Nutrient Content of Vineyard Leaves after Prolonged Treated Wastewater Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: Demo Sites Description
2.2. Abiotic Conditions
2.3. Crops Description
2.4. Irrigation System
2.5. Sampling and Measurement
2.5.1. Water
2.5.2. Soil
2.5.3. Crop
2.6. Experimental Design and Statistical Analysis
3. Results
3.1. Analytical Results
3.1.1. Water Quality
3.1.2. Soil
3.1.3. Crop
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Transforming Our World: The 2030 Agenda for Sustainable Development|Department of Economic and Social Affairs. Available online: https://sdgs.un.org/2030agenda (accessed on 19 December 2022).
- Singh, A. A review of wastewater irrigation: Environmental implications. Resour. Conserv. Recycl. 2021, 168, 105454. [Google Scholar] [CrossRef]
- Ballesteros-Olza, M.; Blanco-Gutiérrez, I.; Esteve, P.; Gómez-Ramos, A.; Bolinches, A. Using reclaimed water to cope with water scarcity: An alternative for agricultural irrigation in Spain. Environ. Res. Lett. 2022, 17, 125002. [Google Scholar] [CrossRef]
- Mannina, G.; Gulhan, H.; Ni, B.J. Water reuse from wastewater treatment: The transition towards circular economy in the water sector. Bioresour. Technol. 2022, 363, 127951. [Google Scholar] [CrossRef]
- Kehrein, P.; Jafari, M.; Slagt, M.; Cornelissen, E.; Osseweijer, P.; Posada, J.; van Loosdrecht, M. A techno-economic analysis of membrane-based advanced treatment processes for the reuse of municipal wastewater. J. Water Reuse Desalination 2021, 11, 705–725. [Google Scholar] [CrossRef]
- Penny, J.S.; Ordens, C.M.; Barnett, S.; Djordjević, S.; Chen, A.S. Vineyards, Vegetables or Business-as-Usual? Stakeholder-Informed Land Use Change Modelling to Predict the Future of a Groundwater-Dependent Prime-Wine Region Under Climate Change. Available online: https://papers.ssrn.com/abstract=4345452 (accessed on 15 February 2023).
- Simhayov, R.; Ohana-Levi, N.; Shenker, M.; Netzer, Y. Effect of long-term treated wastewater irrigation on soil sodium levels and table grapevines’ health. Agric. Water Manag. 2023, 275, 108002. [Google Scholar] [CrossRef]
- Mendoza-Espinosa, L.G.; Burgess, J.E.; Daesslé, L.; Villada-Canela, M. Reclaimed water for the irrigation of vineyards: Mexico and South Africa as case studies. Sustain. Cities Soc. 2019, 51, 101769. [Google Scholar] [CrossRef]
- Mpanga, I.K.; Sserunkuma, H.; Tronstad, R.; Pierce, M.; Brown, J.K. Soil Health Assessment of Three Semi-Arid Soil Textures in an Arizona Vineyard Irrigated with Reclaimed Municipal Water. Water 2022, 14, 2922. [Google Scholar] [CrossRef]
- Sala, F. Model of Vines Production Variation in Relation to Physiological Indices. Sci. Pap. Manag. Econ. Eng. Agric. Rural. Dev. 2020, 20, 507–516. [Google Scholar]
- Mehmeti, A.; Canaj, K. Environmental Assessment of Wastewater Treatment and Reuse for Irrigation: A Mini-Review of LCA Studies. Resources 2022, 11, 94. [Google Scholar] [CrossRef]
- Howell, C.L.; KHoogendijk Myburgh, P.A.; Lategan, E.L. An Assessment of Treated Municipal Wastewater Used for Irrigation of Grapevines with Respect to Water Quality and Nutrient Load. South Afr. J. Enol. Vitic. 2022, 43, 168–179. [Google Scholar]
- Havlin, J.L.; Austin, R.; Hardy, D.; Howard, A.; Heitman, J.L. Nutrient Management Effects on Wine Grape Tissue Nutrient Content. Plants 2022, 11, 158. [Google Scholar] [CrossRef]
- Bhatla, S.C.; ALal, M. Plant Physiology, Development and Metabolism; Springer: Singapore, 2018; Available online: http://link.springer.com/10.1007/978-981-13-2023-1 (accessed on 16 December 2022).
