Microbial Solution of Growth-Promoting Bacteria Sprayed on Monoammonium Phosphate for Soybean and Corn Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Characterization
2.2. Measurements
2.3. Data Analysis
3. Results
3.1. Biologic Activities in Soil
3.2. Plant Measurements
3.3. P in Soils and Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus Dynamics: From Soil to Plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraz-Almeida, R.; de Oliveira, R.C.; Araújo, R.C.G.; Rosa, H.F.d.N.; Luz, J.M.Q. Dynamic Accumulation of Nutritional Elements in Garlic (Allium sativum L.) Cultivars Grown in Brazil. J. Soil Sci. Plant Nutr. 2022, 22, 2282–2294. [Google Scholar] [CrossRef]
- Bünemann, E.K. Assessment of gross and net mineralization rates of soil organic phosphorus—A review. Soil Biol. Biochem. 2015, 89, 82–98. [Google Scholar] [CrossRef]
- Fink, J.R.; Inda, A.; Tiecher, T.; Barrón, V. Iron oxides and organic matter on soil phosphorus availability. Cienc. Agrotecnologia 2016, 40, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Zavaschi, E.; De-Almeida, R.F.; Faria, L.A.; Otto, R.; Vitti, A.C.; Vitti, G.C. Application of superphosphate complexed with humic acid in sugarcane production. Rev. Cienc. Agron. 2020, 51, 1–8. [Google Scholar] [CrossRef]
- Alovisi, A.M.T.; Cassol, C.J.; Nascimento, J.S.; Soares, N.B.; Junior, I.R.D.S.; da Silva, R.S.; da Silva, J.A.M. Soil factors affecting phosphorus adsorption in soils of the Cerrado, Brazil. Geoderma Reg. 2020, 22, e00298. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Rodrigues, M.; Soltangheisi, A.; de Carvalho, T.S.; Guilherme, L.R.G.; Benites, V.D.M.; Gatiboni, L.C.; de Sousa, D.M.G.; Nunes, R.D.S.; Rosolem, C.A.; et al. Transitions to sustainable management of phosphorus in Brazilian agriculture. Sci. Rep. 2018, 8, 2537. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, L.E.Z.; Nunes, R.D.S.; de Figueiredo, C.C.; Rein, T.A. Spatial distribution of soil phosphorus fractions in a clayey Oxisol submitted to long-term phosphate fertilization strategies. Geoderma 2022, 418, 115847. [Google Scholar] [CrossRef]
- Nkoh, J.N.; Li, K.-W.; Shi, Y.-X.; Li, J.-Y.; Xu, R.-K. The mechanism for enhancing phosphate immobilization on colloids of oxisol, ultisol, hematite, and gibbsite by chitosan. Chemosphere 2022, 309, 136749. [Google Scholar] [CrossRef]
- Lopes, C.M.; Silva, A.M.M.; Estrada-Bonilla, G.A.; Ferraz-Almeida, R.; Vieira, J.L.V.; Otto, R.; Vitti, G.C.; Cardoso, E.J.B.N. Improving the fertilizer value of sugarcane wastes through phosphate rock amendment and phosphate-solubilizing bacteria inoculation. J. Clean. Prod. 2021, 298, 126821. [Google Scholar] [CrossRef]
- International Fertilizer Association Statistics (IFASTAT). 2021. Available online: https://www.ifastat.org/. (accessed on 9 August 2022).
