effects of laboratory biotic aging on the characteristics of biochar and its water-soluble organic products. J. Hazard. Mater. 2020, 382, 121071. [Google Scholar] [CrossRef]
- Neff, J.C.; Asner, G.P. Dissolved organic carbon in terrestrial ecosystems: Synthesis and a model. Ecosystems 2001, 4, 29–48. [Google Scholar] [CrossRef]
- Wander, M. Soil organic matter fractions and their relevance to soil function. In Soil Organic Matter in Sustainable Agriculture; Magdoff, F., Weil, R.R., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 67–102. [Google Scholar]
- Malik, A.; Gleixner, G. Importance of microbial soil organic matter processing in dissolved organic carbon production. FEMS Microbiol. Ecol. 2013, 86, 139–148. [Google Scholar] [CrossRef]
- Kaiser, K.; Haumaier, L.; Zech, W. The sorption of organic matter in soils as affected by the nature of soil carbon. Soil Sci. 2000, 165, 305–313. [Google Scholar] [CrossRef]
- DeLuca, T.H.; Nilsson, M.C.; Zackrisson, O. Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 2002, 133, 206–214. [Google Scholar] [CrossRef]
- MacKenzie, M.D.; DeLuca, T.H. Charcoal and shrubs modify soil processes in ponderosa pine forests of western Montana. Plant Soil 2006, 287, 257–266. [Google Scholar] [CrossRef]
- Gundale, M.; DeLuca, T. Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem. Biol. Fert. Soils 2007, 43, 303–311. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physicochemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Mierzwa-Hersztek, M.; Klimkowicz-Pawlas, A.; Gondek, K. Influence of poultry litter and poultry litter biochar on soil microbial respiration and nitrifying bacteria activity. Waste Biomass Valor. 2018, 9, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.; Lehmann, J.; Sohi, S.P.; Thies, J.E.; O’Neill, B.; Trujillo, L.; Gaunt, J.; Solomon, D.; Grossman, J.; Neves, E.G.; et al. Black carbon affects the cycling of non-black carbon in soil. Org. Geochem. 2010, 41, 206–213. [Google Scholar] [CrossRef]
- Cheng, H.; Lee, X.; Zhang, L.; Fang, B.; Yang, F. The deviation on the determination of microbial biomass carbon in biochar amendment soil with fumigation extraction. J. Agric. Sci. 2012, 4, 251. [Google Scholar] [CrossRef]
- Sigua, G.C.; Novak, J.M.; Watts, D.W.; Cantrell, K.B.; Shumaker, P.D.; Szögi, A.A.; Johnson, M.G. Carbon mineralization in two Ultisols amended with different sources and particle sizes of pyrolyzed biochar. Chemosphere 2014, 103, 313–321. [Google Scholar] [CrossRef]
- Jin, H. Characterization of Microbial Life Colonizing Biochar and Biochar-Amended Soils. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 2010. [Google Scholar]
- Jin, H.; Lehmann, J.; Thies, J.E. Soil microbial community response to amending corn soils with corn stover charcoal. In Proceedings of the Conference of International Biochar Initiative, Newcastle, UK, 8–10 September 2008. [Google Scholar]
