Phenotypic Variability for Root Traits in Andean Common Beans Grown with and without Aluminum Stress Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Material and Treatment Design
2.2. Phenotyping System
2.3. Root Trait Measurement
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Porch, T.; Beaver, J.; Debouck, D.; Jackson, S.; Kelly, J.; Dempewolf, H. Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy 2013, 3, 433–461. [Google Scholar] [CrossRef] [Green Version]
- Ambachew, D.; Mekbib, F.; Asfaw, A.; Beebe, S.E.; Blair, M.W. Trait associations in common bean genotypes grown under drought stress and field infestation by BSM bean fly. Crop J. 2015, 3, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Omae, H.; Kumar, A.; Shono, M. Adaptation to high temperature and water deficit in the common bean (Phaseolus vulgaris L.) during the Reproductive Period. J. Bot. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Blair, M.W.; López-Marín, H.D.; Rao, I.M. Identification of aluminum resistant Andean common bean (Phaseolus vulgaris L.) genotypes. BraziJ Plant Physiol. 2009, 21, 291–300. [Google Scholar] [CrossRef]
- Graham, P.H. Some problems and potentials of field beans (Phaseolus vulgaris L.) in Latin America. F Crop Res. 1978, 1, 295–317. [Google Scholar] [CrossRef]
- Lone, A.A.; Khan, M.N.; Gul, A.; Dar, Z.A.; Iqbal, A.M.; Lone, B.A.; Ahangar, A.; Rasool, F.U.; Ali, G.; Nisar, F.; et al. Common beans and abiotic stress challenges. Curr. J. Appl. Sci. Technol. 2021, 40, 41–53. [Google Scholar] [CrossRef]
- Rao, I.M. Role of Physiology in Improving Crop Adaptation to Abiotic Stresses in the Tropics: The Case of Common Bean and Tropical Forages. In Handbook of Plant and Crop Physiology; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Rangel, A.F.; Mobin, M.; Rao, I.M.; Horst, W.J. Proton toxicity interferes with the screening of common bean (Phaseolus vulgaris L.) genotypes for aluminium resistance in nutrient solution. J. Plant Nutr. Soil Sci. 2005, 168, 607–616. [Google Scholar] [CrossRef]
- Gupta, N.; Gaurav, S.S.; Kumar, A. Molecular basis of Aluminium toxicity in plants: A Review. Am. J. Plant Sci. 2013, 4, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Bojórquez-Quintal, E.; Escalante-Magaña, C.; Echevarría-Machado, I.; Martínez-Estévez, M. Aluminum, a friend or foe of higher plants in acid soils. Front. Plant Sci. 2017, 8, 1767. [Google Scholar] [CrossRef] [Green Version]
- Rangel, A.; Rao, I.M.; Braun, H.P.; Horst, W.J. Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices. Physiol Plant. 2010, 138, 176–190. [Google Scholar] [CrossRef]
- Kochian, L.V.; Piñeros, M.A.; Hoekenga, O.A. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil. 2005, 274, 175–195. [Google Scholar] [CrossRef]
- Hede, A.R.; Skovmand, B.; López-Cesati, J. Acid soils and Aluminum toxicity. In Application of Physiology in Wheat Breeding; Reynolds, M.P., Ortiz-Monasterio, J.I., McNab, A., Eds.; CIMMYT: Mexico City, Mexico, 2001; pp. 172–182. [Google Scholar]
- Horst, W.J.; Rangel, A.F.A.F.; Eticha, D.; Ischitani, M.; Rao, I.M. Aluminum toxicity and resistance in Phaseolus vulgaris physiology drives molecular biology. In Proceedings of the International Symposium on Plant-Soil Interactions at Low pH, Guangzhou, China, 17–21 May 2009. [Google Scholar]
- Delhaize, E.; Ryan, P.R.; Randall, P.J. Aluminum tolerance in wheat (Triticum aestivum L.). Plant Physiol. 1993, 103, 695–702. [Google Scholar] [CrossRef] [Green Version]
- Delhaize, E.; Ryan, P.R. Aluminum toxicity and tolerance in plants. Plant Physiol. 1995, 107, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delhaize, E.; Ma, J.F.; Ryan, P.R. Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci. 2012, 17, 341–348. [Google Scholar] [CrossRef]
- Rangel, A.F.; Rao, I.M.; Horst, W.J. Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminium resistance. J. Exp. Bot. 2007, 58, 3895–3904. [Google Scholar] [CrossRef]
- Yang, Z.B.; Eticha, D.; Rotter, B.; Rao, I.M.; Horst, W.J. Physiological and molecular analysis of polyethylene glycol-induced reduction of aluminium accumulation in the root tips of common bean (Phaseolus vulgaris). New Phytol. 2011, 192, 99–113. [Google Scholar] [CrossRef]