- Yu, X.; Keitel, C.; Dijkstra, F.A. Global analysis of phosphorus fertilizer use efficiency in cereal crops. Glob. Food Secur. 2021, 29, 100545. [Google Scholar] [CrossRef]
- Zavaschi, E.; Faria, L.D.A.; Ferraz-Almeida, R.; Nascimento, C.A.C.D.; Pavinato, P.S.; Otto, R.; Vitti, A.C.; Vitti, G.C. Dynamic of P Flux in Tropical Acid Soils Fertilized with Humic Acid–Complexed Phosphate. J. Soil Sci. Plant Nutr. 2020, 20, 1937–1948. [Google Scholar] [CrossRef]
- Almeida, R.F.; Queiroz, I.D.S.; Mikhael, J.E.R.; Oliveira, R.C.; Borges, E.N. Enriched animal manure as a source of phosphorus in sustainable agriculture. Int. J. Recycl. Org. Waste Agric. 2019, 8, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Giovannini, C.; Garcia-Mina, J.M.; Ciavatta, C.; Marzadori, C. Effect of organic-complexed superphosphates on microbial biomass and microbial activity of soil. Biol. Fertil. Soils 2012, 49, 395–401. [Google Scholar] [CrossRef]
- Ferreira, D.M.; Rebouças, T.N.H.; Ferraz-Almeida, R.; Porto, J.S.; Oliveira, R.C.; Luz, J.M.Q. Organomineral fertilizer as an alternative for increasing potato yield and quality. Rev. Bras. Eng. Agrícola Ambient. 2022, 306, 312. [Google Scholar] [CrossRef]
- da Mota, R.P.; de Camargo, R.; Lemes, E.M.; Lana, R.M.Q.; de Almeida, R.F.; de Moraes, E.R. Biosolid and sugarcane filter cake in the composition of organomineral fertilizer on soybean responses. Int. J. Recycl. Org. Waste Agric. 2018, 8, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Wang, X.; Ding, X.; Liu, L.; Wu, L.; Zhang, S. Effects of organic fertilization on phosphorus availability and crop growth: Evidence from a 7-year fertilization experiment. Arch. Agron. Soil Sci. 2022. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Gao, W.; Luan, H.-A.; Tang, J.-W.; Li, R.-N.; Li, M.-Y.; Zhang, H.-Z.; Huang, S.-W. Effects of a decade of organic fertilizer substitution on vegetable yield and soil phosphorus pools, phosphatase activities, and the microbial community in a greenhouse vegetable production system. J. Integr. Agric. 2022, 21, 2119–2133. [Google Scholar] [CrossRef]
- Jha, C.K.; Saraf, M. Plant growth promoting Rhizobacteria (PGPR): A review. J. Agric. Res. Dev. 2015, 5, 108–119. [Google Scholar] [CrossRef]
- Estrada-Bonilla, G.; Durrer, A.; Cardosoa, E.J.B.N. Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community. Appl. Soil Ecol. 2021, 157, 103760. [Google Scholar] [CrossRef]
- Adnan, M.; Fahad, S.; Saleem, M.H.; Ali, B.; Mussart, M.; Ullah, R.; Jr, A.; Arif, M.; Ahmad, M.; Shah, W.A.; et al. Comparative efficacy of phosphorous supplements with phosphate solubilizing bacteria for optimizing wheat yield in calcareous soils. Sci. Rep. 2022, 12, 11997. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.E.; Simpson, R.J. Soil Microorganisms Mediating Phosphorus Availability Update on Microbial Phosphorus. Plant Physiol. 2011, 156, 989–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, D.; Williams, A.P.; Griffith, G.W.; Withers, P.J.A. Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Appl. Soil Ecol. 2015, 86, 41–54. [Google Scholar] [CrossRef]