- Whitely, N.; Ozao, R.; Cao, Y.; Pan, W.P. Multi-utilization of chicken litter as a biomass source. Part II. Pyrolysis. Energy Fuels 2006, 20, 2666–2671. [Google Scholar] [CrossRef]
- van Zwieten, L.; Kimber, S.; Morris, S.; Downie, A.; Berger, E.; Rust, J.; Scheer, C. Influence of biochars on flux of N2O and CO2 from Ferrosol. Aust. J. Soil Res. 2010, 48, 555–568. [Google Scholar] [CrossRef]
- Amin, A.E.-E.A.Z. Carbon sequestration, kinetics of ammonia volatilization and nutrient availability in alkaline sandy soil as a function on applying calotropis biochar produced at different pyrolysis temperatures. Sci. Total Environ. 2020, 726, 138489. [Google Scholar] [CrossRef]
- Sha, Z.; Li, Q.; Lv, T.; Misselbrook, T.; Liu, X. Response of ammonia volatilization to biochar addition: A meta-analysis. Sci. Total Environ. 2019, 655, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Donner, E.; Vasileiadis, S.; Skinner, W.; Smith, E.; Lombi, E. The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilisation from biochar-amended soil. Sci. Total Environ. 2018, 627, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.Y.; Zwieten, L.V.; Meszaros, I.; Downie, A.; Joseph, S. Using poultry litter biochars as soil amendments. Aust. J. Soil Res. 2008, 46, 437–444. [Google Scholar] [CrossRef]
- DeLuca, T.H.; Sala, A. Frequent fire alters nitrogen transformations in ponderosa pine stands of the inland Northwest. Ecology 2006, 87, 2511–2522. [Google Scholar] [CrossRef]
- Ball, P.N.; MacKenzie, M.D.; DeLuca, T.H.; Holben, W.E. Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. J. Environ. Qual. 2010, 39, 1243–1253. [Google Scholar] [CrossRef]
- Lehmann, J.; Pereira da Silva, J.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Malo, D.D.; Julson, J.L. Effect of biochar on chemical properties of acidic soil. Archiv. Agron. Soil Sc. 2014, 60, 393–404. [Google Scholar] [CrossRef]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Papiernik, S.K.; Malo, D.D.; Clay, D.E.; Kumar, S.; Gulbrandson, D.W. Nitrate sorption and desorption in biochars from fast pyrolysis. Microporous Mesoporous Mater. 2013, 179, 250–257. [Google Scholar] [CrossRef]
- Chintala, R.; Schumacher, T.E.; Kumar, S.; Malo, D.D.; Rice, J.A.; Bleakley, B.; Chilom, G.; Clay, D.E.; Julson, J.L.; Papiernik, S.K.; et al. Molecular characterization of biochars and their influence on microbiological properties of soil. J. Hazard. Mater. 2014, 279, 244–256. [Google Scholar] [CrossRef]
- Yao, H.; Campbell, C.D.; Qiao, X. Soil pH controls nitrification and carbon substrate utilization more than urea or charcoal in some highly acidic soils. Biol. Fert. Soils 2011, 47, 515–522. [Google Scholar] [CrossRef]
- Zhao, R.; Coles, N.; Wu, J. Carbon mineralization following additions of fresh and aged biochar to an infertile soil. Catena 2015, 125, 183–189. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Jones, D.L.; Murphy, D.V.; Khalid, M.; Ahmad, W.; Edwards-Jones, G.; DeLuca, T.H. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol. Biochem. 2011, 43, 1723–1731. [Google Scholar] [CrossRef]
