Ions Transport in Seasonal Frozen Farmland Soil and Its Effect on Soil Salinization Chemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Soil Sampling
2.2. Experiment Design
2.3. Soil Sampling and Chemical Analysis
2.4. Estimation of Amount of Crystalline Sodium Sulfate
2.5. Statistical Analysis
3. Results
3.1. Changes in Temperature and SMC during the FT Process
3.2. Changes in SSC and Ion Content during the FT Process
3.2.1. Change in SSC during the FT Process
3.2.2. Changes in Salt Ion Content during the FT Process
3.2.3. Migration Inconsistencies in Soil Salt Ions during the FT Process
3.3. Change in Soil Salinization during the FT Process
3.4. Changes in Soil Alkalization Parameters during the FT Process
4. Discussion
4.1. Chemical Mechanisms of the Differences in Salt ion Migration during the FT Process
4.2. Effects of Ion Migration Differences on Soil Salt Composition
4.3. Effects of Ion Migration Differences on Soil Alkalization Parameters
5. Conclusions
- (1)
- During the FT process, the dynamics of ions showed that Cl−, Mg2+, Ca2+, Na+, and SO42− accumulated in the frozen soil during the freezing period, and gathered in the topsoil (0–5 cm) during the thawing period, while the change of HCO3− content was mostly opposite to the changes in these ions.
- (2)
- Cl− and SO42− exhibited the strongest and weakest migration ability, respectively. The migration ability of cations was in the order of Mg2+ > Ca2+ > Na+ during the freezing period and Na+ > Mg2+ > Ca2+ during the thawing period because the mobility of Na+ was restrained by the negative soil temperature due to the formation and precipitation of Na2SO4·10H2O.
- (3)
- As the result of the ions migration inconsistencies, the main salt anions changed from sulfate to chloride. The soil alkalization degree of 0–5 cm soil increased from no alkalization risk to slightly alkaline mainly due to the accumulation of Na+. The topsoil in saline areas was endangered by high salinization, excess Cl− toxicity, and a potential alkalization threat after the FT process.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, M.; Huang, J.; Wu, J.; Tan, X.; Jansson, P.E. Experimental study on evaporation from seasonally frozen soils under various water, solute and groundwater conditions in Inner Mongolia, China. J. Hydrol. 2016, 535, 46–53. [Google Scholar] [CrossRef]
- Ma, D.; He, Z.; Wang, L.; Zhao, Q.; Chen, L.; Lin, P.; Zhao, P. Soil water and salt migration in oasis farmland during crop growing season. J. Soils Sediments 2023, 23, 355–367. [Google Scholar] [CrossRef]
- Han, M.; Wang, Q.; Han, Y.; Fu, H.; Shen, J.; Liu, Y. Description of different cracking processes affecting dispersive saline soil slopes subjected to the effects of frost and consequences for the stability of low slopes. B Eng. Geol. Environ. 2022, 81, 75. [Google Scholar] [CrossRef]
- Shahbaz, M.; Ashraf, M. Improving Salinity Tolerance in Cereals. Crit. Rev. Plant Sci. 2013, 32, 237–249. [Google Scholar] [CrossRef]
- Zhaoyong, Z.; Abuduwaili, J.; Yimit, H. The occurrence, sources and spatial characteristics of soil salt and assessment of soil salinization risk in Yanqi Basin, Northwest China. PLoS ONE 2014, 9, e106079. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tan, W.; Yang, D.; Zhang, K.; Zhao, L.; Xie, Z.; Xu, T.; Zhao, Y.; Wang, X.; Pan, X.; et al. Mitigation of soil salinization and alkalization by bacterium-induced inhibition of evaporation and salt crystallization. Sci. Total Environ. 2021, 755, 142511. [Google Scholar] [CrossRef]
