Inorganic Fungicides (Phosphites) Instead of Organic Fungicides in Winter Wheat—Consequences for Nitrogen Fertilizer Productivity
Abstract
:1. Introduction
- (1)
- Have new chemicals been developed that are able to substitute classic, i.e., organic fungicides?
- (2)
- Can inorganic fungicides effectively replace organic fungicides?
- (3)
- Are inorganic fungicides able to maintain the effectiveness of Nf at the level provided by classic ones?
- (1)
- Herbicide—increases the effect of applied herbicides;
- (2)
- Fungicide—protection of the plant canopy against pathogens;
- (3)
- Biostimulating—accelerating plant growth; increasing yield; improving yield quality; increasing plant resistance to abiotic stresses;
- (4)
- Nutritional—source of phosphorus.
2. Materials and Methods
2.1. Experimental Setup
2.2. Meteorological Conditions
2.3. Experimental Design
- Three variants of foliar applied phosphites to winter wheat during the growing season (Phi)—main plot:
- 2.
- Six plant protection methods (plots, PPMs), including both organic fungicides (OF) and phosphites (Phi) (dates of fungicide application are specified in Table 2)—subplots:
- (1)
- 102 kg N ha−1—at the end of tillering/beginning of shoot elongation (BBCH 29/30);
- (2)
- 78 kg N ha−1—at the stage of a flag leaf visible (BBCH 39).
2.4. Plant Measurements and Sampling
2.5. Calculated Parameters
2.6. Statistical Analysis
3. Results
3.1. Grain Yield and Yield Components
3.2. Nitrogen Content in Leaves and Infestation of Plants by Pathogens
3.3. Indicators of N Economy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Traits | EN 1 | GNE | GD | TGW | B89 | HI |
---|---|---|---|---|---|---|
GY | 0.33 * | 0.64 *** | 0.65 *** | 0.94 *** | 0.96 *** | −0.25 |
EN | 1.00 | 0.21 | 0.22 | 0.23 | 0.41 * | −0.41 * |
GNE | 1.00 | 0.99 *** | 0.61 *** | 0.73 *** | −0.52 ** | |
GD | 1.00 | 0.63 *** | 0.74 *** | −0.53 ** | ||
TGW | 1.00 | 0.91 *** | −0.27 | |||
B89 | 1.00 | −0.50 ** |
Traits | TGW | N–L31 | N–L59 | N–L75 | N–L89 | SPAD31 | SPAD59 | SPAD75 | SEPTTR | PUCCRT | GREENT |
---|---|---|---|---|---|---|---|---|---|---|---|
GY | 0.94 *** | 0.42 * | 0.08 | 0.90 *** | 0.50 ** | −0.39 * | 0.29 | 0.90 *** | −0.41 * | −0.20 | 0.63 *** |
TGW | 1.00 | 0.33 * | −0.03 | 0.85 *** | 0.48 ** | −0.49 ** | 0.22 | 0.87 *** | −0.39 * | −0.17 | 0.61 *** |
N–L31 | 1.00 | 0.18 | 0.51 ** | 0.61 ** | −0.24 | 0.35 * | 0.54 ** | 0.20 | 0.29 | 0.06 | |
N–L59 | 1.00 | 0.13 | 0.07 | 0.09 | 0.67 *** | 0.09 | 0.01 | 0.11 | −0.11 | ||
N–L75 | 1000 | 0.75 *** | −0.48 ** | 0.43 ** | 0.95 *** | −0.10 | 0.06 | 0.35 * | |||
N–L89 | 1.00 | −0.47 ** | 0.42 * | 0.74 *** | 0.48 ** | 0.52 ** | −0.20 | ||||
SPAD31 | 1.00 | −0.06 | −0.52 ** | −0.15 | −0.24 | −0.12 | |||||
SPAD59 | 1.00 | 0.36 * | 0.07 | 0.19 | −0.08 | ||||||
SPAD75 | 1.00 | −0.04 | 0.14 | 0.31 | |||||||
SEPTTR | 1.00 | 0.85 *** | −0.88 *** | ||||||||
PUCCRT | 1.00 | −0.73 *** |
Traits | TGW | PFP–N | Ygap | Ngap | Ngrain | Ntotal | NHI | NUA |
---|---|---|---|---|---|---|---|---|
GY | 0.94 *** | 0.00 | 0.29 | 0.41 * | 0.98 *** | 0.91 *** | −0.57 *** | 0.43 * |
TGW | 1.00 | 0.94 *** | 0.24 | 0.33 * | 0.94 *** | 0.87 *** | −0.53 ** | 0.42 * |