- Beneduzi, A.; Ambrosini, A.; Passaglia, L.M. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 2012, 35, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Bai, Z.; Bao, L.; Xue, L.; Zhang, S.; Wei, Y.; Zhang, Z.; Zhuang, G.; Zhuang, X. Bacillus subtilis biofertilizer mitigating agricultural ammonia emission and shifting soil nitrogen cycling microbiomes. Environ. Int. 2020, 144, 105989. [Google Scholar] [CrossRef]
- Setlow, P. Germination of Spores of Bacillus Species: What We Know and Do Not Know. J. Bacteriol. 2014, 196, 1297–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galaviz, C.; Lopez, B.R.; De-Bashan, L.E.; Hirsch, A.M.; Maymon, M.; Bashan, Y. Root growth improvement of mesquite seedlings and bacterial rhizosphere and soil community changes are induced by inoculation with plant growth-promoting bacteria and promote restoration of eroded desert soil. Land Degrad. Dev. 2018, 29, 1453–1466. [Google Scholar] [CrossRef]
- Barbosa, N.C.; Pereira, H.S.; Arruda, E.M.; Brod, E.; Ferraz-Almeida, R. Spatial distribution of phosphorus in the soil and soybean yield as function of fertilization methods. Biosci. J. 2018, 34, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Moreira, W.L.; Ferraz-Almeida, R. Development of coffee seedlings with biostimulants. Coffee Sci. 2021, 16, 1–5. [Google Scholar] [CrossRef]
- Rosolem, C.A.; Batista, T.B.; Dias, P.P.; Neto, L.V.d.M.; Calonego, J.C. The Joint Application of Phosphorus and Ammonium Enhances Soybean Root Growth and P Uptake. Agriculture 2022, 12, 880. [Google Scholar] [CrossRef]
- Niu, Y.F.; Chai, R.S.; Jin, G.L.; Wang, H.; Tang, C.X.; Zhang, Y.S. Responses of root architecture development to low phosphorus availability: A review. Ann. Bot. 2012, 112, 391–408. [Google Scholar] [CrossRef] [PubMed]
- USDA-United States Department of Agriculture. World Agricultural Production. 2023. Circular Series, WAP 1–23 January 2023. Available online: https://apps.fas.usda.gov/psdonline/circulars/production.pdf (accessed on 9 August 2022).
- Cantarella, H.; Quaggio, J.A.; Mattos, D., Jr.; Boaretto, R.M.; van Raij, B. Boletim 100: Recomendações da Adubação e Calagem para o Estado de São Paulo, 2nd ed.; Instituto Agronômico de Campinas: Campinas, Brazil, 2022; 489p. [Google Scholar]
- CONAB-Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira. 4° Levantamento Safra 2022/23. Available online: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos (accessed on 9 August 2022).
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-United States Department of Agriculture: Washington, DC, USA, 2014; 360p. [Google Scholar]
- Van Raij, B.; Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química para Avaliação da Fertilidade de solos Tropicais; Campinas Instituto Agronômico: Campinas, Brazil, 2001; 285p. [Google Scholar]
