The Effect of Digestate from Liquid Cow Manure on Spring Wheat Chlorophyll Content, Soil Properties, and Risk of Leaching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Preparation of Digestate
2.3. Methods of Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Comparison of the Chemical Composition of Liquid Cow Manure and Digestate
Indicator | Units of Measurement | Liquid Cow Manure | Digestate from Liquid Cow Manure |
---|---|---|---|
in fresh material | |||
pH | 8.1 | 8.6 | |
Dry matter | % | 7.42 | 5.31 |
Organic matter | g kg−1 | 58.3 | 39.5 |
Total nitrogen (Nsum) | g kg−1 | 3.9 | 3.5 |
Ammonium nitrogen (NH4-N) | g kg−1 | 1.5 | 1.9 |
Nitrate nitrogen (NO3-N) | g kg−1 | 0.028 | 0.024 |
Available phosphorus (P2O5) | g kg−1 | 1.7 | 1.8 |
Available potassium (K2O) | g kg−1 | 3.2 | 2.8 |
3.2. The Effect of Digestate from Liquid Cow Manure on Soil Properties
3.3. The Effect of Digestate from Liquid Cow Manure on Spring Wheat Chlorophyll Content
3.4. The Effect of Digestate from Liquid Cow Manure on Leaching of Nutrients
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hakeem, K.R.; Sabir, M.; Ozturk, M.; Akhtar, M.S.; Ibrahim, F.H. Erratum to: Nitrate and Nitrogen Oxides: Sources, Health Effects and Their Remediation. In Reviews of Environmental Contamination and Toxicology Volume 242; Springer International Publishing: Cham, Switzerland, 2017; pp. 183–217. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Q.; Stratmann, C.N.; van der Geest, H.G.; Veraart, A.J.; Brenzinger, K.; Lürling, M.; de Senerpont Domis, L.N. Effectiveness of Phosphorus Control Under Extreme Heatwaves: Implications for Sediment Nutrient Releases and Greenhouse Gas Emissions. Biogeochemistry 2021, 156, 421–436. [Google Scholar] [CrossRef]
- Pan, S.Y.; He, K.H.; Lin, K.T.; Fan, C.; Chang, C.T. Addressing Nitrogenous Gases from Croplands Toward Low-Emission Agriculture. NPJ Clim. Atmos. Sci. 2022, 5, 43. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z. Estimating Smart Energy Inputs Packages using Hybrid Optimisation Technique to Mitigate Environmental Emissions of Commercial Fish Farms. Appl. Energy 2022, 326, 119602. [Google Scholar] [CrossRef]
- Mortola, N.; Romaniuk, R.; Cosentino, V.; Eiza, M.; Carfagno, P.; Rizzo, P.; Bres, P.; Riera, N.; Roba, M.; Butti, M.; et al. Potential use of a Poultry Manure Digestate as a Biofertiliser: Evaluation of Soil Properties and Lactuca Sativa Growth. Pedosphere 2019, 29, 60–69. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of Anaerobic Digestion on Digestate Nutrient Availability and Crop Growth: A Review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Insam, H.; Gómez-Brandón, M.; Ascher, J. Manure-Based Biogas Fermentation Residues—Friend Or Foe of Soil Fertility? Soil Biol. Biochem. 2015, 84, 1–14. [Google Scholar] [CrossRef]
- Sogn, T.A.; Dragicevic, I.; Linjordet, R.; Krogstad, T.; Eijsink, V.G.H.; Eich-Greatorex, S. Recycling of Biogas Digestates in Plant Production: NPK Fertilizer Value and Risk of Leaching. Int. J. Recycl. Org. Waste Agric. 2018, 7, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Doran, J.W. Soil Health and Global Sustainability: Translating Science into Practice. Agric. Ecosyst. Environ. 2002, 88, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Möller, K. Effects of Anaerobic Digestion on Soil Carbon and Nitrogen Turnover, N Emissions, and Soil Biological Activity. A Review. Agron. Sustain. Dev. 2015, 35, 1021–1041. [Google Scholar] [CrossRef]