PFP–N | 1.00 | 0.29 | 0.41 * | 0.98 *** | 0.91 *** | −0.57 *** | 0.43 * | |
Ygap | 1.00 | 0.99 *** | 0.25 | −0.11 | 0.60 *** | 0.70 *** | ||
Ngap | 1.00 | 0.35 * | 0.01 | 0.48 ** | −0.61 *** | |||
Ngrain | 1.00 | 0.92 *** | −0.56 *** | 0.48 * | ||||
Ntotal | 1.00 | −0.84 *** | 0.76 *** | |||||
NHI | 1.00 | −0.95 *** |
Appendix B
References
- Taiz, L. Agriculture, plant physiology, and human population growth: Past, present, and future. Theor. Exp. Plant Physiol. 2013, 25, 167–181. [Google Scholar] [CrossRef]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.-L.; Li, Q.; Zeng, X.-P.; Liu, Y.; Li, Y.-R. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef]
- Silva, V.; Yang, X.; Fleskens, L.; Ritsema, C.J.; Geissen, V. Environmental and human health at risk – scenarios to achieve the farm fork 50% pesticide reduction goals. Environ. Int. 2022, 165, 107296. [Google Scholar] [CrossRef]
- Directive 2009/128/EC of the European Parliament and of the Council as Regards of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides; Official Journal of the European Union: Brussels, Belgum, 2009; p. L 309/71.
- Sosnowska, D.; Sobiczewski, P.; Zbytek, Z.; Czembor, J.H. Integrated plant production—Benefits and prospects. Progr. Plant Prot. 2016, 56, 114–119, (In Polish with English summary). [Google Scholar]
- Hossard, L.; Philibert, A.; Bertrand, M.; Colnenne-David, C.; Debaeke, P.; Munier-Jolain, N.; Jeuffroy, M.H.; Richard, G.; Makowski, D. Effect of halving pesticide use on wheat production. Sci. Rep. 2014, 4, 4405. [Google Scholar] [CrossRef]
- Jaczewska-Kalicka, A. Occurrence and harmfulness of the most important winter wheat diseases in central Poland. Prog. Plant Prot. 2002, 42, 93–101, (In Polish with English summary). [Google Scholar]
- McDonald, A.E.; Grant, B.R.; Plaxton, W.C. Phosphite (phosphorous acid): Its relevance in the environment and agriculture, and influence on the plant phosphate starvation response. J. Plant Nutr. 2001, 24, 1505–1519. [Google Scholar] [CrossRef]
- Deliopoulos, T.; Kettlewell, P.S.; Hare, M.C. Fungal disease suppression by inorganic salts: A review. Crop Protect. 2010, 29, 1059–1075. [Google Scholar] [CrossRef]
- Gomez-Merino, F.C.; Trejo-Tellez, L.I. Biostimulant activity of phosphite in horticulture. Sci. Hortic. 2015, 196, 82–90. [Google Scholar] [CrossRef]
- Liljeroth, E.; Lankinen, A.; Wiik, L.; Dhar Burra, D.; Alexandersson, E.; Andreasson, E. Potassium phosphite combined with reduced doses of fungicides provides efficient protection against potato late blight in large-scale field trials. Crop Protect. 2016, 86, 42–55. [Google Scholar] [CrossRef]
- Achary, V.M.M.; Ram, B.; Manna, M.; Datta, D.; Bhatt, A.; Reddy, M.K.; Agrawal, P.K. Phosphite: A novel P fertilizer for wheat management and pathogen control. Plant Biotechnol. J. 2017, 15, 1493–1508. [Google Scholar] [CrossRef]
- Lovatt, C.J.; Mikkelsen, R.L. Phosphite fertilizers: What are they? Can you use them? What can they do? Better Crops 2006, 90, 11–13. [Google Scholar]
- Thao, H.; Yamakawa, T. Phosphite (phosphorous acid): Fungicide, fertilizer or bio-stimulator? Soil Sci. Plant Nutr. 2009, 55, 228–234. [Google Scholar] [CrossRef]