- EMBRAPA-Empresa Brasileira de Pesquisa Agropecuária. Manual de Métodos de Análise de solo, 3rd ed.; Embrapa: Brasília, Brazil, 2017; 577p. [Google Scholar]
- Tabatabai, M.A. Soil enzymes. In Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties; Weaver, R.W., Ed.; SSSA Book Series 5; SSSA: Madison, WI, USA, 1994; pp. 778–833. [Google Scholar]
- Woomer, P.L. Most Probable Number Counts. In Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties; Weaver, R.W., Ed.; Soil Science Society American: Madison, WI, USA, 1994; pp. 59–79. [Google Scholar]
- Almeida, R.F.; Nave, E.R.; Mota, R.P. Soil quality: Enzymatic activity of soil β-glucosidase. Glob. Sci. Res. J. 2015, 3, 146–150. [Google Scholar]
- De Almeida, R.F.; Silveira, C.H.; Mota, R.P.; Moitinho, M.; Arruda, E.M.; Mendonça, E.D.S.; La Scala, N.; Wendling, B. For how long does the quality and quantity of residues in the soil affect the carbon compartments and CO2-C emissions? J. Soils Sediments 2016, 16, 2354–2364. [Google Scholar] [CrossRef] [Green Version]
- Aşkin, T.; Kizilkaya, R. Assessing spatial variability of soil enzyme activities in pasture topsoils using geostatistics. Eur. J. Soil Biol. 2006, 42, 230–237. [Google Scholar] [CrossRef]
- Veeraragavan, S.; Duraisamy, R.; Mani, S. Seasonal variation of soil enzyme activities in relation to nutrient and carbon cycling in Senna alata (L.) Roxb invaded sites of Puducherry region, India. Geol. Ecol. Landsc. 2018, 2, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Margalef, O.; Sardans, J.; Fernández-Martínez, M.; Molowny-Horas, R.; Janssens, I.A.; Ciais, P.; Goll, D.; Richter, A.; Obersteiner, M.; Asensio, D.; et al. Global patterns of phosphatase activity in natural soils. Sci. Rep. 2017, 7, 1337. [Google Scholar] [CrossRef] [Green Version]
- Allison, S.D.; Vitousek, P.M. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol. Biochem. 2005, 37, 937–944. [Google Scholar] [CrossRef]
- Stark, S.; Männistö, M.K.; Eskelinen, A. Nutrient availability and pH jointly constrain microbial extracellular enzyme activities in nutrient-poor tundra soils. Plant Soil 2014, 383, 373–385. [Google Scholar] [CrossRef]
- Gil-Sotres, F.; Trasar-Cepeda, C.; Leirós, M.; Seoane, S. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 2005, 37, 877–887. [Google Scholar] [CrossRef]
- Karaca, A.; Cetin, S.C.; Turgay, O.C.; Kizilkaya, R. Soil Enzymes as Indication of Soil Quality. Soil Enzymol. 2010, 36, 119–148. [Google Scholar] [CrossRef]
- Lopes, R.; Tsui, S.; Gonçalves, P.J.R.O.; Queiroz, M.V. A look into a multifunctional toolbox: Endophytic Bacillus species provide broad and underexploited benefits for plants. World J. Microbiol. Biotechnol. 2018, 13, 94. [Google Scholar] [CrossRef] [PubMed]