- Yang, Z.B.; Rao, I.M.; Horst, W.J. Interaction of aluminium and drought stress on root growth and crop yield on acid soils. Plant Soil. 2013, 372, 3–25. [Google Scholar] [CrossRef] [Green Version]
- Mugai, E.N.; Agong, S.G.; Matsumoto, H. Aluminium tolerance mechanisms in Phaseolus vulgaris L.: Citrate synthase activity and TTC reduction are well correlated with citrate secretion. Soil Sci. Plant Nutr. 2000, 46, 939–950. [Google Scholar] [CrossRef] [Green Version]
- Bartoli, G.; Sanità di Toppi, L.; Andreucci, A.; Ruffini Castiglione, M. Aluminum effects on embryo suspensor polytene chromosomes of Phaseolus coccineus L. Plant Biosys. 2017, 3504, 880–888. [Google Scholar]
- Beebe, S.E.; Rao, I.M.; Blair, M.W.; Butare, L. Breeding for abiotic stress tolerance in common bean: Present and future challenges. SABRAO J. Breed. Genet. 2009, 41, 1–10. [Google Scholar]
- Miklas, P.N.; Kelly, J.D.; Beebe, S.E.; Blair, M.W. Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding. Euphytica 2006, 147, 105–131. [Google Scholar] [CrossRef]
- Darkwa, K.; Ambachew, D.; Mohammed, H.; Asfaw, A.; Blair, M.W. Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia. Crop J. 2016, 4, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Dramadri, I.O.; Nkalubo, S.T.; Kramer, D.M.; Kelly, J.D. Genome-wide association analysis of drought adaptive traits in common bean. Crop Sci. 2021, 61, 3232–3253. [Google Scholar] [CrossRef]
- Papathanasiou, F.; Ninou, E.; Mylonas, I.; Baxevanos, D.; Papadopoulou, F.; Avdikos, I.; Sistanis, I.; Koskosidis, A.; Vlachostergios, D.N.; Stefanou, S.; et al. The Evaluation of Common Bean (Phaseolus vulgaris L.) Genotypes under Water Stress Based on Physiological and Agronomic Parameters. Plants 2022, 11, 2432. [Google Scholar] [CrossRef]
- Cortés, A.J.; Monserrate, F.A.; Ramírez-Villegas, J.; Madriñán, S.; Blair, M.W. Drought tolerance in wild plant populations: The case of common beans (Phaseolus vulgaris L.). PLoS ONE 2013, 8, e62898. [Google Scholar] [CrossRef] [Green Version]
- Asfaw, A.; Ambachew, D.; Shah, T.; Blair, M.W. Trait associations in diversity panels of the two common bean (Phaseolus vulgaris L.) gene pools grown under well-watered and water-stress conditions. Front. Plant Sci. 2017, 8, 733. [Google Scholar] [CrossRef]
- Kouam, E.B.; Ndo, S.M.; Mandou, M.S.; Chotangui, A.H.; Tankou, C.M. Genotypic variation in tolerance to salinity of common beans cultivated in western Cameroon as assessed at germination and during early seedling growth. Open Agric. 2017, 2, 600–610. [Google Scholar] [CrossRef]
- Çiftçi, V.; Türkmen, Ö.; Do, Y.; Erdinç, Ç.; Suat, B. Variation of salinity tolerance in bean genotypes. Afr. J. Agric. Econ. Rural Dev. 2014, 2, 1–9. [Google Scholar]
- Ambachew, D.; Blair, M.W. Genome wide association mapping of root traits in the andean genepool of common bean (Phaseolus vulgaris L.) grown with and without aluminum toxicity. Front. Plant Sci. 2021, 12, 628687. [Google Scholar] [CrossRef]
- Butare, L.; Rao, I.M.; Lepoivre, P.; Cajiao, C.; Polania, J.; Cuasquer, J.; Beebe, S. Phenotypic evaluation of interspecific recombinant inbred lines (RILs) of Phaseolus species for aluminium resistance and shoot and root growth response to aluminium-toxic acid soil. Euphytica 2012, 186, 715–730. [Google Scholar] [CrossRef]
- Cichy, K.A.; Porch, T.G.; Beaver, J.S.; Cregan, P.; Fourie, D.; Glahn, R.P.; Grusak, M.A.; Kamfwa, K.; Katuuramu, D.N.; McClean, P.; et al. A Phaseolus vulgaris diversity panel for andean bean improvement. Crop Sci. 2015, 55, 2149–2160. [Google Scholar] [CrossRef] [Green Version]
- Rao, I.M.; Wenzl, P.; Arango Vélez, A.; Miles, J.W.; Watanabe, T.; Shinano, T.; Osaki, M.; Wagatsuma, T.; Manrique, G.; Beebe, S.E.; et al. Advances in developing screening methods and improving aluminum resistance in common bean and brachiaria. Rev. Bras. Agrociencia 2008, 14, 1–7. [Google Scholar]
- R Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing. 2020. Available online: https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing (accessed on 7 February 2023).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression: Appendices. Robust Regres R. 2019. Available online: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion (accessed on 17 February 2023).