- Havlin, J.L.; Schlegel, A.J. review of phosphite as a nutrient and fungicide. Soil Syst. 2021, 5, 52. [Google Scholar] [CrossRef]
- Huber, D.M.; Haneklaus, S. Managing nutrition to control plant disease. Lanbauforschung Völkenrode 2007, 4, 313–322. [Google Scholar]
- Dordas, C.H. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. In Sustainable Agriculture; Lichtfouse, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 443–460. [Google Scholar]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Functions of nutrient: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Elsevier: Oxford, UK, 2012; pp. 243–248. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants; Elsevier Ltd.: London, UK, 1995; p. 899. [Google Scholar]
- La Torre, A.; Iovino, V.; Carodonia, F. Copper in plant production: Current situation and prospects. Phytopathol. Mediterr. 2018, 57, 201–236. [Google Scholar]
- Tamm, L.; Thuerig, B.; Apostolov, S.; Blogg, H.; Borgo, E.; Corneo, P.E.; Fittje, S.; de Palma, M.; Donko, A.; Experton, C.; et al. Use of copper-based fungicides in organic agriculture in twelve European countries. Agronomy 2022, 12, 673. [Google Scholar] [CrossRef]
- Kumar, V.; Yadav, D.V.; Yadav, D.S. Effects of nitrogen sources and copper levels on yield, nitrogen and copper contents of wheat (Triticum aestivum L.). Plant Soil 1990, 126, 79–83. [Google Scholar] [CrossRef]
- Potarzycki, J. The role of copper in winter wheat fertilization. Part II. Nitrogen management. Zesz. Probl. Postępów Nauk Rol. 2004, 502, 960–966, (In Polish with English summary). [Google Scholar]
- Szczepaniak, W.; Nowicki, B.; Bełka, D.; Kazimierowicz, A.; Kulwicki, M.; Grzebisz, W. Effect of foliar application of micronutrients and fungicides on the nitrogen use effciency in winter wheat. Agronomy 2022, 12, 257. [Google Scholar] [CrossRef]
- Klepper, B.; Rickman, R.W.; Waldman, S.; Chevalier, P. The physiological life cycle of wheat: Its use in breeding and crop management. Euphytica 1998, 100, 341–347. [Google Scholar] [CrossRef]
- Xie, Q.; Mayes, S.; Sparkes, D.L. Preanthesis biomass accumulation and plant organs defines yield components in wheat. Eur. J. Agron. 2016, 81, 15–26. [Google Scholar] [CrossRef]
- Duan, J.; Wu, Y.; Zhou, Y.; Ren, X.; Shao, Y.; Feng, W.; Zhu, Y.; Wang, Y.; Guo, T. Grain number response to pre–anthesis dry matter and nitrogen in improving wheat yield in the Huang–Huai Plain. Sci. Rep. 2018, 8, 7126. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, D.; Schnurbusch, T. Plant and floret growth at distinct developmental stages during the stem elongation phase in wheat. Front. Plant Sci. 2018, 9, 330. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Bramley, H.; Palta, J.A.; Siddique, K.H.M. Heat stress in wheat during reproductive and grain-filling phase. Crit. Rev. Plant Sci. 2011, 30, 419–507. [Google Scholar] [CrossRef]
- Liu, E.K.; Mei, X.R.; Yan, C.R.; Gong, D.Z.; Zhang, Y.Q. Effects of water stress on phytosynteetic characteristics, dry matter translocation and WUE in two winter wheat genotypes. Agric. Water Manag. 2016, 167, 75–85. [Google Scholar] [CrossRef]