- Barth, G.; Otto, R.; Almeida, R.F.; Cardoso, E.; Cantarella, H.; Vitti, G.C. Conversion of ammonium to nitrate and abundance of ammonium-oxidizing-microorganism in Tropical soils with nitrification inhibitor. Sci. Agricola 2020, 77, 2020. [Google Scholar] [CrossRef]
- Barth, G.; von Tucher, S.; Schmidhalter, U.; Otto, R.; Motavalli, P.; Ferraz-Almeida, R.; Sattolo, T.M.S.; Cantarella, H.; Vitti, G.C. Performance of nitrification inhibitors with different nitrogen fertilizers and soil textures. J. Plant Nutr. Soil Sci. 2019, 182, 694–700. [Google Scholar] [CrossRef]
- Frossard, E.; Achat, D.L.; Bernasconi, S.M.; Bünemann, E.S.; Fardeau, J.-C.; Jansa, J.; Morel, C.; Rabeharisoa, L.; Randriamanantsoa, L.; Sinaj, S.; et al. The Use of Tracers to Investigate Phosphate Cycling in Soil—Plant Systems. In Phosphorus in Action, Soil Biology; Bunemann, E.K., Oberson, A., Frossard, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 26. [Google Scholar] [CrossRef]
- Bacon, C.W.; White, J.F. Functions, mechanisms and regulation of endophytic and epiphytic microbial communities of plants. Symbiosis 2016, 68, 87–98. [Google Scholar] [CrossRef]
- Manjula, K.; Podile, A.R. Increase in Seedling Emergence and Dry Weight of Pigeon Pea in the Field with Chitin-supplemented Formulations of Bacillus subtilis AF 1. World J. Microbiol. Biotechnol. 2005, 21, 1057–1062. [Google Scholar] [CrossRef]
- Lanna Filho, R.; Ferro, H.M.; De Pinho, R.S.C. Controle Biológico Mediado por Bacillus subtilis. Rev. Trópica Ciências Agrárias E Biológicas 2010, 4, 12–20. [Google Scholar] [CrossRef]
- Chen, X.H.; Koumoutsi, A.; Scholz, R.; Eisenreich, A.; Schneider, K.; Heinemeyer, I.; Morgenstern, B.; Voss, B.; Hess, W.R.; Reva, O.; et al. Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 2007, 25, 1007–1014. [Google Scholar] [CrossRef] [Green Version]
- Bargabus, R.; Zidack, N.; Sherwood, J.; Jacobsen, B. Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biol. Control 2004, 30, 342–350. [Google Scholar] [CrossRef]
- Parnell, J.J.; Berka, R.; Young, H.A.; Sturino, J.M.; Kang, Y.; Barnhart, D.M.; Dileo, M.V. From the Lab to the Farm: An Industrial Perspective of Plant Beneficial Microorganisms. Front. Plant Sci. 2016, 7, 1110. [Google Scholar] [CrossRef]
- Song, O.-R.; Lee, S.-J.; Lee, Y.-S.; Lee, S.-C.; Kim, K.-K.; Choi, Y.-L. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Braz. J. Microbiol. 2008, 39, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Watts, D.B.; van Santen, E.; Cao, G. Influence of Poultry Litter on Crop Productivity under Different Field Conditions: A Meta-Analysis. Agron. J. 2018, 110, 807–818. [Google Scholar] [CrossRef]
- Billah, M.; Bano, A. Role of plant growth promoting rhizobacteria in modulating the efficiency of poultry litter composting with rock phosphate and its effect on growth and yield of wheat. Waste Manag. Res. J. Sustain. Circ. Econ. 2014, 33, 63–72. [Google Scholar] [CrossRef]
