Adsorption of As(V) at Humic Acid-Kaolinite-Bacteria Interfaces: Kinetics, Thermodynamics, and Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Composites
2.3. Characterization
2.4. Adsorption Study
3. Results and Discussion
3.1. The Effect of the Initial As(V) Solution pH
3.2. Effect of Ionic Strength
3.3. Effect of Composite Type and Proportion
3.4. Adsorption Kinetics
3.5. Adsorption Isotherms
3.6. Characterization of Kao-Organic Aggregates
3.6.1. SEM and Optical Microscopy Analyses
3.6.2. XRD Analysis
3.6.3. FTIR Analysis
3.7. Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Buschmann, J.; Kappeler, A.; Lindauer, U.; Kistler, D.; Berg, M.; Sigg, L. Arsenite and arsenate binding to dissolved humic acid: Influence of pH, type of humic acid, and aluminum. Environ. Sci. Technol. 2006, 40, 6015–6020. [Google Scholar] [CrossRef] [Green Version]
- Oliver, M.A. Soil and human health: A review. Eur. J. Soil Sci. 1997, 48, 573–592. [Google Scholar] [CrossRef]
- Du, H.H.; Chen, W.L.; Cai, P.; Rong, X.X.; Dai, K.; Peacock, C.L.; Huang, Q.Y. Cd(II) sorption on montmorillonite-humic acid-bacteria composites. Sci. Rep. 2016, 6, 19499. [Google Scholar] [CrossRef] [Green Version]
- Fakour, H.; Lin, T.F. Experimental determination and modeling of arsenic complexation with humic and fulvic acids. J. Hazard. Mater. 2014, 279, 569–578. [Google Scholar] [CrossRef]
- Xu, S.Z.; Xing, Y.H.; Liu, S.; Luo, X.S.; Chen, W.L.; Huang, Q.Y. Co-effect of minerals and Cd(II) promoted the formation of bacterial biofilm and consequently enhanced the sorption of Cd(II). Environ. Pollut. 2020, 258, 113774. [Google Scholar] [CrossRef]
- Manning, B.A.; Goldberg, S. Adsorption and stability of arsenic (III) at the clay mineral-water interface. Environ. Sci. Technol. 1997, 31, 2005–2011. [Google Scholar] [CrossRef]
- Saada, A.; Breeze, D.; Crouzet, C.; Cornu, S.; Baranger, P. Adsorption of arsenic(V) on kaolinite and on kaolinite-humic acid complexes role of humic acid nitrogen groups. Chemosphere 2003, 51, 757–763. [Google Scholar] [CrossRef]
- Root, R.A.; Dixit, S.; Campbell, K.M.; Jew, A.D.; Hering, J.G.; O’Day, P.A. Arsenic sequestration by sorption processes in high-iron sediments. Geochim. Cosmochim. Acta 2007, 71, 5782–5803. [Google Scholar] [CrossRef]
- Saeedi, M.; Li, L.Y.; Grace, J.R. Desorption and mobility mechanisms of co-existing polycyclic aromatic hydrocarbons and heavy metals in clays and clay minerals. J. Environ. Manag. 2018, 214, 204–214. [Google Scholar] [CrossRef]
- Giles, D.E.; Mohapatra, M.; Issa, T.B.; Anand, S.; Singh, P. Iron and aluminum based adsorption strategies for removing arsenic from water. J. Environ. Manag. 2011, 92, 3011–3022. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Xiao, M.; Zhao, S.; Fan, H. Enhanced adsorption of As(V) from aqueous solution by mesoporous goethite: Kinetics, isotherms, thermodynamics, and mechanism. Desalination Water Treat. 2020, 201, 250–260. [Google Scholar] [CrossRef]