- Tiwary, A.; Williams, I.D.; Pant, D.C.; Kishore, V.V.N. Assessment and Mitigation of the Environmental Burdens to Air from Land Applied Food-Based Digestate. Environ. Pollut. 2015, 203, 262–270. [Google Scholar] [CrossRef]
- Nicholson, F.; Bhogal, A.; Cardenas, L.; Chadwick, D.; Misselbrook, T.; Rollett, A.; Taylor, M.; Thorman, R.; Williams, J. Nitrogen Losses to the Environment Following Food-Based Digestate and Compost Applications to Agricultural Land. Environ. Pollut. 2017, 228, 504–516. [Google Scholar] [CrossRef] [Green Version]
- Dragicevic, I.; Eich-Greatorex, S.; Sogn, T.A.; Horn, S.J.; Krogstad, T. Use of High Metal-Containing Biogas Digestates in Cereal production—Mobility of Chromium and Aluminium. J. Environ. Manag. 2018, 217, 12–22. [Google Scholar] [CrossRef]
- Ros, G.H.; Temminghoff, E.J.M.; Hoffland, E. Nitrogen Mineralization: A Review and Meta-Analysis of the Predictive Value of Soil Tests. Eur. J. Soil Sci. 2011, 62, 162–173. [Google Scholar] [CrossRef]
- Rigby, H.; Smith, S.R. Nitrogen Availability and Indirect Measurements of Greenhouse Gas Emissions from Aerobic and Anaerobic Biowaste Digestates Applied to Agricultural Soils. Waste Manag. 2013, 33, 2641–2652. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme Weather Events Risk to Crop-Production and the Adaptation of Innovative Management Strategies to Mitigate the Risk: A Retrospective Survey of Rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Odlare, M.; Arthurson, V.; Pell, M.; Svensson, K.; Nehrenheim, E.; Abubaker, J. Land Application of Organic Waste—Effects on the Soil Ecosystem. Appl. Energy 2011, 88, 2210–2218. [Google Scholar] [CrossRef]
- Möller, K.; Stinner, W.; Deuker, A.; Leithold, G. Effects of Different Manuring Systems with and without Biogas Digestion on Nitrogen Cycle and Crop Yield in Mixed Organic Dairy Farming Systems. Nutr. Cycl. Agroecosyst. 2008, 82, 209–232. [Google Scholar] [CrossRef]
- Nkoa, R. Agricultural Benefits and Environmental Risks of Soil Fertilization with Anaerobic Digestates: A Review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Faridullah; Malik, N.; Fareed, I.; Irshad, M. Reducing the Leachability of Nitrate, Phosphorus and Heavy Metals from Soil using Waste Material. Braz. J. Chem. Eng. 2017, 34, 715–726. [Google Scholar] [CrossRef]
- Svoboda, N.; Taube, F.; Wienforth, B.; Kluß, C.; Kage, H.; Herrmann, A. Nitrogen Leaching Losses After Biogas Residue Application to Maize. Soil Tillage Res. 2013, 130, 69–80. [Google Scholar] [CrossRef]
- Edelmann, W.; Baier, U.; Engeli, H. Environmental Aspects of the Anaerobic Digestion of the Organic Fraction of Municipal Solid Wastes and of Solid Agricultural Wastes. Water Sci. Technol. 2005, 52, 203–208. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Bhogal, A.; Rollett, A.; Taylor, M.; Williams, J.R. Precision Application Techniques Reduce Ammonia Emissions Following Food-Based Digestate Applications to Grassland. Nutr. Cycl. Agroecosyst. 2018, 110, 151–159. [Google Scholar] [CrossRef]
- Tilvikiene, V.; Venslauskas, K.; Povilaitis, V.; Navickas, K.; Zuperka, V.; Kadziuliene, Z. The Effect of Digestate and Mineral Fertilisation of Cocksfoot Grass on Greenhouse Gas Emissions in a Cocksfoot-Based Biogas Production System. Energy 2020, 10, 13. [Google Scholar] [CrossRef]
- Staugaitis, G.; Vaišvila, Z. Dirvožemio Agrocheminiai Tyrimai; Lietuvos Agrarinių ir Miškų Mokslų Centro Agrocheminių Tyrimų Laboratorija: Kaunas, Lithuania, 2019; p. 112. [Google Scholar]
- von Wettstein, D.; Henningsen, K.W.; Boynton, J.E.; Kannangara, G.C.; Nielsen, O.F. Genic Control of Chloroplast Development in Barley. In Autonomy and Biogenesis of Mitochondria and Chloroplasts; Boardman, N.K., Linnane, A.W., Smillie, R.M., Eds.; North Holland: Amsterdam, The Neatherland, 1971; pp. 205–223. [Google Scholar]