- Khan, A.; Ahmad, M.; Ahmed, M.; Hussain, M.I. Rising atmospheric temperature impact on wheat and thermotolerance strategies. Plants 2021, 10, 43. [Google Scholar] [CrossRef]
- Hawkesford, M.J.; Riche, A.B. Impacts of G x E x M on nitrogen use efficiency in wheat and future prospects. Front. Plant Sci. 2020, 11, 1157. [Google Scholar] [CrossRef] [PubMed]
- Figueoroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A review of wheat diseaes—A field perspective. Mol. Plant Pathol. 2018, 19, 1523–1536. [Google Scholar] [CrossRef]
- Gebrie, S.A. Biotrophic fungi infection and plant defense mechanism. J. Plant Pathol. Microbiol. 2016, 7, 378. [Google Scholar]
- Simón, M.R.; Fleitas, M.C.; Castro, A.C.; Schierenbeck, M. How foliar fungal diseases affect nitrogen dynamics, milling, and end-use quality of wheat. Front. Plant Sci. 2020, 11, 569041. [Google Scholar] [CrossRef]
- Brachaczek, A.; Kaczmarek, J.; Niemann, J.; Jędryczka, M. Wpływ stosowania fungicydów w fazie T1 (BBCH 30-32) na zdrowotność i plonowanie pszenicy ozimej. Progr. Plant Prot. 2015, 55, 49–57, (In Polish with English summary). [Google Scholar]
- Gerhard, M.; Habermeyer, J. Der Greening-Effekt. Getreide Mag. 1998, 2, 86–90. [Google Scholar]
- Serrago, R.A.; Carretero, R.; Odile Bancal, M.; Miralles, D.J. Foliar diseases affect the eco-physiological attributes linked with yield and biomass in wheat (Triticum aestivum L.). Europ. J. Agron. 2009, 31, 195–2003. [Google Scholar] [CrossRef]
- Castro, A.C.; Fleitas, M.C.; Schierenbeck, M.; Gerard, G.S.; Simón, M.R. Evaluation of different fungicides and nitrogen rates on grain yield and bread-making quality in wheat affected by Septoria tritici blotch and yellow spot. J. Cereal Sci. 2018, 83, 49–57. [Google Scholar] [CrossRef]
- Kaniuczak, Z.; Noworolnik, M. Efficiency and economic indicators of chemical pest and disease control in winter wheat in Podkarpacie. Progr. Plant Prot. 2012, 52, 211–217, (In Polish with English summary). [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Com. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Kęsik, K. Application of the mehlich 3 method in the fertilizer advisory system. Stud. I Rap. IUNG-PIB 2016, 48, 95–104. (In Polish) [Google Scholar]
- Zbíral, J. Determination of plant-available micronutrients by the Mehlich 3 soil extractant—A proposal of critical values. Plant Soil Environ. 2016, 62, 527–531. [Google Scholar] [CrossRef]
- Mayer, U. BBCH Monograph. In Growth Stages of Mono- and Dicotyledonous Plants, 2nd ed.; Federal Biological Research Center for Agriculture and Forestry: Berlin, Germany, 2001; Available online: http://www.jki.bund.de/fileadmin/dam_uploads/_veroeff/bbch/BBCH-Skala_Englisch.pdf (accessed on 14 November 2021).
- Bavec, F.; Bavec, M. Chlorophyll meter readings of winter wheat cultivars and grain yield prediction. Comm. Plant Soil Anal. 2022, 32, 2709–2719. [Google Scholar] [CrossRef]
- EPPO (PP1/26). Efiicacy evaluation on fungicides. Foliar and ear diseases on cereals. Bull. OEPP/EPPO 2012, 42, 419–425. [Google Scholar] [CrossRef]
- PN-EN ISO 20483:2014-02; Cereal Grains and Pulses—Determination of Nitrogen Content and Conversion to Crude Proteins—Kjeldah Method. Polski Komitet Normalizacyjny: Warsaw, Poland, 2015; p. 24.