- Tietjen, T.; Wetzel, R.G. Extracellular enzyme-clay mineral complexes: Enzyme adsorption, alteration of enzyme activity, and protection from photodegradation. Aquat. Ecol. 2003, 37, 331–339. [Google Scholar] [CrossRef]
- Abdelgalil, S.A.; Kaddah, M.M.Y.; Duab, M.E.A.; Abo-Zaid, G.A. A sustainable and effective bioprocessing approach for improvement of acid phosphatase production and rock phosphate solubilization by Bacillus haynesii strain ACP1. Sci. Rep. 2022, 12, 8296. [Google Scholar] [CrossRef] [PubMed]
- Musarrat, J.; Khan, S. Factors Affecting Phosphate-Solubilizing Activity of Microbes: Current Status. Phosphate Solubilizing Microorg. Princ. Appl. Microphos Technol. 2014, 63–85. [Google Scholar] [CrossRef]
- Bueis, T.; Turrión, M.B.; Bravo, F.; Pando, V.; Muscolo, A. Factors determining enzyme activities in soils under Pinus halepensis and Pinus sylvestris plantations in Spain: A basis for establishing sustainable forest management strategies. Ann. For. Sci. 2018, 75, 34. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.O.; Simpson, R.J.; Moore, A.; Chapman, D.F. Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition. Plant Soil 2006, 286, 7–19. [Google Scholar] [CrossRef]
- Raymond, N.S.; Gómez-Muñoz, B.; Van Der Bom, F.J.; Nybroe, O.; Jensen, L.S.; Müller-Stöver, D.S.; Oberson, A.; Richardson, A.E. Phosphate-solubilising microorganisms for improved crop productivity: A critical assessment. New Phytol. 2020, 229, 1268–1277. [Google Scholar] [CrossRef] [PubMed]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvo, P.; Watts, D.B.; Kloepper, J.W.; Torbert, H.A. Effect of microbial-based inoculants on nutrient concentrations and early root morphology of corn (Zea mays). J. Plant Nutr. Soil Sci. 2016, 180, 56–70. [Google Scholar] [CrossRef]
- El Zemrany, H.; Czarnes, S.; Hallett, P.D.; Alamercery, S.; Bally, R.; Monrozier, L.J. Early changes in root characteristics of maize (Zea mays) following seed inoculation with the PGPR Azospirillum lipoferum CRT1. Plant Soil 2007, 291, 109–118. [Google Scholar] [CrossRef]
- Arkhipova, T.; Galimsyanova, N.; Kuzmina, L.; Vysotskaya, L.; Sidorova, L.; Gabbasova, I.; Melentiev, A.; Kudoyarova, G. Effect of seed bacterization with plant growth-promoting bacteria on wheat productivity and phosphorus mobility in the rhizosphere. Plant Soil Environ. 2019, 65, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.E.; Barea, J.-M.; McNeill, A.M.; Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 2009, 321, 305–339. [Google Scholar] [CrossRef]
PGPB | Corn | ||||||
---|---|---|---|---|---|---|---|
Rates | Height | SPAD | Dry Mass (g Vase−1) | REI (%) | |||
L/t | cm | Shoot | Roots | Total | Shoot | Roots | |
Arenosol | |||||||
0.00 | 161.5 ± 4.1 B | 40.6 ± 1.8 A | 44.3 ± 2.0 A | 17.4 ± 0.7 B | 61.8 ± 1.7 B | - | - |
1.00 | 168.6 ± 4.0 AB | 39.8 ± 0.9 A | 42.4 ± 1.3 A | 13.9 ± 0.2 C | 56.3 ± 1.3 C | 101.3 ± 2.6 A | 73.1 ± 15.2 A |
1.33 | 175.5 ± 3.7 A | 43.4 ± 1.6 A | 45.5 ± 1.7 A | 13.2 ± 0.5 C | 58.8 ± 1.6 BC | 105.6 ± 4.8 A | 72.8 ± 13.7 A |