- Walker, H.V.; Jones, J.E.; Swarts, N.D.; Rodemann, T.; Kerslake, F.; Dambergs, R.G. Predicting grapevine canopy nitrogen status using proximal sensors and near-infrared reflectance spectroscopy. J. Plant Nutr. Soil Sci. 2021, 184, 204–304. [Google Scholar] [CrossRef]
- Karimi, R.; Salimi, F. Iron-chlorosis tolerance screening of 12 commercial grapevine (Vitis vinifera L.) cultivars based on phytochemical indices. Sci. Hortic. 2021, 283, 110111. [Google Scholar] [CrossRef]
- Cunha, A.R.; da Katz, I.; de Sousa, A.P.; Martinez Uribe, R.A. Indice SPAD en el crecimiento y desarrollo de plantas de lisianthus en función de diferentes dosis de nitrógeno en ambiente protegido. Idesia 2015, 33, 97–105. [Google Scholar] [CrossRef] [Green Version]
- SPAD-502_Manual. Available online: https://www.konicaminolta.com.cn/instruments/download/manual/pdf/SPAD-502_Manual.pdf (accessed on 14 February 2023).
- Kalboussi, N.; Biard, Y.; Pradeleix, L.; Rapaport, A.; Sinfort, C.; Ait-mouheb, N. Life cycle assessment as decision support tool for water reuse in agriculture irrigation. Sci. Total Environ. 2022, 836, 155486. [Google Scholar] [CrossRef]
- Shani, U.; Ben-Gal, A. Long-term Response of Grapevines to Salinity: Osmotic Effects and Ion Toxicity. Am. J. Enol. Vitic. 2005, 56, 148–154. [Google Scholar] [CrossRef]
- Cakmakci, T.; Sahin, U. Productivity and heavy metal pollution management in a silage maize field with reduced recycled wastewater applications with different irrigation methods. J. Environ. Manage. 2021, 291, 112602. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhuang, X.; Ahmad, S.; Sung, S.; Ni, S.Q. Biotreatment of high-salinity wastewater: Current methods and future directions. World J. Microbiol. Biotechnol. 2020, 36, 37. [Google Scholar] [CrossRef]
- Basyouni, R.; Dunn, B.; Goad, C. Use of Nondestructive Sensors to Assess Nitrogen Status in Potted Dianthus (Dianthus chinensis L.) Production. Can. J. Plant Sci. 2016, 97, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Bell, S.J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Jiménez-Ballesta, R.; Bravo, S.; Amorós, J.A.; Pérez-De-Los-Reyes, C.; García-Pradas, J.; Sanchez, M.; García-Navarro, F.J. Soil and Leaf Mineral Element Contents in Mediterranean Vineyards: Bioaccumulation and Potential Soil Pollution. Water Air Soil Pollut. 2022, 233, 20. [Google Scholar] [CrossRef]
- Coll, J.B.; Rodrigo, G.N.; Tamés, R.S. Fisiología Vegetal; Ediciones Pirámide: Madrid, Spain, 2005; 568p. [Google Scholar]