- Semenova, N.A.; Smirnov, A.A.; Grishin, A.A.; Pishchalnikov, R.Y.; Chesalin, D.D.; Gudkov, S.V.; Chilingaryan, N.O.; Skorokhodova, A.N.; Dorokhov, A.S.; Izmailov, A.Y. The Effect of Plant Growth Compensation by Adding Silicon-Containing Fertilizer Under Light Stress Conditions. Plants 2021, 10, 1287. [Google Scholar] [CrossRef]
- Mobilian, C.; Craft, C.B. Wetland Soils: Physical and Chemical Properties and Biogeochemical Processes. In Encyclopedia of Inland Waters, 2nd ed.; Mehner, T., Tockner, K., Eds.; Elsevier: Oxford, UK, 2022; pp. 157–168. [Google Scholar] [CrossRef]
- Raudonius, S. Application of Statistics in Plant and Crop Research: Important Issues. Zemdirb.-Agric. 2017, 104, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Hill, T.; Lewicki, P. Statistics: Methods and Applications: A Comprehensive Reference for Science, Industry, and Data Mining; StatSoft, Inc.: Tulsa, OK, USA, 2006; p. 800. [Google Scholar]
- Lukehurst, C.T.; Frost, P.; Al-Seadi, T. Utilisation of Digestate from Biogas Plants as Biofertiliser; IEA Bioenergy: Paris, France, 2010; pp. 1–22. [Google Scholar]
- Smith, K.A.; Jeffrey, W.A.; Metcalfe, J.P.; Sinclair, A.H.; Williams, J.R. Nutrient Value of Digestate from Farm-Based Biogas Plants. In Proceedings of the 14th Ramiran International Conference, Lisboa, Portugal, 12–15 September 2010; pp. 2–5. [Google Scholar]
- Barbosa, D.B.P.; Nabel, M.; Jablonowski, N.D. Biogas-Digestate as Nutrient Source for Biomass Production of Sida Hermaphrodita, Zea mays L. and Medicago sativa L. Energy Procedia 2014, 59, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Iacovidou, E.; Millward-Hopkins, J.; Busch, J.; Purnell, P.; Velis, C.A.; Hahladakis, J.N.; Zwirner, O.; Brown, A. A Pathway to Circular Economy: Developing a Conceptual Framework for Complex Value Assessment of Resources Recovered from Waste. J. Clean. Prod. 2017, 168, 1279–1288. [Google Scholar] [CrossRef]
- Tambone, F.; Genevini, P.; D’Imporzano, G.; Adani, F. Assessing Amendment Properties of Digestate by Studying the Organic Matter Composition and the Degree of Biological Stability during the Anaerobic Digestion of the Organic Fraction of MSW. Bioresour. Technol. 2009, 100, 3140–3142. [Google Scholar] [CrossRef]
- Monaco, S.; Sacco, D.; Borda, T.; Grignani, C. Field Measurement of Net Nitrogen Mineralization of Manured Soil Cropped to Maize. Biol. Fertil. Soils 2010, 46, 179–184. [Google Scholar] [CrossRef]
- Fouda, S.; von Tucher, S.; Lichti, F.; Schmidhalter, U. Nitrogen Availability of various Biogas Residues Applied to Ryegrass. J. Plant Nutr. Soil Sci. 2013, 176, 572–584. [Google Scholar] [CrossRef]
- Drosg, B.; Fuchs, W.; Al Seadi, T.; Madsen, M.; Linke, B. Nutrient Recovery by Biogas Digestate Processing; IEA Bioenergy: Dublin, Ireland, 2015. [Google Scholar]
- Holm-Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, P. The Future of Anaerobic Digestion and Biogas Utilisation. Bioresour. Technol. 2009, 100, 5478–5484. [Google Scholar] [CrossRef]
- Arthurson, V. Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land—Potential Benefits and Drawbacks. Energies 2009, 2, 226. [Google Scholar] [CrossRef] [Green Version]
- Jamison, J.; Khanal, S.; Nguyen, N.H.; Deenik, J.L. Assessing the Effects of Digestates and Combinations of Digestates and Fertilizer on Yield and Nutrient use of Brassica Juncea (Kai Choy). Agronomy 2021, 11, 509. [Google Scholar] [CrossRef]