- Grzebisz, W.; Potarzycki, J. Effect of magnesium fertilization systems on grain yield formation by winter wheat (Triticum aestivum L.) during the grain filling period. Agronomy 2022, 12, 12. [Google Scholar] [CrossRef]
- Szczepaniak, W.; Grzebisz, W.; Potarzycki, J. Yield predictive worth of pre-flowering and post-floweing indicators of nitrogen economy in high yielding winter wheat. Agronomy 2023, 13, 122. [Google Scholar] [CrossRef]
- Gaju, O.; Allard, V.; Martre, P.; Le Gouis, J.; Moreau, D.; Bogard, M.; Hubbart, S.; Foulkes, M.J. Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars. Field Crops Res. 2014, 155, 213–223. [Google Scholar] [CrossRef]
- Slafer, G.A.; Elia, M.; Savin, R.; Garcia, G.A.; Terrile, I.I.; Ferrante, A.; Miralles, D.J.; González, F.G. Fruiting efficiency: An alternative trait to further rise in wheat yield. Food Energy Sec. 2015, 4, 92–109. [Google Scholar] [CrossRef]
- Distelfeld, A.; Avni, R.; Fischer, A.M. Senescence, nutrient remobilization, and yield in wheat and barley. J. Exp. Bot. 2014, 65, 3783–3798. [Google Scholar] [CrossRef]
- Würschum, T.; Leiser, W.L.; Langner, S.M.; Tucker, M.R.; Longin, C.F.H. Phenotypic and genetic analysis of spike and kernel characteristics in wheat reveals long-term genetic trends of grain yield components. Theor. Appl. Genet. 2018, 131, 2071–2084. [Google Scholar] [CrossRef]
- Spiertz, J.; Vos, J. Grain Growth of Wheat and Its Limitation by Carbohydrate and Nitrogen Supply. In Wheat Growth and Modelling; Day, W., Atkin, R., Eds.; Plenum Press: New York, NY, USA, 1985. [Google Scholar]
- Liang, X.; Liu, Y.; Chen, Y.; Adams, C. 2018. Late-season photosynthetic rate and senescence were associated with grain yield in winter wheat of diverse origin. J. Agron. Crop Sci. 2018, 204, 1–12. [Google Scholar] [CrossRef]
- Bancal, M.-O.; Hansart, A.; Sache, I.; Bancal, P. Modeling fungal sink competitiveness with grains for assimilates in wheat infected by a biotrophic pathogen. Ann. Bot. 2012, 110, 113–123. [Google Scholar] [CrossRef]
- Gooding, M.J.; Dimmock, J.P.R.E.; Frane, J.; Jones, S.A. Green leaf area decline of wheat flag leaves: The influence of fungicides and relationships with mean grain weight and grain yield. Ann. Appl. Biol. 2000, 136, 77–84. [Google Scholar] [CrossRef]
- Grzebisz, W.; Łukowiak, R. Nitrogen gap amelioration is a core for sustainable intensification of agriculture—A concept. Agronomy 2021, 11, 419. [Google Scholar] [CrossRef]
- Licker, R.; Johnston, M.; Foley, J.A.; Barford, C.; Kucharik, C.J.; Monfreda, C.; Ramankutty, N. Mind the gap: How do climate and agricultural management explain the „yield gap” of croplands around the world? Glob. Ecol. Biogeogr. 2010, 19, 769–782. [Google Scholar] [CrossRef]
- Wallace, A.; Wallace, G.A. Closing the Crop-Yield Gap through Better Soil and Better Management; Wallace Laboratories: Los Angeles, CA, USA, 2003; p. 162. [Google Scholar]
Growing Seasons | Soil Layer, cm | pH 1 | Corg 2 | Phosphorus 3 | Potassium | Magnesium | Copper | Nmin 4 |
---|---|---|---|---|---|---|---|---|
% | mg kg−1 | kg ha−1 | ||||||
2016/ 2017 | 0–30 | 6.8 | 1.4 | 140 ± 16 VH 5 | 219 ± 26 H | 105 ± 13 M | 1.2 ± 0.1 L | 31 ± 19 |