- Azcón-Bieto, J.; Talón, M. Fundamentos de Fisiología Vegetal; McGraw-Hill Interamericana: Madrid, Spain, 2008; 651p. [Google Scholar]
- Taiz, L.; Zeiger, E. Fisiología Vegetal; Universitat Jaume I: Castellón de la Plana, Spain, 2006; 646p. [Google Scholar]
PARAMETER | UNIT | VALUE | METHODOLOGY | ||
---|---|---|---|---|---|
WC (n = 6) | W1 (n = 6) | W2 (n = 6) | |||
EC | mS cm−1 | 1.22 ± 0.04 | 2.14 ± 0.09 | 1.67 ± 0.10 | Conductimety (1:5) |
pH | 7.61 ± 0.14 | 7.98 ± 0.27 | 7.92 ± 0.19 | Potentiometry | |
NO3− | mg L−1 | 31.34 ± 2.71 | 2.50 ± 2.52 | 12.78 ± 12.28 | Spectrophotometry UV/VIS |
CO32- | mg L−1 | 4.00 ± 9.80 | 17.00 ± 25.33 | 16.00 ± 19.60 | Volumetry |
HCO3− | mg L−1 | 288.67 ± 28.51 | 422.92 ± 93.39 | 427.00 ± 57.14 | Volumetry |
SO42- | mg L−1 | 260.17 ± 66.01 | 426.42 ± 117.29 | 279.50 ± 66.11 | Spectrophotometry UV/VIS |
Cl- | mg L−1 | 109.83 ± 4.45 | 274.75 ± 33.75 | 206.00 ± 32.86 | Volumetry |
K | mg L−1 | 2.49 ± 0.85 | 20.42 ± 3.83 | 21.40 ± 9.21 | Atomic absorption spectroph. |
Na | mg L−1 | 32.83 ± 13.80 | 120.40 ± 39.72 | 95.50 ± 29.67 | Atomic absorption spectroph. |
Mg | mg L−1 | 55.50 ± 6.98 | 119.62 ± 23.90 | 84.50 ± 16.32 | Complexometry |
Ca | mg L−1 | 151.50 ± 26.68 | 160.83 ± 54.70 | 127.33 ± 29.97 | Complexometry |
NH4+ | mg L−1 | Not detectable | 16.43 ± 15.86 | 5.85 ± 7.83 | Volumetry |
PO43− | mg L−1 | 0.05 ± 0.12 | 7.34 ± 5.81 | 8.87 ± 11.94 | Spectrophotometry UV/VIS |
B | mg L−1 | 0.10 ± 0.06 | 0.31 ± 0.10 | 0.29 ± 0.07 | Spectrophotometry UV/VIS |
Organic matter | mg L−1 | 1.54 ± 0.74 | 7.55 ± 4.39 | 6.01 ± 1.66 | Permanganometry |
TSS | mg L−1 | 85.20 ± 99.46 | 88.82 ± 21.77 | 67.20 ± 28.76 | Gravimetry |
PARAMETER | UNIT | VALUE (n = 17) | METHODOLOGY | |||
---|---|---|---|---|---|---|
VC | V2 | V1 | p-Value | |||
Sandy | % | 51.32 ± 7.94 | 56.13 ± 5.58 | 42.85 ± 4.09 | Bouyoucos Densimeter | |
Loam | % | 29.71 ± 6.70 | 24.64 ± 4.27 | 36.03 ± 2.70 | Bouyoucos Densimeter | |
Clay | % | 18.97 ± 1.70 | 19.23 ± 1.78 | 21.11 ± 2.34 | Bouyoucos Densimeter | |
Texture | Sandy clay loam | Loam | Clay loam | USDA | ||
pH | 8.62 ± 0.10 a | 8.63 ± 0.16 a | 8.68 ± 0.22 a | 0.8264 | Potentiometry in 1:2.5 extract | |
Electrical conductivity(1:5) | mmhos cm−1 | 0.24 ± 0.06 a | 0.44 ± 0.53 a | 0.47 ± 0.60 a | 0.3259 | Conductimetry on 1:5 extract |
Cl- | ppm | 14.62 ± 4.23 a | 14.48 ± 4.01 a | 16.72 ± 1.74 a | 0.5466 | Argentometry in 1:5 extract |
SO42− | meq 100 g−1 | 34.60 ± 19.60 a | 39.01 ± 19.62 a | 29.02 ± 5.56 a | 0.6361 | Turbidimetry on extract 1:5 |