- Pires, M.V.; da Cunha, D.A.; de Matos Carlos, S.; Costa, M.H. Nitrogen-use Efficiency, Nitrous Oxide Emissions, and Cereal Production in Brazil: Current Trends and Forecasts. PLoS ONE 2015, 10, e0135234. [Google Scholar] [CrossRef] [Green Version]
- Birkmose, T.S. Nitrogen Recovery from Organic Manures: Improved Slurry Application Techniques and Treatment: The Danish Scenario. In Proceedings—International Fertiliser Society; International Fertiliser Society: York, UK, 2009; pp. 1–24. [Google Scholar]
- Siebielec, G.; Siebielec, S.; Lipski, D. Long-Term Impact of Sewage Sludge, Digestate and Mineral Fertilizers on Plant Yield and Soil Biological Activity. J. Clean. Prod. 2018, 187, 372–379. [Google Scholar] [CrossRef]
- Miller, A.J.; Cramer, M.D. Root Nitrogen Acquisition and Assimilation. Plant Soil 2005, 274, 1–36. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology. Assimilation of Mineral Nutrients; Sinauer Associates, Inc.: Sunderland, MA, USA, 2007; pp. 259–282. [Google Scholar]
- Botheju, D.; Svalheim, O.; Bakke, R. Digestate Nitrification for Nutrient Recovery. Open Waste Manag. J. 2010, 3, 1–12. [Google Scholar] [CrossRef]
- van der Eerden, L.J.M.; de Visser, P.H.B.; van Dijk, C.J. Risk of Damage to Crops in the Direct Neighbourhood of Ammonia Sources. Environ. Pollut. 1998, 102, 49–53. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Müller, C.; Cai, Z. Temperature Sensitivity of Gross N Transformation Rates in an Alpine Meadow on the Qinghai-Tibetan Plateau. J. Soils Sediments 2017, 17, 423–431. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, Q.; Noll, L.; Hu, Y.; Wanek, W. Environmental Effects on Soil Microbial Nitrogen use Efficiency are Controlled by Allocation of Organic Nitrogen to Microbial Growth and Regulate Gross N Mineralization. Soil Biol. Biochem. 2019, 135, 304–315. [Google Scholar] [CrossRef]
- Doyeni, M.O.; Stulpinaite, U.; Baksinskaite, A.; Suproniene, S.; Tilvikiene, V. The Effectiveness of Digestate use for Fertilization in an Agricultural Cropping System. Plants 2021, 10, 1734. [Google Scholar] [CrossRef]
- Bachmann, S.; Uptmoor, R.; Eichler-Löbermann, B. Phosphorus Distribution and Availability in Untreated and Mechanically Separated Biogas Digestates. Sci. Agric. 2016, 73, 9–17. [Google Scholar] [CrossRef]
- Gungor, K.; Jurgensen, A.; Karthikeyan, K.G. Determination of Phosphorus Speciation in Dairy Manure using XRD and XANES Spectroscopy. J. Environ. Qual. 2007, 36, 1856–1863. [Google Scholar] [CrossRef]
- Horta, C.; Carneiro, J.P. Phosphorus Losses to Surface Runoff Waters After Application of Digestate to a Soil Over Fertilised with Phosphorus. Water Air Soil Pollut. 2021, 232, 439. [Google Scholar] [CrossRef]
- Barłóg, P.; Hlisnikovský, L.; Kunzová, E. Effect of Digestate on Soil Organic Carbon and Plant-Available Nutrient Content Compared to Cattle Slurry and Mineral Fertilization. Agronomy 2020, 10, 379. [Google Scholar] [CrossRef] [Green Version]
- Vágó, I.; Kátai, J.; Makádi, M.; Balla Kovács, A. Effects of Biogas Fermentation Residues on the Easily Soluble Macro- and Microelement Content of Soil. Trace Elements in the Food Chain. Deficiency or Excess of Trace Elements in the Environment as a Risk of Health; Working Committe on Trace Elements and Institute of Materials and Environmental Chemistry of the Hungarian Academy of Sciences: Budapest, Hungary, 2009; pp. 252–256. [Google Scholar]
- Masse, L.; Masse, D.I.; Beudette, V.; Muir, M. Size Distribution and Composition of Particles in Raw and Anaerobically Digested Swine Manure. Trans. ASAE 2005, 48, 1943–1949. [Google Scholar] [CrossRef]