1.66 | 173.8 ± 4.0 A | 42.8 ± 0.7 A | 45.4 ± 1.9 A | 16.3 ± 0.8 B | 61.8 ± 1.7 B | 107.4 ± 4.8 A | 84.5 ± 12.0 A |
2.00 | 169.2 A ± 1.8 B | 42.4 ± 0.5 A | 41.5 ± 1.0 A | 26.5 ± 1.3 A | 68.1 ± 1.6 A | 99.1 ± 2.0 A | 104.0 ± 12.3 A |
CV% | 3.7 | 6.4 | 7.1 | 9.6 | 5.0 | 13.4 | 44.5 |
Oxisol | |||||||
0.00 | 157.1 ± 8.3 A | 41.5 ± 1.7 B | 43.2 ± 2.0 B | 14.0 ± 0.5 C | 57.3 ± 2.1 C | - | - |
1.00 | 142.3 ± 5.8 A | 43.3 ± 1.3 AB | 36.8 ± 1.4 C | 17.7 ± 0.7 B | 54.6 ± 1.8 C | 88.4 ± 3.2 B | 111.6 ± 13.3 A |
1.33 | 159.3 ± 5.9 A | 42.2 ± 0.8 AB | 43.6 ± 1.7 B | 19.8 ± 0.9 B | 63.5 ± 2.1 B | 100.8 ± 3.9 AB | 118.8 ± 14.6 A |
1.66 | 152.9 ± 6.0 A | 45.5 ± 1.2 A | 40.1 ± 1.7 BC | 19.5 ± 0.5 B | 59.7 ± 1.4 BC | 92.8 ± 3.9 B | 102.0 ± 14.5 A |
2.00 | 154.1 ± 8.2 A | 43.9 ± 1.5 AB | 51.2 ± 2.4 A | 26.4 ± 1.4 A | 77.7 ± 3.0 A | 125.3 ± 1.2 A | 153.9 ± 14.0 A |
CV% | 8.7 | 6.1 | 8.0 | 9.3 | 6.6 | 21.8 | 36.5 |
PGPB | Soybean | ||||||
---|---|---|---|---|---|---|---|
Rates | Height | SPAD | Dry Mass (g Vase−1) | REI (%) | |||
L/t | cm | Shoot | Roots | Total | Shoot | Roots | |
Arenosol | |||||||
0.00 | 77.2 ± 4.1 A | 33.0 ± 1.2 A | 16.2 ± 0.8 A | 1.9 ± 0.1 C | 18.1 ± 0.4 A | - | - |
1.00 | 74.7 ± 4.0 A | 32.6 ± 1.0 A | 16.1 ± 0.6 A | 2.5 ± 0.1 B | 18.7 ± 0.3 A | 88.9 ± 4.4 A | 92.4 ± 9.1 A |
1.33 | 74.6 ± 3.7 A | 33.7 ± 0.5 A | 15.7 ± 0.6 A | 3.0 ± 0.1 A | 18.8 ± 0.3 A | 94.9 ± 4.0 A | 109.6 ± 16.3 A |
1.66 | 77.0 ± 4.0 A | 33.3 ± 0.6 A | 15.6 ± 0.5 A | 2.5 ± 0.1 B | 18.2 ± 0.3 A | 81.7 ± 4.1 A | 91.3 ± 12.6 A |
2.00 | 69.1 ± 1.8 A | 33.6 ± 0.7 A | 16.6 ± 0.5 A | 2.5 ± 0.1 B | 19.2 ± 0.3 A | 89.1 ± 4.3 A | 91.5 ± 8.4 A |
CV% | 8.2 | 4.8 | 7.2 | 7.1 | 6.5 | 16.4 | 23.4 |
Oxisol | |||||||
0.00 | 54.8 ± 2.1 AB | 32.8 ± 1.0 A | 18.3 ± 0.9 A | 2.4 ± 0.1 D | 20.7 ± 1.0 B | - | - |
1.00 | 50.2 ± 2.0 B | 31.3 ± 0.8 A | 18.5 ± 0.8 A | 3.3 ± 0.1 AB | 21.9 ± 0.9 AB | 94.9 ± 2.6 AB | 120.2 ± 22.2 AB |
1.33 | 51.1 ± 1.1 B | 31.1 ± 0.9 A | 16.0 ± 0.5 B | 2.8 ± 0.1 C | 19.0 ± 0.6 C | 87.8 ± 4.7 B | 110.6 ± 13.7 B |
1.66 | 56.5 ± 2.5 A | 32.3 ± 1.7 A | 17.5 ± 1.0 A | 3.1 ± 0.1 BC | 20.6 ± 1.1 BC | 92.8 ± A4.8 B | 115.8 ± 11.9 AB |
2.00 | 56.0 ± 1.8 A | 34.0 ± 0.5 A | 18.8 ± 0.8 A | 3.5 ± 0.1 A | 22.4 ± 0.9 A | 99.6 ± 2.0 A | 136.4 ± 24.6 A |
CV% | 6.6 | 6.9 | 5.9 | 7.3 | 5.7 | 8.6 | 14.6 |
General Average | |||||||
Height | Dry mass (g vase−1) | REI (%) | |||||
cm | Shoot | Roots | Total | Shoot | Roots | ||
Soils | |||||||
Arenosol | 122.1 ± 6.8 A | 29.9 ± 2.0 A | 10.0 ± 8.3 A | 39.9 ± 3.0 A | 95.7 ± 1.1 A | 89.7 ± 5.5 A | |
Oxisol | 103.4 ± 7.2 A | 30.4 ± 1.9 A | 11.2 ± 1.2 A | 41.7 ± 3.1 A | 121.2 ± 1.2 A | 91.5 ± 5.7 A | |
Crops | |||||||
Corn | 161.4 ± 1.9 A | 43.4 ± 0.6 A | 18.5 ± 0.6 A | 61.9 ± 1.0 A | 92.1 ± 1.3 A | 108.4 ± 6.6 A | |
Soybean | 64.1 ± 1.7 B | 16.9 ± 0.2 B | 2.7 ± 0.0 B | 19.7 ± 0.2 B | 89.0 ± 1.2 A | 108.5 ± 4.0 A |
Corn | Soybean | ||||||