Total organic matter | % | 1.14 ± 0.29 a | 1.37 ± 0.22 b | 1.88 ± 0.33 c | <0.0001 * | Walkley Black Method |
Total-N | % | 0.05 ± 0.01 a | 0.08 ± 0.02 a | 0.10 ± 0.03 c | <0.0001 * | Kjeldahl Method |
C:N | 12.81 ± 3.80 a | 10.69 ± 3.44 a | 11.71 ± 3.53 a | 0.2364 | Arithmetical operation | |
Nitric-N | ppm | 6.22 ± 4.49 a | 18.29 ± 21.57 a | 15.03 ± 22.46 a | 0.1451 | Spectrophotometry UV/VIS |
Assimilable P | ppm | 21.43 ± 5.20 a | 40.98 ± 8.65 a | 41.40 ± 11.45 b | <0.0001 * | Olsen Method |
Total carbonates | % | 30.06 ± 9.01 a | 27.35 ± 1.66 a | 23.67 ± 1.06 a | 0.2045 | Bernard Method |
Active limestone | % | 13.50 ± 5.32 a | 14.18 ± 4.83 a | 12.25 ± 1.32 a | 0.7681 | Gasometry |
Assimilable K | meq 100 g−1 | 0.83 ± 0.16 a | 1.17 ± 0.20 a | 1.22 ± 0.59 b | <0.0001 * | Atomic emission spectrophotometry |
Assimilable Na | meq 100 g−1 | 0.38 ± 0.19 a | 0.52 ± 0.25 a | 0.59 ± 0.34 a | 0.0707 | Atomic emission spectrophotometry |
Assimilable Ca | meq 100 g−1 | 37.91 ± 5.28 a | 37.01 ± 4.48 a | 38.76 ± 4.97 a | 0.5851 | Spectrophotometry Atomic absorption |
Assimilable Mg | meq 100 g−1 | 1.47 ± 0.65 a | 2.10 ± 0.74 a | 3.88 ± 1.42 b | <0.0001 * | Spectrophotometry Atomic absorption |
K:Mg | 0.75 ± 0.55 b | 0.62 ± 0.26 ab | 0.34 ± 0.08 a | 0.0062 * | Arithmetical operation | |
Ca:Mg | 34.35 ± 0.65 b | 20.60 ± 10.45 a | 11.03 ± 3.63 a | 0.0005 * | Arithmetical operation | |
Cation Exchange Capacity | meq 100 g−1 | 9.37 ± 2.31 a | 8.98 ± 1.70 a | 12.08 ± 2.54 b | 0.0002 * | Atomic emission spectrophotometry |
Assimilable Fe | ppm | 1.20 ± 0.73 a | 0.97 ± 0.31 a | 0.97 ± 1.43 a | 0.7222 | Spectrophotometry Atomic absorption |
Assimilable Zn | ppm | 0.41 ± 0.13 a | 1.20 ± 0.39 c | 0.76 ± 0.30 b | <0.0001 * | Spectrophotometry Atomic absorption |
Assimilable Cu | ppm | 0.62 ± 0.08 a | 0.80 ± 0.11 b | 1.43 ± 0.31 c | <0.0001 * | Spectrophotometry Atomic absorption |
Assimilable Mn | ppm | 2.63 ± 0.92 a | 4.28 ± 1.26 b | 4.67 ± 2.69 b | 0.0039 * | Spectrophotometry Atomic absorption |
Assimilable B | ppm | 0.19 ± 0.19 a | 0.34 ± 0.29 ab | 0.44 ± 0.15 b | 0.0055 * | UV/VIS Spectrophotometry |
LEAVES ANALYSIS | ||||||
---|---|---|---|---|---|---|
PARAMETER | UNIT | VALUE | p-Value (n = 9) | METHODOLOGY | ||
VC | V2 | V1 | ||||
MACROELEMENTS | ||||||
N | % | 2.26 ± 1.05 a | 2.51 ± 0.79 a | 2.53 ± 0.79 a | 0.7757 | Kjeldahl method |
P | % | 0.15 ± 0.08 a | 0.14 ± 0.08 a | 0.16 ± 0.09 a | 0.8138 | UV/VIS Spectrophotometry |
K | % | 1.16 ± 0.87 a | 1.00 ± 0.51 a | 0.78 ± 0.41 a | 0.4499 | Atomic emission spectrophotometry |