- Bondada, B.R.; Oosterhuis, D.M. Canopy Photosynthesis, Specific Leaf Weight, and Yield Components of Cotton Under Varying Nitrogen Supply. J. Plant Nutr. 2001, 24, 469–477. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Z.; Sun, H.; Guo, S. Effects of Different Concentrations of Nitrogen and Phosphorus on Chlorophyll Biosynthesis, Chlorophyll a Fluorescence, and Photosynthesis in Larix Olgensis Seedlings. Front. For. China 2006, 1, 170–175. [Google Scholar] [CrossRef]
- Lelyveld, L.J.; Smith, B.L.; Frazer, C. Nitrogen Fertilization of Tea: Effect on Chlorophyll and Quality Parameters of Processed Black Tea. In Proceedings of the International Symposium on the Culture of Subtropical and Tropical Fruits and Crops, Fortaleza, Brazil, 12–17 September 2004; pp. 168–180. [Google Scholar] [CrossRef]
- Pote, D.H.; Reed, B.A.; Daniel, T.C.; Nichols, D.J.; Moore, P.A.; Edwards, D.R.; Formica, S. Water-Quality Effects of Infiltration Rate and Manure Application Rate for Soils Receiving Swine Manure. J. Soil Water Conserv. 2001, 56, 32–37. [Google Scholar]
- Clemente, R.; Bernal, M.P. Fractionation of Heavy Metals and Distribution of Organic Carbon in Two Contaminated Soils Amended with Humic Acids. Chemosphere 2006, 64, 1264–1273. [Google Scholar] [CrossRef]
- Tripolskaja, L.; Romanovskaja, D. A Study of Nitrogen Migration Affected by Different Plants for Green Manure in Sandy Loam Soil. Ekologija 2006, 4, 89–97. [Google Scholar]
- Ranjbar, F.; Jalali, M. Measuring and Modeling Ammonium Adsorption by Calcareous Soils. Environ. Monit. Assess. 2013, 185, 3191–3199. [Google Scholar] [CrossRef]
- Al-Saedi, R.; Hammood, Z.; Chyad, T. Ammonium Adsorption Onto a Contaminated Soil-Water Environment Amended with Organic Matter. J. Ecol. Eng. 2021, 22, 188–194. [Google Scholar] [CrossRef]
- Dahan, O.; Babad, A.; Lazarovitch, N.; Russak, E.E.; Kurtzman, D. Nitrate Leaching from Intensive Organic Farms to Groundwater. Hydrol. Earth Syst. Sci. 2014, 18, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Tshikalange, B.; Bello, Z.A.; Ololade, O.O. Comparative Nutrient Leaching Capability of Cattle Dung Biogas Digestate and Inorganic Fertilizer Under Spinach Cropping Condition. Environ. Sci. Pollut. Res. Int. 2020, 27, 3237–3246. [Google Scholar] [CrossRef]
- Zirkler, D.; Peters, A.; Kaupenjohann, M. Elemental Composition of Biogas Residues: Variability and Alteration during Anaerobic Digestion. Biomass Bioenergy 2014, 67, 89–98. [Google Scholar] [CrossRef]
- García-Albacete, M.; Tarquis, A.M.; Cartagena, M.C. Risk of Leaching in Soils Amended by Compost and Digestate from Municipal Solid Waste. Sci. World J. 2014, 2014, 565174. [Google Scholar] [CrossRef]
- Van Wijk, C.; De Haan, J.; Ehlert, P.A.I.; Van Den Berg, W. Lange Termijn Effecten van Fosfaatbalansen op Bouwland; Fosfaattrappen Proefveld Lelystad Report PPO; Wageningen University and Research Centre: Wageningen, The Netherlands, 2013; Volume 549, p. 76. [Google Scholar]
- Guppy, C.N.; Menzies, N.W.; Blamey, F.P.C.; Moody, P.W. Do Decomposing Organic Matter Residues Reduce Phosphorus Sorption in Highly Weathered Soils? Soil Sci. Soc. Am. J. 2005, 69, 1405–1411. [Google Scholar] [CrossRef]
- Gerard, F. Clay Minerals, Iron/Aluminum Oxides, and their Contribution to Phosphate Sorption in Soils—A Myth Revisited. Geoderma 2016, 262, 213–226. [Google Scholar] [CrossRef]