- Zhou, Y.; Yao, J.; He, M.Y.; Choi, M.M.F.; Feng, L.; Chen, H.L.; Wang, F.; Chen, K.; Zhuang, R.S.; Maskow, T.; et al. Reduction in toxicity of arsenic(III) to Halobacillus sp. Y35 by Kaolin and their related adsorption studies. J. Hazard. Mater. 2010, 176, 487–494. [Google Scholar] [CrossRef]
- Matusik, J. Arsenate, orthophosphate, sulfate, and nitrate sorption equilibria and kinetics for halloysite and kaolinites with an induced positive charge. Chem. Eng. J. 2014, 246, 244–253. [Google Scholar] [CrossRef]
- Redman, A.D.; Macalady, D.L.; Ahmann, D. Natural organic matter affects arsenic speciation and sorption onto hematite. Environ. Sci. Technol. 2002, 36, 2889–2896. [Google Scholar] [CrossRef]
- Lin, H.T.; Wang, M.C.; Li, G.C. Complexation of arsenate with humic substance in water extract of compost. Chemosphere 2004, 56, 1105–1112. [Google Scholar] [CrossRef]
- Roulia, M. Humic substances: A novel eco-friendly fertilizer. Agronomy 2022, 12, 754. [Google Scholar] [CrossRef]
- Gustafsson, J.P. Arsenate adsorption to soils: Modelling the competition from humic substances. Geoderma 2006, 136, 320–330. [Google Scholar] [CrossRef]
- Weng, L.P.; Riemsdiik WH, V.; Hiemstra, T. Effects of fulvic and humic acids on arsenate adsorption to goethite: Experiments and modeling. Environ. Sci. Technol. 2009, 43, 7198–7204. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.H.; Li, Y.C.; LLi, F.; Tang, M.D.; Hu, W.F.; Chen, L.; Ai, S.Y. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. Sci. Total Environ. 2022, 825, 153862. [Google Scholar] [CrossRef]
- Matusik, J.; Scholtzova, E.; Tunega, D. Influence of synthesis conditions on the formation of a kaolinite-methanol complex and simulation of its vibrational spectra. Clays Clay Miner. 2012, 60, 227–239. [Google Scholar] [CrossRef]
- Gao, X.D.; Yang, G.; Tian, R.; Ding, W.Q.; Hu, F.N.; Liu, X.M.; Li, H. Formation of sandwich structure through ion adsorption at the mineral and humic interfaces: A combined experimental computational study. J. Mol. Struct. 2015, 1093, 96–100. [Google Scholar] [CrossRef]
- Bauer, M.; Blodau, C. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediment. Sci. Total Environ. 2006, 354, 179–190. [Google Scholar] [CrossRef]
- Chen, C.; Dynes, J.J.; Wang, J.; Sparks, D.L. Properties of Fe-organic matter associations via coprecipitation versus adsorption. Environ. Sci. Technol. 2014, 48, 13751–13759. [Google Scholar] [CrossRef]
- Du, H.H.; Nie, N.; Rao, W.K.; Lu, L.; Lei, M.; Tie, B.Q. Ferrihydrite-organo composites are a suitable analog for predicting Cd(II)-As(V) coexistence behaviors at the soil solid-liquid interfaces. Environ. Pollut. 2021, 290, 118040. [Google Scholar] [CrossRef]
- Zou, Q.; Wei, H.; Chen, Z.L.; Ye, P.; Zhang, J.Q.; Sun, M.Q.; Huang, L.; Li, J. Soil particle size fractions affect arsenic (As) release and speciation: Insights into dissolved organic matter and functional genes. J. Hazard. Mater. 2023, 443, 130100. [Google Scholar] [CrossRef]
- Xu, H.; Allard, B.; Grimvall, A. Influence of pH and organic substance on the adsorption of As(V) on geological materials. Water Air Soil Pollut. 1988, 40, 293–305. [Google Scholar] [CrossRef]