30–60 | 6.9 | 1.2 | 106 ± 36 | 111 ± 24 | 98 ± 15 | 1.2 ± 0.2 | 20 ± 6 | |
60–90 | 6.9 | 1.1 | 57 ± 23 | 88 ± 27 | 98 ± 22 | 1.1 ± 0.2 | 28 ± 11 | |
2017/ 2018 | 0–30 | 6.5 | 1.9 | 52 ± 16 L | 235 ± 19 H | 83 ± 25 M | 3.9 ± 0.2 L | 41 ± 27 |
30–60 | 6.7 | 2.3 | 26 ± 18 | 147 ± 31 | 108 ± 24 | 3.2 ± 0.8 | 40 ± 30 | |
60–90 | 6.9 | 1.7 | 15 ± 14 | 117 ± 28 | 134 ± 52 | 2.1 ± 0.9 | 35 ± 19 |
Fungicide | Active Compounds g dm−3 | Dosis dm3 ha−1 | Growth Stage of Winter Wheat |
---|---|---|---|
Capalo 337.5 SE | Epoksykonazol 62.5 Fenpropimorf 200 Metrafenon 75 | 1.5 | BBCH 30 |
Adexar Plus | Epoksykonazol 41.6 Fluksapyroksad 41.6 Piraklostrobina 66.6 | 1.25 | BBCH 39–45 |
Osiris 65 EC | Epoksykonazol 37.5 Metkonazol 27.5 | 1.5 l | BBCH 65 |
Factor | Level of Factor | GY 1 | ED | GNE | GD | TGW | B89 | HI |
---|---|---|---|---|---|---|---|---|
t ha−1 | Number m−2 | Number ear−2 | Number m−2 × 1000 | g | t ha−1 | % | ||
Year (Y) | 2017 | 10.5 a | 667.8 a | 43.0 a | 1.858 a | 47.3 a | 24.37 a | 43.5 |
2018 | 7.5 b | 633.5 b | 39.4 b | 1.565 b | 40.4 b | 16.09 b | 46.8 | |
p | *** | * | *** | *** | *** | *** | *** | |
Phosphites | Cu | 9.2 | 674.6 a | 41.3 | 1.718 | 43.2 | 20.55 | 45.1 |
(Phi) | Mg | 9.0 | 644.2 ab | 41.2 | 1.708 | 44.1 | 20.16 | 45.1 |
Cu/Mg | 8.9 | 633.2 b | 41.2 | 1.707 | 44.3 | 19.98 | 45.3 | |
p | ns | * | ns | ns | ns | ns | ns | |
Plant Protection | A | 9.825 a | 677.4 | 41.0 | 1.699 | 45.5 a | 21.42 a | 46.4 a |
Methods | B | 9.894 a | 661.5 | 41.8 | 1.762 | 46.0 a | 21.72 a | 46.1 a |
(PPMs) | C | 9.679 a | 625.0 | 40.4 | 1.638 | 44.7 a | 20.77 ab | 46.9 a |
D | 8.971 b | 632.6 | 42.2 | 1.791 | 44.5 a | 20.59 ab | 44.2 ab | |
E | 8.252 c | 659.7 | 41.4 | 1.724 | 41.5 b | 19.34 bc | 43.5 b | |
F | 7.591 d | 647.6 | 40.5 | 1.652 | 41.0 b | 17.52 c | 43.9 b | |
p | *** | ns | ns | ns | *** | *** | ** | |
Source of variation for the studied interactions | ||||||||
Y × Phi | ns | ns | ns | ns | ns | ns | ns | |
Y × PPMs | *** | ns | ns | ns | *** | *** | ns | |
Phi × PPMs | ns | ns | ns | ns | ns | ns | ns | |
Y × Phi × PPMs | ns | ns | ns | ns | ns | ns | ns |
Factor | Factor Level | N–L31 | NL–59 | NL–75 | NL–89 | SPAD31 | SPAD59 | SPAD75 | SEPTTR | PUCCRT | GREENT |
---|---|---|---|---|---|---|---|---|---|---|---|
% | |||||||||||
Year (Y) | 2017 | 4.4 a | 3.3 | 2.4 a | 1.58 a | 675.8 b | 723.5 a | 671.0 a | 8.6 a | 2.3 a | 73.0 a |
2018 | 4.1 b | 3.2 | 1.3 b | 0.79 b | 687.5 a | 714.0 b | 254.2 b | 6.6 b | 1.0 b | 70.5 b | |
p | *** | ns | *** | *** | ** | ** | *** | *** | *** | *** | |
Phosphirones | Cu | 4.2 | 3.2 | 1.9 | 1.20 | 687.6 | 718.2 | 470.1 | 7.3 b | 1.3 b | 72.9 a |
(Phi) | Mg | 4.3 | 3.2 | 1.8 | 1.16 | 678.1 | 714.5 | 453.5 | 8.1 a | 1.4 b | 70.2 b |
Cu/Mg | 4.2 | 3.3 | 1.2 | 1.20 | 679.1 | 723.5 | 464.3 | 7.5 b | 2.3 a | 72.2 a | |
p | ns | ns | ns | ns | ns | ns | ns | *** | *** | *** | |
Plant | A | 4.3 | 3.3 | 2.0 a | 1.06 d | 686.7 | 718.8 | 508.7 a | 2.4 e | 0.0 e | 76.8 a |
protection | B | 4.2 | 3.3 | 2.0 a | 1.12 b–d | 682.3 | 720.2 | 516.4 a | 2.0 e | 0.0 e | 78.2 a |
Methods | C | 4.2 | 3.3 | 2.1 a | 1.08 cd | 677.4 | 718.0 | 454.3 ab | 3.1 d | 0.6 d | 77.6 a |