Mg | % | 0.22 ± 0.06 a | 0.36 ± 0.07 b | 0.31 ± 1.70 b | 0.0081 * | Atomic absorption spectrophotometry |
Ca | % | 2.00 ± 0.73 a | 1.94 ± 0.66 a | 1.70 ± 0.65 a | 0.6209 | Atomic absorption spectrophotometry |
Na | % | 0.04 ± 0.04 a | 0.01 ± 0.03 a | 0.05 ± 0.06 a | 0.1812 | Atomic emission Spectrophotometry |
MICROELEMENTS AND CHLOROPHYLL | ||||||
Fe | ppm | 84.68 ± 17.72 a | 89.44 ± 23.31 a | 75.54 ± 19.01 a | 0.3475 | Atomic absorption spectrophotometry |
Mn | ppm | 48.74 ± 20.43 a | 124.82 ± 59.14 b | 67.28 ± 18.18 a | 0.0007 * | Atomic absorption spectrophotometry |
Cu | ppm | 1.38 ± 0.50 a | 2.31 ± 0.91 ab | 5.48 ± 6.77 b | 0.0907 | Atomic absorption spectrophotometry |
Zn | ppm | 10.89 ± 2.98 a | 19.98 ± 5.93 b | 12.22 ± 3.19 a | 0.0002 * | Atomic absorption spectrophotometry |
B | ppm | 45.12 ± 22.30 a | 48.24 ± 35.11 a | 57.90 ± 23.93 a | 0.6005 | UV/VIS Spectrophotometry |
Chlorophyll | SPAD units | 42.01 ± 6.22 a | 40.93 ± 7.64 a | 38.90 ± 8.60 a | 0.7393 | Direct measurement: SPAD-502 Plus |
(n) | N (%) | P (%) | K (%) | Ca (%) | Mg (%) | Na (%) | |
---|---|---|---|---|---|---|---|
TW | 18 | 2.52 ± 0.77 a | 0.15 ± 0.09 a | 0.89 ± 0.46 a | 1.82 ± 0.65 a | 0.34 ± 0.09 b | 0.03 ± 0.05 a |
C | 9 | 2.26 ± 1.04 a | 0.15 ± 0.08 a | 1.16 ± 0.086 a | 2.00 ± 0.73 a | 0.22 ± 0.06 a | 0.04 ± 0.04 a |
p-value | 0.4732 | 0.9110 | 0.2931 | 0.5101 | 0.0030 * | 0.7461 | |
Fe (ppm) | Mn (ppm) | Cu (ppm) | Zn (ppm) | B (ppm) | Chloropyll (SPAD units) | ||
TW | 18 | 82.5 ± 21.8 a | 96.04 ± 51.7 b | 3.89 ± 4.9 a | 16.1 ± 6.1 b | 53.07± 29.6 a | 39.91 ± 7.8 a |
C | 9 | 84.7 ± 17.7 a | 48.7 ± 20.42 a | 1.37 ± 0.49 a | 10.88 ± 29.0 a | 45.11 ± 22.29 a | 42.01 ± 6.2 a |
p-value | 0.7971 | 0.0147 * | 0.0453 * | 0.0238 * | 0.4843 | 0.5479 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez, P.M.; Ibáñez, J.D.l.H. Nutrient Content of Vineyard Leaves after Prolonged Treated Wastewater Irrigation. Agronomy 2023, 13, 620. https://doi.org/10.3390/agronomy13030620
Ramírez PM, Ibáñez JDlH. Nutrient Content of Vineyard Leaves after Prolonged Treated Wastewater Irrigation. Agronomy. 2023; 13(3):620. https://doi.org/10.3390/agronomy13030620
Chicago/Turabian StyleRamírez, Pilar Mañas, and Jorge De las Heras Ibáñez. 2023. "Nutrient Content of Vineyard Leaves after Prolonged Treated Wastewater Irrigation" Agronomy 13, no. 3: 620. https://doi.org/10.3390/agronomy13030620
APA StyleRamírez, P. M., & Ibáñez, J. D. l. H. (2023). Nutrient Content of Vineyard Leaves after Prolonged Treated Wastewater Irrigation. Agronomy, 13(3), 620. https://doi.org/10.3390/agronomy13030620