- Cornu, S.; Saada, A.; Breeze, D.; Gauthier, S.; Baranger, P. Influence de composes organiques sur l’adsorption de l’arsenic par les kaolinites. C. R. Acad. Sci. 1999, 328, 649–654. [Google Scholar] [CrossRef]
- Bauer, M.; Blodau, C. Arsenic distribution in the dissolved, colloidal and particulate size fraction of experimental solutions rich in dissolved organic matter and ferric iron. Geochem. Cosmochim. Acta 2009, 73, 529–542. [Google Scholar] [CrossRef]
- Cui, J.; Jing, C. A review of arsenic interfacial geochemistry in groundwater and the role of organic matter. Ecotoxicol. Environ. Saf. 2019, 183, 109550. [Google Scholar] [CrossRef]
- Aftabtalab, A.; Rinklebe, J.; Shaheen, S.M.; Niazi, N.K.; Moreno-Jimenez, E.; Schaller, J.; Knorr, K.H. Review on the interactions of arsenic, iron (oxy)(hydr)oxides, and dissolved organic matter in soils, sediments, and groundwater in a ternary system. Chemosphere 2022, 286, 131790. [Google Scholar] [CrossRef]
- Fang, L.C.; Cai, P.; Li, P.X.; Wu, H.Y.; Liang, W.; Rong, X.M.; Chen, W.L.; Huang, Q.Y. Microcalorimetric and potentiometric titration studies on the adsorption of copper by P. putida and B. thuringiensis and their composites with minerals. J. Hazard. Mater. 2010, 181, 1031–1038. [Google Scholar] [CrossRef]
- Hong, Z.N.; Chen, W.L.; Rong, X.M.; Cai, P.; Tan, W.F.; Huang, Q.Y. Effects of humic acid on adhesion of Bacillus subtilis to phyllosilicates. Chem. Geol. 2015, 416, 19–27. [Google Scholar] [CrossRef]
- Rong, X.M.; Huang, Q.Y.; Chen, W.L. Microcalorimetric investigation on the metabolic activity of Bacillus thuringiensis as influenced by kaolinite, montmorillonite and goethite. Appl. Clay Sci. 2007, 38, 97–103. [Google Scholar] [CrossRef]
- Wu, H.; Chen, W.; Rong, X.M.; Cai, P.; Dai, K.; Huang, Q.Y. Soil colloids and minerals modulate metabolic activity of Pseudomonas putida measured using microcalorimetry. Geomicrobiol. J. 2014, 31, 590–596. [Google Scholar] [CrossRef]
- Li, S.F.; You, T.T.; Guo, Y.; Yao, S.H.; Zang, S.Y.; Xiao, M.; Zhang, Z.G.; Shen, Y.M. High dispersions of nano zero valent iron supported on biochar by one-step carbothermal synthesis and its application in chromate removal. RSC Adv. 2019, 9, 12428–12435. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.W.; Wang, Y.N.; Sun, Y.J.; Pan, X.L.; Zhang, D.Y.; Tsang, Y.F. Differences in Sb(V) and As(V) adsorption onto a poorly crystalline phyllomanganate (δ-MnO2): Adsorption kinetics, isotherms, and mechanisms. Process Saf. Environ. Prot. 2018, 113, 40–47. [Google Scholar] [CrossRef]
- Chen, R.Z.; Zhang, Z.Y.; Feng, C.P.; Lei, Z.F.; Li, Y.; Li, M.; Shimizu, K.; Sugiura, N. Batch study of arsenate (V) adsorption using Akadama mud: Effect of water mineralization. Appl. Surf. Sci. 2010, 256, 2961–2967. [Google Scholar] [CrossRef] [Green Version]
- Yazdani, M.R.; Tuutijärvi, T.; Bhatnagar, A.; Vahala, R. Adsorptive removal of arsenic(V) from aqueous phase by feldspars: Kinetics, mechanism, and thermodynamic aspects of adsorption. J. Mol. Liq. 2016, 214, 149–156. [Google Scholar] [CrossRef]