- Luo, Y.; Durenkamp, M.; De Nobili, M.; Lin, Q.; Brookes, P.C. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol. Biochem. 2011, 43, 2304–2314. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of biochar amendment on fertility of a Southeastern Coastal Plain soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef] [Green Version]
Effect | pHCaCl | Total SOC | Total Soil N | C:N | solOC | MBC | NH4+-N | NO3−-N | CO2-C |
---|---|---|---|---|---|---|---|---|---|
Time | ns | * | * | ns | ns | ns | ns | ns | NA |
Soil | *** | *** | *** | *** | ns | *** | ns | *** | *** |
Treatment | *** | *** | *** | *** | *** | *** | *** | *** | ** |
Time*soil | ns | ns | ns | ** | *** | * | *** | ns | NA |
Time*treatment | ** | * | ns | ** | ** | ns | *** | ** | NA |
Soil*treatment | ** | *** | ** | *** | ** | *** | *** | *** | ** |
Time*soil*treatment | ns | ns | ns | ns | * | *** | *** | ns | NA |
Treatment | pHCaCl | Total SOC g kg−1 Soil | Total N g kg−1 Soil | C:N | ||||
---|---|---|---|---|---|---|---|---|
Initial | Final | Initial | Final | Initial † | Final † | Initial | Final | |
NC0 | 5.64 hi | 5.56 ij | 6.9 k | 8.3 j | 0.96 | 0.96 | 7.0 j | 8.4 i |
PC50 | 5.47 j | 5.64 hi | 19.8 gh | 18.2 h | 1.02 | 0.99 | 18.7 e | 18.4 e |
PC100 | 5.82 g | 5.77 gh | 33.7 d | 29.2 ef | 1.04 | 0.99 | 31.9 d | 29.1 d |
PC150 | 5.80 g | 5.81 g | 46.7 b | 40.7 c | 1.04 | 1.02 | 43.7 b | 39.4 c |
PC200 | 5.70 gh | 5.73 gh | 54.6 a | 51.0 a | 1.04 | 1.00 | 52.7 a | 52.1 a |
PL50 | 7.47 f | 7.64 e | 13.7 i | 12.8 i | 1.38 | 1.28 | 9.7 h | 10.0 gh |
PL100 | 8.18 d | 8.14 d | 21.2 g | 19.9 gh | 1.85 | 1.84 | 11.3 f | 10.7 fg |
PL150 | 8.63 b | 8.46 c | 26.1 f | 26.1 f | 2.25 | 2.31 | 11.5 f | 11.3 f |
PL200 | 8.95 a | 8.85 a | 33.8 d | 30.2 de | 2.84 | 2.67 | 11.8 f | 11.3 f |
Treatment | pHCaCl | Total SOC g kg−1 Soil | Total N g kg−1 Soil | C:N | ||||
---|---|---|---|---|---|---|---|---|
Cecil | Tifton | Cecil | Tifton | Cecil | Tifton | Cecil | Tifton | |
NC 0 | 6.20 g | 4.99 l | 10.4 h | 4.9 i | 1.19 f | 0.73 h | 8.7 k | 6.7 l |
PC50 | 5.93 h | 5.17 k | 25.8 d | 12.3 g | 1.28 f | 0.73 h | 20.2 f | 16.9 g |
PC100 | 5.94 h | 5.65 i | 41.3 b | 21.5 e | 1.28 f | 0.75 h | 32.4 d | 28.7 e |
PC150 | 6.00 h | 5.61 i | 59.6 a | 27.8 d | 1.30 f | 0.75 h | 46.3 b | 36.8 c |
PC200 | 5.99 h | 5.43 j | 66.2 a | 39.4 b | 1.30 f | 0.74 h | 51.0 a | 53.8 a |
PL50 | 7.61 f | 7.50 f | 16.8 f | 9.7 h | 1.59 e | 1.07 g | 10.6 ij | 9.1 k |
PL100 | 7.99 e | 8.34 d | 25.5 d | 15.6 f | 2.20 c | 1.49 e | 11.6 hi | 10.4 j |
PL150 | 8.45 d | 8.63 c | 31.7 c | 20.5 e | 2.72 b | 1.84 d | 11.7 hi | 11.1 hij |
PL200 | 8.79 b | 9.01 a | 39.2 b | 24.8 d | 3.30 a | 2.20 c | 11.8 h | 11.3 hij |
Treatment | solOC | MBC | NH4+-N | NO3−-N | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Initial | Final | Initial | Final | Initial | Final | Initial † | Final † | Average ‡ | ||