- Azevedo, R.P.; Salcedo, I.H.; Lima, P.A.; da Silva Fraga, V.; Lana, R.M.Q. Mobility of Phosphorus from Organic and Inorganic Source Materials in a Sandy Soil. Int. J. Recycl. Org. Waste Agric. 2018, 7, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.; Gruau, G.; Dupas, R.; Petitjean, P.; Li, Q.; Pinay, G. Respective Roles of Fe-Oxyhydroxide Dissolution, pH Changes and Sediment Inputs in Dissolved Phosphorus Release from Wetland Soils Under Anoxic Conditions. Geoderma 2019, 338, 365–374. [Google Scholar] [CrossRef]
- McDowell, R.W.; Gray, C.W.; Cameron, K.C.; Di, H.J.; Pellow, R. The Efficacy of Good Practice to Prevent Long-Term Leaching Losses of Phosphorus from an Irrigated Dairy Farm. Agric. Ecosyst. Environ. 2019, 273, 86–94. [Google Scholar] [CrossRef]
- Ronga, D.; Setti, L.; Salvarani, C.; De Leo, R.; Bedin, E.; Pulvirenti, A.; Milc, J.; Pecchioni, N.; Francia, E. Effects of Solid and Liquid Digestate for Hydroponic Baby Leaf Lettuce (Lactuca sativa L.) Cultivation. Sci. Hortic. 2019, 244, 172–181. [Google Scholar] [CrossRef]
Fertilizer | NH4-N mg kg−1 | NO3-N mg kg−1 | Nmin. mg kg−1 | |||
---|---|---|---|---|---|---|
Soil without Plants | Soil with Plants | Soil without Plants | Soil with Plants | Soil without Plants | Soil with Plants | |
Control | 2.15c | 1.52a | 15.3b | 13.1a | 17.4b | 14.6a |
Liquid cow manure N170 | 2.23cd | 2.18cd | 16.8c | 15.4bc | 19.0c | 17.5b |
Digested manure N170 | 2.51d | 2.34d | 19.3d | 16.3bc | 21.7d | 18.6bc |
Digested manure N140 | 2.42d | 2.03bc | 16.1bc | 13.0a | 18.5bc | 15.0a |
Digested manure N110 | 2.29cd | 1.91b | 16.2bc | 13.6a | 18.3bc | 15.5a |
Variants | Chlorophyll a mg g−1 | Chlorophyll b mg g−1 | Carotenoids mg g−1 | Chlorophyll a/b ratio |
---|---|---|---|---|
Control (without fertilization) | 1.24a | 0.42a | 0.58a | 2.96a |
Liquid cow manure N170 | 1.32a | 0.44a | 0.58a | 3.00a |
Digestate N170 | 1.38a | 0.46b | 0.56a | 2.99a |
Digestate N140 | 1.40b | 0.44a | 0.57a | 3.16b |
DigestateN110 | 1.43b | 0.43a | 0.56a | 3.31c |
Fertilizer | PO4-P mg L−1 | K mg L−1 | ||
---|---|---|---|---|
Soil without Plants | Soil with Plants | Soil without Plants | Soil with Plants | |
Control | 1.21a | 1.26a | 83.9c | 69.9a |
Liquid cow manure N170 | 1.54b | 1.23a | 99.2e | 72.5b |
Digested manure N170 | 1.43b | 1.27a | 94.6d | 73.4b |
Digested manure N140 | 1.41b | 1.24a | 95.8d | 69.7a |
Digested manure N110 | 1.48b | 1.22a | 94.6d | 68.5a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pranckietienė, I.; Navickas, K.; Venslauskas, K.; Jodaugienė, D.; Buivydas, E.; Žalys, B.; Vagusevičienė, I. The Effect of Digestate from Liquid Cow Manure on Spring Wheat Chlorophyll Content, Soil Properties, and Risk of Leaching. Agronomy 2023, 13, 626. https://doi.org/10.3390/agronomy13030626
Pranckietienė I, Navickas K, Venslauskas K, Jodaugienė D, Buivydas E, Žalys B, Vagusevičienė I. The Effect of Digestate from Liquid Cow Manure on Spring Wheat Chlorophyll Content, Soil Properties, and Risk of Leaching. Agronomy. 2023; 13(3):626. https://doi.org/10.3390/agronomy13030626
Chicago/Turabian StylePranckietienė, Irena, Kęstutis Navickas, Kęstutis Venslauskas, Darija Jodaugienė, Egidijus Buivydas, Bronius Žalys, and Ilona Vagusevičienė. 2023. "The Effect of Digestate from Liquid Cow Manure on Spring Wheat Chlorophyll Content, Soil Properties, and Risk of Leaching" Agronomy 13, no. 3: 626. https://doi.org/10.3390/agronomy13030626
APA StylePranckietienė, I., Navickas, K., Venslauskas, K., Jodaugienė, D., Buivydas, E., Žalys, B., & Vagusevičienė, I. (2023). The Effect of Digestate from Liquid Cow Manure on Spring Wheat Chlorophyll Content, Soil Properties, and Risk of Leaching. Agronomy, 13(3), 626. https://doi.org/10.3390/agronomy13030626