- Yusof, M.S.M.; Othman, M.H.D.; Wahab, R.A.; Jumbri, K.; Razak, F.I.A.; Kurniawan, T.A.; Samah, R.A.; Mustafa, A.; Rahman, M.A.; Jaafar, J.; et al. Arsenic adsorption mechanism on palm oil fuel ash (POFA) powder suspension. J. Hazard. Mater. 2020, 383, 121214. [Google Scholar] [CrossRef]
- Walker, S.G.; Flemming, C.A.; Ferris, F.G.; Beveridge, T.J.; Bailey, G.W. Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution. Appl. Microbiol. Biotechnol. 1989, 55, 2976–2984. [Google Scholar] [CrossRef] [Green Version]
- Qu, C.C.; Chen, W.L.; Hu, X.P.; Cai, P.; Chen, C.G.; Yu, X.Y.; Huang, Q.Y. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors. Environ. Int. 2019, 131, 104995. [Google Scholar] [CrossRef]
- Yan, Y.P.; Wan, B.; Mansor, M.; Wang, X.M.; Zhang, Q.; Kappler, A.; Feng, X.H. Co-sorption of metal ions and inorganic anions/organic ligands on environmental minerals: A review. Sci. Total Environ. 2022, 803, 149918. [Google Scholar] [CrossRef]
- Ladeira, A.C.Q.; Ciminelli, V.S.T.; Duarte, H.A.; Alves, M.C.M.; Ramos, A.Y. Mechanism of anion retention from EXAFS and density functional calculations: Arsenic(V) adsorbed on gibbsite. Geochim. Cosmochim. Acta. 2001, 65, 1211–1217. [Google Scholar] [CrossRef]
- Goldberg, S.; Johnston, C.T. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J. Colloid Interface Sci. 2001, 234, 204–216. [Google Scholar] [CrossRef]
- Naidu, R.; Bolan, N.S.; Kookana, R.S.; Tiller, K.G. Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils. Eur. J. Soil Sci. 1994, 45, 419–429. [Google Scholar] [CrossRef]
- Ogata, F.; Ueta, E.; Kawasaki, N. Characteristics of a novel adsorbent Fe-Mg-type hydrotalcite and its adsorption capability of As(III) and Cr(VI) from aqueous solution. J. Ind. Eng. Chem. 2018, 59, 56–63. [Google Scholar] [CrossRef]
- Deonarine, A.; Kolker, A.; Doughten, M.W.; Holland, J.T.; Bailoo, J.D. Mobilization of arsenic from coal fly ash in the presence of dissolved organic matter. Appl. Geochem. 2021, 128, 104950. [Google Scholar] [CrossRef]
- Song, W.; Zhang, M.; Liang, J.; Han, G.M. Removal of As(V) from wastewater by chemically modified biomass. J. Mol. Liq. 2015, 206, 262–267. [Google Scholar] [CrossRef]
- Ozer, A.; Akkaya, G.; Turabik, M. The biosorption of acid red 337 and acid blue 324 on Enteromorpha prolifera: The application of nonlinear regression analysis to dye biosorption. Chem. Eng. J. 2005, 112, 181–190. [Google Scholar] [CrossRef]
- Xiao, Z.Y.; Xie, X.J.; Pi, K.F.; Gong, J.M.; Wang, Y.X. Effects of arsenic-iron-dissolved organic matter interactions on arsenic mobilization: Insight from column experiments. J. Hydrol. 2023, 616, 12837. [Google Scholar] [CrossRef]
- Roulia, M.; Vassiliadis, A.A. Water purification by potassium humate-C. I. basic blue 3 adsorption-based interactions. Agronomy 2021, 11, 1625. [Google Scholar] [CrossRef]
- Wu, P.X.; Zhang, Q.; Dai, Y.P.; Zhu, N.W.; Dang, Z.; Li, P.; Wu, J.H.; Wang, X.D. Adsorption of Cu(II), Cd(II) and Cr(III) ions from aqueous solutions on humic acid modified Ca-montmorillonite. Geoderma 2011, 164, 215–219. [Google Scholar] [CrossRef]