mg kg−1 | ||||||||||
Cecil | ||||||||||
NC0 | 39 *c | 109 *#b | 406 #a | 385 #bc | 6.6 c | 12.5 #b | 6.3 | 6.1 | 6.2 #f | |
PC50 | 38 #c | 52 c | 408 #a | 383 #b | 7.6 bc | 1.6 #c | 5.9 | 6.0 | 5.9 #e | |
PC100 | 44 c | 46 c | 394 #a | 418 #b | 12.2 *bc | 0.7 *c | 5.9 | 6.0 | 5.9 #e | |
PC150 | 45 c | 48 c | 352 #a | 356 #bc | 9.0 *bc | 0.6 *#c | 6.0 | 6.0 | 6.0 #e | |
PC200 | 51 c | 48 c | 339 #a | 368 #bc | 14.7 *ab | 0.7 *#c | 6.0 | 6.0 | 6.0 #e | |
PL50 | 121 *b | 218 *#a | 432 *#a | 213 *d | 20.6 #a | 17.0 #a | 7.5 | 7.7 | 7.6 d | |
PL100 | 188 a | 169 a | 430 *#a | 265 *d | 21.4 *#a | 3.0 *#c | 8.0 | 8.0 | 8.0 #c | |
PL150 | 165 a | 196 a | 388 *#a | 284 *cd | 11.7 #bc | 15.0 ab | 8.6 | 8.3 | 8.4 #b | |
PL200 | 191 a | 178 a | 423 *a | 598 *#a | 11.8 #bc | 16.9 a | 8.9 | 8.7 | 8.8 #a | |
Tifton | ||||||||||
NC0 | 45 c | 36 #de | 81 #f | 82 #de | 8.4 a | 3.5 #d | 5.0 | 5.0 | 5.0 #h | |
PC50 | 53 #c | 52 cde | 81 #f | 73 #e | 9.5 a | 11.3 #c | 5.1 | 5.3 | 5.2 #g | |
PC100 | 49 c | 43 cde | 101 #ef | 112 #c | 6.8 a | 5.7 cd | 5.7 | 5.6 | 5.6 #f | |
PC150 | 42 c | 54 c | 116 #de | 99 #cd | 5.8 a | 10.1 #cd | 5.6 | 5.6 | 5.6 #f | |
PC200 | 46 c | 35 e | 96 #ef | 87 #cd | 7.5 a | 8.7 #cd | 5.4 | 5.5 | 5.4 #e | |
PL50 | 138 b | 127 #b | 159 #cd | 184 b | 8.1 #a | 9.0 #cd | 7.5 | 7.5 | 7.5 d | |
PL100 | 240 a | 202 a | 185 *#bc | 306 *ab | 7.7 *#a | 29.0 *#a | 8.4 | 8.3 | 8.3 #c | |
PL150 | 149 b | 153 a | 230 #b | 237 b | 2.4 *#a | 16.3 *bc | 8.7 | 8.6 | 8.6 #b | |
PL200 | 263 *a | 168 *a | 371 a | 368 #a | 3.3 *#a | 23.1 *ab | 9.0 | 9.0 | 9.0 #a |
Treatment | Soil | |
---|---|---|
Cecil | Tifton | |
NC0 | 1.10 abcd | 0.38 fghe |
PC50 | 1.04 abcd | 0.53 efgh |
PC100 | 1.19 abc | 0.25 hij |
PC150 | 0.71 bcde | 0.15 j |
PC200 | 0.63 cdef | 0.44 efg |
PL50 | 1.43 abc | 0.69 cde |
PL100 | 1.42 a | 0.18 hij |
PL150 | 1.50 a | 0.64 def |
PL200 | 1.39 ab | 0.24 ghij |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weyers, S.L.; Das, K.C.; Gaskin, J.W.; Liesch, A.M. Pine Chip and Poultry Litter Derived Biochars Affect C and N Dynamics in Two Georgia, USA, Ultisols. Agronomy 2023, 13, 531. https://doi.org/10.3390/agronomy13020531
Weyers SL, Das KC, Gaskin JW, Liesch AM. Pine Chip and Poultry Litter Derived Biochars Affect C and N Dynamics in Two Georgia, USA, Ultisols. Agronomy. 2023; 13(2):531. https://doi.org/10.3390/agronomy13020531
Chicago/Turabian StyleWeyers, Sharon L., Keshav C. Das, Julia W. Gaskin, and Amanda M. Liesch. 2023. "Pine Chip and Poultry Litter Derived Biochars Affect C and N Dynamics in Two Georgia, USA, Ultisols" Agronomy 13, no. 2: 531. https://doi.org/10.3390/agronomy13020531
APA StyleWeyers, S. L., Das, K. C., Gaskin, J. W., & Liesch, A. M. (2023). Pine Chip and Poultry Litter Derived Biochars Affect C and N Dynamics in Two Georgia, USA, Ultisols. Agronomy, 13(2), 531. https://doi.org/10.3390/agronomy13020531