- Wu, M.; Wu, J.; Tan, X.; Huang, J.; Jansson, P.E.; Zhang, W. Simulation of dynamical interactions between soil freezing/thawing and salinization for improving water management in cold/arid agricultural region. Geoderma 2019, 338, 325–342. [Google Scholar] [CrossRef]
- Hou, R.; Li, T.; Fu, Q.; Liu, D.; Li, M.; Zhou, Z.; Li, L.; Yan, J. Characteristics of water–heat variation and the transfer relationship in sandy loam under different conditions. Geoderma 2019, 340, 259–268. [Google Scholar] [CrossRef]
- Kokelj, S.V.; Burn, C.R. Ground ice and soluble cations in near-surface permafrost, Inuvik, Northwest Territories, Canada. Permafr. Periglac. Process. 2003, 14, 275–289. [Google Scholar] [CrossRef]
- Ferguson, H.; Brown, P.L.; Dickey, D.D. Water movement and loss under frozen soil conditions. Soil Sci. Soc. Am. J. 1964, 28, 700–703. [Google Scholar] [CrossRef]
- Liu, J.; Yang, P.; Yang, Z. Water and salt migration mechanisms of saturated chloride clay during freeze-thaw in an open system. Cold Reg. Sci. Technol. 2021, 186, 103277. [Google Scholar] [CrossRef]
- Hou, R.; Li, T.; Fu, Q.; Liu, D.; Li, M.; Zhou, Z.; Yan, J.; Zhang, S. Research on the distribution of soil water, heat, salt and their response mechanisms under freezing conditions. Soil Till. Res. 2020, 196, 104486. [Google Scholar] [CrossRef]
- Wan, X.; Gong, F.; Qu, M.; Qiu, E.; Zhong, C. Experimental Study of the Salt Transfer in a Cold Sodium Sulfate Soil. KSCE J. Civ. Eng. 2019, 23, 1573–1585. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, S. Mechanism of FT action in the process of soil salinization in northeast China. Environ. Geol. 2001, 41, 96–100. [Google Scholar] [CrossRef]
- Bing, H.; He, P.; Zhang, Y. Cyclic freeze–thaw as a mechanism for water and salt migration in soil. Environ. Earth Sci. 2015, 74, 675–681. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Hou, R.; Li, T.; Wang, M.; Yan, J. The functions of soil water and heat transfer to the environment and associated response mechanisms under different snow cover conditions. Geoderma 2018, 325, 9–17. [Google Scholar] [CrossRef]
- Vrbka, L.; Jungwirth, P. Brine Rejection from Freezing Salt Solutions: A Molecular Dynamics Study. Phys. Rev. Lett. 2005, 95, 148501. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Zhou, X.; Jiang, X. Water and Salt Migration with Phase Change in Saline Soil during Freezing and Thawing Processes. GroundWater 2018, 56, 742–752. [Google Scholar] [CrossRef]
- Nagare, R.M.; Schincariol, R.A.; Quinton, W.L.; Hayashi, M. Effects of freezing on soil temperature, freezing front propagation and moisture redistribution in peat: Laboratory investigations. Hydrol. Earth Syst. Sc. 2012, 16, 501–515. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Seki, K.; Miyazaki, T.; Ishihama, Y. The causes of soil alkalinization in the Songnen Plain of Northeast China. Paddy Water Environ. 2009, 7, 259–270. [Google Scholar] [CrossRef]
- Chuvilin, E.M. Migration of ions of chemical elements in freezing and frozen soils. Polar. Rec. 1999, 35, 59–66. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, Y.; Zhao, T.; Cui, L.; Mao, W.; Ye, M.; Wu, J.; Yang, J. Chemical characteristics of salt migration in frozen soils during the freezing-thawing period. J. Hydrol. 2021, 606, 127403. [Google Scholar] [CrossRef]