- Revelle, W.R. psych: Procedures for Personality and Psychological Research; Northwestern University: Evanston, IL, USA, 2020; Available online: https://cran.r-project.org/package=psych (accessed on 17 February 2023).
- Goslee, S.C.; Urban, D.L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat Softw. 2007, 22, 1–19. [Google Scholar] [CrossRef]
- Nieweglowski, L. clv: Cluster Validation Techniques, R package version 0.3–2.1. 2010. Available online: https://cran.r-project.org/web/packages/clv/index.html (accessed on 17 February 2023).
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses; 2020; R Package Version 1.0.7. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 17 February 2023).
- Wickham, H. ggplot2 Elegant Graphics for Data Analysis Second Edition. Robert, G., Kurt, H., Giovanni, P., Eds.; 2016, p. 268. Available online: https://ggplot2.tidyverse.org (accessed on 17 February 2023).
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 2014, 6, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Paradis, E.; Schliep, K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef]
- Eticha, D.; Zahn, M.; Bremer, M.; Yang, Z.; Rangel, A.F.; Rao, I.M.; Horst, W.J. Transcriptomic analysis reveals differential gene expression in response to aluminium in common bean (Phaseolus vulgaris) genotypes. Ann. Bot. 2010, 105, 1119–1128. [Google Scholar] [CrossRef] [Green Version]
- Butare, L.; Rao, I.M.; Lepoivre, P.; Polania, J.; Cajiao, C.; Cuasquer, J.; Beebe, S. New genetic sources of resistance in the genus Phaseolus to individual and combined aluminium toxicity and progressive soil drying stresses. Euphytica 2011, 181, 385–404. [Google Scholar] [CrossRef]
- López-Marín, H.D.; Rao, I.M.; Blair, M.W. Quantitative trait loci for root morphology traits under aluminum stress in common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 2009, 119, 449–458. [Google Scholar] [CrossRef]
- Rao, I.M.; Miles, J.W.; Beebe, S.E.; Horst, W.J. Root adaptations to soils with low fertility and aluminium toxicity. Ann. Bot. 2016, 118, 593–605. [Google Scholar] [CrossRef] [Green Version]
- Nunes-Nesi, A.; Brito, D.S.; Inostroza-Blancheteau, C.; Fernie, A.R.; Araújo, W.L. The complex role of mitochondrial metabolism in plant aluminum resistance. Trends Plant Sci. 2014, 19, 399–407. [Google Scholar] [CrossRef]
- Miyasaka, S.C.; George Buta, J.; Howell, R.K.; Foy, C.D. Mechanism of aluminum tolerance in snapbeans: Root exudation of citric acid. Plant Physiol. 1991, 96, 737–743. [Google Scholar] [CrossRef] [Green Version]
- Horst, W.J.; Wang, Y.; Eticha, D. The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: A review. Ann. Bot. 2010, 106, 185–197. [Google Scholar] [CrossRef]
Trait | LEN | RSA | Rvol | AvRD | NTIP | NFRK | NCRS | NLINK |
---|---|---|---|---|---|---|---|---|
LEN | 0.93 *** | 0.79 *** | −0.04 | 0.84 *** | 0.92 *** | 0.87 *** | 0.92 *** | |
RSA | 0.95 *** | 0.95 *** | 0.28 *** | 0.75 *** | 0.90 *** | 0.74 *** | 0.89 *** | |