---|---|---|---|---|---|---|---|
PGPB | P in Soil | P in Shoot | P in Roots | P in Soil | P in Shoot | P in Roots | |
Rates | mg dm−3 | mg Vaso−1 | mg dm−3 | mg Vaso−1 | |||
L/t | Arenosol | ||||||
0.00 | 135.6 ± 1.4 A | 163.9 ± 4.9 C | 38.8 ± 2.3 C | 120.8 ± 4.2 A | 99.7 ± 4.0 C | 11.0 ± 0.1 D | |
1.00 | 110.8 ± 4.5 B | 172.4 ± 1.7 BC | 39.6 ± 2.6 C | 98.4 ± 5.5 B | 111.7 ± 3.1 AB | 15.3 ± 0.6 C | |
1.33 | 112.6 ± 2.7 B | 182.5 ± 4.7 B | 32.7 ± 1.1 D | 84.6 ± 5.2 C | 106.4 ± 2.3 BC | 17.1 ± 0.5 B | |
1.66 | 93.8 ± 4.8 D | 216.8 ± 9.7 A | 46.5 ± 1.6 B | 82.4 ± 4.9 C | 116.9 ± 3.5 A | 19.0 ± 0.3 A | |
2.00 | 101.6 ± 3.2 CD | 160.6 ± 5.6 C | 57.1 ± 1.2 A | 120.6 ± 4.8 A | 112.8 ± 3.4 AB | 16.3 ± B0.3 C | |
CV% | 6.30 | 7.48 | 9.38 | 9.31 | 6.80 | 6.26 | |
Oxisol | |||||||
0.00 | 135.0 ± 0.8 A | 69.1 ± 3.6 C | 31.3 ± 1.6 D | 68.2 ± 4.9 B | 62.9 ± 3.2 A | 8.4 ± 0.3 C | |
1.00 | 126.8 ± 2.9 B | 83.3 ± 4.3 B | 37.2 ± 1.4 C | 84.2 ± 2.1 A | 66.8 ± 2.8 A | 13.9 ± 0.5 A | |
1.33 | 101.8 ± 2.6 C | 113.0 ± 2.7 A | 37.2 ± 1.1 C | 63.8 ± 4.1 B | 52.7 ± 2.0 B | 11.4 ± 0.4 B | |
1.66 | 129.6 ± 3.1 AB | 89.3 ± 4.1 B | 44.9 ± 1.6 B | 84.8 ± 4.3 A | 65.1 ± 3.3 A | 13.2 ± 0.4 A | |
2.00 | 131.8 ± 2.1 AB | 109.7 ± 2.8 A | 57.4 ± 1.8 A | 69.0 ± 5.5 B | 70.3 ± 2.8 A | 13.6 ± 0.3 A | |
CV% | 4.22 | 6.74 | 9.02 | 8.57 | 10.64 | 8.77 | |
General Average | |||||||
P in soil | P in shoot | P in roots | P in soil | P in shoot | P in roots | ||
mg dm−3 | mg vaso−1 | mg dm−3 | |||||
Soils | Crops | ||||||
Arenosol | 106.1 ± 2.5 A | 144.3 ± 5.5 A | 29.3 ± 2.1 A | Corn | 117.9 ± 2.4 A | 136.0 ± 3.2 A | 42.2 ± 0.3 A |
Oxisol | 99.5 ± 4.4 B | 78.2 ± 4.4 B | 26.8 ± 2.3 A | Soybean | 87.6 ± 2.9 B | 86.5 ± 3.5 B | 13.9 ± 0.4 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silveira, C.P.; Andreote, F.D.; Ferraz-Almeida, R.; Carvalho, J.; Gorsuch, J.; Otto, R. Microbial Solution of Growth-Promoting Bacteria Sprayed on Monoammonium Phosphate for Soybean and Corn Production. Agronomy 2023, 13, 581. https://doi.org/10.3390/agronomy13020581
Silveira CP, Andreote FD, Ferraz-Almeida R, Carvalho J, Gorsuch J, Otto R. Microbial Solution of Growth-Promoting Bacteria Sprayed on Monoammonium Phosphate for Soybean and Corn Production. Agronomy. 2023; 13(2):581. https://doi.org/10.3390/agronomy13020581
Chicago/Turabian StyleSilveira, Cristiane Prezotto, Fernando Dini Andreote, Risely Ferraz-Almeida, Jardelcio Carvalho, John Gorsuch, and Rafael Otto. 2023. "Microbial Solution of Growth-Promoting Bacteria Sprayed on Monoammonium Phosphate for Soybean and Corn Production" Agronomy 13, no. 2: 581. https://doi.org/10.3390/agronomy13020581
APA StyleSilveira, C. P., Andreote, F. D., Ferraz-Almeida, R., Carvalho, J., Gorsuch, J., & Otto, R. (2023). Microbial Solution of Growth-Promoting Bacteria Sprayed on Monoammonium Phosphate for Soybean and Corn Production. Agronomy, 13(2), 581. https://doi.org/10.3390/agronomy13020581