(PPMs) | D | 4.2 | 3.1 | 1.7 b | 1.18 bc | 677.5 | 712.9 | 494.3 b | 9.7 c | 2.2 c | 73.0 b |
E | 4.3 | 3.2 | 1.7 b | 1.20 b | 684.9 | 720.3 | 433.4 c | 12.9 b | 4.0 a | 64.7 c | |
F | 4.2 | 3.3 | 1.6 b | 1.49 a | 681.1 | 722.2 | 368.5 a | 15.8 a | 3.2 b | 60.1 d | |
p | n.s. | ns | *** | *** | ns | ns | *** | *** | *** | *** | |
Source of variation for the studied interactions | |||||||||||
Y × Phi | ns | ns | *** | ns | ns | ns | ns | *** | ns | ns | |
Y × PPMs | ns | ns | ** | *** | ns | ns | *** | *** | *** | *** | |
Phi × PPMs | ns | * | ns | *** | ns | ns | *** | *** | *** | *** | |
Y × Phi × PPMs | ns | ns | * | *** | ns | ns | *** | *** | *** | *** |
Factor | Level of Factor | PFP–Nf | GYgap | Ngap | Ng89 | Nt89 | NHI | NUA |
---|---|---|---|---|---|---|---|---|
kg Grain kg−1 Nf | t ha−1 | kg ha−1 | % | kg N t−1 Grain | ||||
Year (Y) | 2017 | 58.6 a | −1.306 a | −19.8 a | 211.5 a | 339.5 a | 62.4 b | 32.6 a |
2018 | 41.8 b | −4.332 b | −65.8 b | 151.2 b | 189.3 b | 79.9 a | 25.2 b | |
p | *** | *** | *** | *** | *** | *** | *** | |
Phosphirones | Cu | 51.1 | −2.661 | −40.4 | 183.0 | 266.9 | 70.9 | 28.6 |
(Phi) | Mg | 50.0 | −2.857 | −43.4 | 180.1 | 264.3 | 70.9 | 29.0 |
Cu/Mg | 49.5 | −2.938 | −44.6 | 181.0 | 262.0 | 71.6 | 28.9 | |
p | ns | ns | ns | ns | ns | ns | ||
Plant Protection | A | 54.6 a | −2.029 a | −30.8 a | 197.4 a | 279.4 a | 73.3 a | 27.8 b |
Methods | B | 55.0 a | −1.960 a | −29.8 a | 195.9 a | 278.3 a | 72.6 a | 27.5 b |
(PPMs) | C | 53.8 a | −2.175 a | −33.0 a | 192.5 ab | 267.7 a | 74.1 a | 27.1 ab |
D | 49.8 b | −2.883 b | −43.8 b | 183.2 b | 265.3 a | 71.6 a | 29.1 ab | |
E | 45.8 c | −3.602 c | −54.7 c | 163.6 c | 256.4 ab | 67.6 b | 30.6 a | |
F | 42.2 d | −4.263 d | −64.7 d | 155.5 c | 239.3 b | 67.6 b | 31.2 a | |
p | *** | *** | *** | *** | *** | *** | *** | |
Source of variation for the studied interactions | ||||||||
Y × Phi | ns | ns | ns | * | ns | ns | ns | |
Y × PPMs | *** | *** | *** | *** | *** | *** | *** | |
Phi × PPMs | ns | ns | ns | * | ns | ns | ns | |
Y × Phi × PPMs | ns | ns | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzebisz, W.; Łączny, S.; Szczepaniak, W.; Potarzycki, J. Inorganic Fungicides (Phosphites) Instead of Organic Fungicides in Winter Wheat—Consequences for Nitrogen Fertilizer Productivity. Agronomy 2023, 13, 627. https://doi.org/10.3390/agronomy13030627
Grzebisz W, Łączny S, Szczepaniak W, Potarzycki J. Inorganic Fungicides (Phosphites) Instead of Organic Fungicides in Winter Wheat—Consequences for Nitrogen Fertilizer Productivity. Agronomy. 2023; 13(3):627. https://doi.org/10.3390/agronomy13030627
Chicago/Turabian StyleGrzebisz, Witold, Szymon Łączny, Witold Szczepaniak, and Jarosław Potarzycki. 2023. "Inorganic Fungicides (Phosphites) Instead of Organic Fungicides in Winter Wheat—Consequences for Nitrogen Fertilizer Productivity" Agronomy 13, no. 3: 627. https://doi.org/10.3390/agronomy13030627
APA StyleGrzebisz, W., Łączny, S., Szczepaniak, W., & Potarzycki, J. (2023). Inorganic Fungicides (Phosphites) Instead of Organic Fungicides in Winter Wheat—Consequences for Nitrogen Fertilizer Productivity. Agronomy, 13(3), 627. https://doi.org/10.3390/agronomy13030627