Rvol | 0.83 *** | 0.96 *** | 0.50 *** | 0.59 *** | 0.79 *** | 0.57 *** | 0.77 *** | |
AVRD | −0.05 | 0.20 *** | 0.41 *** | −0.21 *** | 0.06 | −0.22 *** | 0.03 | |
NTIP | 0.81 *** | 0.77 *** | 0.66 *** | −0.14 * | 0.82 *** | 0.8 *** | 0.83 *** | |
NFRK | 0.93 *** | 0.89 *** | 0.79 *** | −0.03 | 0.78 *** | 0.92 ** | 1.00 *** | |
NCRS | 0.83 *** | 0.69 *** | 0.53 *** | −0.22 *** | 0.62 *** | 0.88 *** | 0.93 *** | |
NLINK | 0.93 *** | 0.89 *** | 0.78 *** | −0.04 | 0.8 *** | 1.00 *** | 0.88 *** |
Principal Components | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Eigenvalues | 6.019 | 0.598 | 0.241 | 0.103 |
Standard Deviation | 2.453 | 0.773 | 0.490 | 0.320 |
Proportion of Variance | 86.0 | 8.50 | 3.40 | 1.50 |
Cumulative Proportion | 86.0 | 94.5 | 98.0 | 99.42 |
Component Matrix | ||||
LEN | 0.394 | −0.014 | −0.088 | 0.767 |
RSA | 0.387 | 0.389 | −0.070 | 0.166 |
RVOL | 0.343 | 0.688 | −0.045 | −0.182 |
NTIP | 0.353 | −0.372 | −0.817 | −0.230 |
NFRK | 0.399 | −0.078 | 0.280 | −0.364 |
NCRS | 0.367 | −0.466 | 0.419 | 0.184 |
NLNK | 0.399 | −0.119 | 0.252 | −0.363 |
Principal Components | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Eigenvalues | 5.934 | 0.577 | 0.347 | 0.099 |
Standard Deviation | 2.436 | 0.760 | 0.589 | 0.314 |
Proportion of Variance (%) | 84.75 | 8.20 | 5.00 | 1.40 |
Cumulative Proportion (%) | 84.75 | 93.0 | 98.0 | 99.0 |
Component Matrix | ||||
LEN | −0.400 | −0.001 | −0.028 | 0.584 |
RSA | −0.393 | −0.346 | −0.176 | 0.223 |
RVOL | −0.355 | −0.608 | −0.296 | −0.107 |
NTIP | −0.346 | −0.071 | 0.905 | 0.039 |
NFRK | −0.400 | 0.185 | −0.079 | −0.512 |
NCRS | −0.345 | 0.662 | −0.233 | 0.303 |
NLNK | −0.401 | 0.184 | −0.040 | −0.491 |
Cluster I | Cluster II | Cluster III | Cluster IV | |
---|---|---|---|---|
Cluster I | 92.32 | 446.22 | 720.64 | 955.82 |
Cluster II | 58.11 | 277.38 | 511.94 | |
Cluster III | 42.94 | 236.80 | ||
Cluster IV | 54.02 | |||
x2 = 15.09 at p < 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambachew, D.; Asfaw, A.; Blair, M.W. Phenotypic Variability for Root Traits in Andean Common Beans Grown with and without Aluminum Stress Conditions. Agronomy 2023, 13, 619. https://doi.org/10.3390/agronomy13030619
Ambachew D, Asfaw A, Blair MW. Phenotypic Variability for Root Traits in Andean Common Beans Grown with and without Aluminum Stress Conditions. Agronomy. 2023; 13(3):619. https://doi.org/10.3390/agronomy13030619
Chicago/Turabian StyleAmbachew, Daniel, Asrat Asfaw, and Matthew W. Blair. 2023. "Phenotypic Variability for Root Traits in Andean Common Beans Grown with and without Aluminum Stress Conditions" Agronomy 13, no. 3: 619. https://doi.org/10.3390/agronomy13030619
APA StyleAmbachew, D., Asfaw, A., & Blair, M. W. (2023). Phenotypic Variability for Root Traits in Andean Common Beans Grown with and without Aluminum Stress Conditions. Agronomy, 13(3), 619. https://doi.org/10.3390/agronomy13030619