- Chassapis, K.; Roulia, M.; Tsirigoti, D. Chemistry of metal-humic complexes contained in Megalopolis lignite and potential application in modern organomineral fertilization. Int. J. Coal Geol. 2009, 78, 288–295. [Google Scholar] [CrossRef]
- Coppin, F.; Berger, G.; Bauer, A.; Caster, S.; Loubet, M. Sorption of lanthanides on smectite and kaolinite. Chem. Geol. 2002, 182, 57–68. [Google Scholar] [CrossRef]
- Zhou, M.; Yang, R.J.; Tan, X.Y.; Yie, B.Q.; Lei, M.; Du, H.H. A universal synergistic rule of Cd(II)-Sb(V) coadsorption to typical soil mineral and organic components. Adsorp. Sci. Technol. 2022, 2022, 9131597. [Google Scholar] [CrossRef]
- Liu, Y.L.; Walker, H.W.; Lenhart, J.J. The effect of natural organic matter on the adsorption of microcystin-LR onto clay minerals. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123964. [Google Scholar] [CrossRef]
- Xie, X.J.; Liu, Y.Q.; Pi, K.F.; Liu, C.X.; Li, J.X.; Duan, M.Y.; Wang, Y.X. In situ Fe-sulfide coating for arsenic removal under reducing conditions. J. Hydrol. 2016, 534, 42–49. [Google Scholar] [CrossRef]
Model | Parameters | Kao-B.s | Kao-HA-B.s |
---|---|---|---|
Pseudo-first-order | k1 (min−1) | 0.00205 | 0.00253 |
qe (mg∙g−1) | 0.0372 | 0.0794 | |
R2 | 0.89235 | 0.95943 | |
Pseudo-second-order | k2 (mg∙g−1 min−1) | 0.329 | 0.0934 |
qe (mg∙g−1) | 0.129 | 0.156 | |
R2 | 0.99915 | 0.99944 |
Temperature (°C) | Kao-B.s | Kao-HA-B.s (50:1:50) | ||||
---|---|---|---|---|---|---|
Freundlich Parameters | Freundlich Parameters | |||||
kf (mg∙g−1) | 1/n | R2 | kf (mg∙g−1) | 1/n | R2 | |
26 | 0.295 | 1.12 | 0.9844 | 0.437 | 0.93 | 0.98962 |
34 | 0.389 | 1.08 | 0.99566 | 0.347 | 1.01 | 0.9779 |
45 | 0.468 | 1.03 | 0.99617 | 0.389 | 1.06 | 0.9987 |
T(K) | As R% | ΔG (kJ∙mol−1) | ΔH (kJ∙mol−1) | ΔS (J∙mol−1∙K−1) | ||||
---|---|---|---|---|---|---|---|---|
Kao-B.s | Kao-HA-B.s | Kao-B.s | Kao-HA-B.s | Kao-B.s | Kao-HA-B.s | Kao-B.s | Kao-HA-B.s | |
299.15 | 45.57 | 45.95 | 0.96 | 0.41 | 31.44 | 8.57 | 101.76 | 27.35 |
307.15 | 51.01 | 48.98 | 0.25 | 0.10 | ||||
318.15 | 59.02 | 51.07 | −0.97 | −0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, M.; Guo, J.; Zhao, S.; Li, S. Adsorption of As(V) at Humic Acid-Kaolinite-Bacteria Interfaces: Kinetics, Thermodynamics, and Mechanisms. Agronomy 2023, 13, 611. https://doi.org/10.3390/agronomy13020611
Xiao M, Guo J, Zhao S, Li S. Adsorption of As(V) at Humic Acid-Kaolinite-Bacteria Interfaces: Kinetics, Thermodynamics, and Mechanisms. Agronomy. 2023; 13(2):611. https://doi.org/10.3390/agronomy13020611
Chicago/Turabian StyleXiao, Min, Jingwen Guo, Shan Zhao, and Shifeng Li. 2023. "Adsorption of As(V) at Humic Acid-Kaolinite-Bacteria Interfaces: Kinetics, Thermodynamics, and Mechanisms" Agronomy 13, no. 2: 611. https://doi.org/10.3390/agronomy13020611
APA StyleXiao, M., Guo, J., Zhao, S., & Li, S. (2023). Adsorption of As(V) at Humic Acid-Kaolinite-Bacteria Interfaces: Kinetics, Thermodynamics, and Mechanisms. Agronomy, 13(2), 611. https://doi.org/10.3390/agronomy13020611