- Zhao, X.; Xia, J.; Chen, W.; Chen, Y.; Fang, Y.; Qu, F. Transport characteristics of salt ions in soil columns planted with Tamarix chinensis under different groundwater levels. PLoS ONE 2019, 14, e0215138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, X.; Jiang, X.; Xue, S.; Huang, L.; Hartley, W.; Wu, C.; Li, X. Migration and distribution of saline ions in bauxite residue during water leaching. Trans. Nonferrous Met. Soc. China 2018, 28, 534–541. [Google Scholar] [CrossRef]
- Van Eynde, E.; Dondeyne, S.; Isabirye, M.; Deckers, J.; Poesen, J. Impact of landslides on soil characteristics: Implications for estimating their age. CATENA 2017, 157, 173–179. [Google Scholar] [CrossRef]
- Semenkov, I.N.; Konyushkova, M.V. Geochemical partition of chemical elements in Kastanozems and Solonetz in a local catchment within a semiarid landscape of SW Russia. CATENA 2022, 210, 105869. [Google Scholar] [CrossRef]
- Zhang, T.; Zhan, X.; He, J.; Feng, H.; Kang, Y. Salt characteristics and soluble cations redistribution in an impermeable calcareous saline-sodic soil reclaimed with an improved drip irrigation. Agric. Water Manag. 2018, 197, 91–99. [Google Scholar] [CrossRef]
- Jiao, H.; Sheng, Y.; Zhao, C.; Li, B. Modeling of multiple ions coupling transport for salinized soil in oasis based on COMSOL. Trans. Chin. Soc. Agric. Eng. 2018, 34, 100–107. (In Chinese) [Google Scholar] [CrossRef]
- Qadir, M.; Steffens, D.; Yan, F.; Schubert, S. Sodium removal from a calcareous saline–sodic soil through leaching and plant uptake during phytoremediation. Land Degrad. Dev. 2003, 14, 301–307. [Google Scholar] [CrossRef]
- Clarke, C.E.; Vermooten, M.; Watson, A.; Hattingh, M.; Miller, J.A.; Francis, M.L. Downward migration of salts in termite-affected soils: Implications for groundwater salinization. Geoderma 2022, 413, 115747. [Google Scholar] [CrossRef]
- Chen, L.; Li, C.; Feng, Q.; Wei, Y.; Zhao, Y.; Zhu, M.; Deo, R. Direct and indirect impacts of ionic components of saline water on irrigated soil chemical and microbial processes. CATENA 2019, 172, 581–589. [Google Scholar] [CrossRef]
- Zong, R.; Han, Y.; Tan, M.; Zou, R.; Wang, Z. Migration characteristics of soil salinity in saline-sodic cotton field with different reclamation time in non-irrigation season. Agric. Water Manag. 2022, 263, 107440. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Zhang, L. Permafrost Physics; Science Press: Beijing, China, 2001. [Google Scholar]
- Bai, R.; Lai, Y.; Zhang, M.; Yu, F. Theory and application of a novel soil freezing characteristic curve. Appl. Therm. Eng. 2018, 129, 1106–1114. [Google Scholar] [CrossRef]
- Hu, G.; Zhao, L.; Zhu, X.; Wu, X.; Wu, T.; Li, R.; Xie, C.; Hao, J. Review of algorithms and parameterizations to determine unfrozen water content in frozen soil. Geoderma 2020, 368, 114277. [Google Scholar] [CrossRef]
- Cary, J.W.; Mayland, H.F. Salt and water movement in unsaturated frozen soil. Soil Sci. Soc. Am. J. 1972, 36, 549–555. [Google Scholar] [CrossRef]
- Irakoze, W.; Prodjinoto, H.; Nijimbere, S.; Bizimana, J.B.; Bigirimana, J.; Rufyikiri, G.; Lutts, S. NaCl- and Na2SO4-Induced Salinity Differentially Affect Clay Soil Chemical Properties and Yield Components of Two Rice Cultivars (Oryza sativa L.) in Burundi. Agronomy 2021, 11, 571. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, S.; Luo, J.; Hao, B.; Diao, F.; Li, X.; Jia, B.; Wang, L.; Bao, Z.; Guo, W. Evaluation of Microbial Assemblages in Various Saline-Alkaline Soils Driven by Soluble Salt Ion Components. J. Agric. Food Chem. 2021, 69, 3390–3400. [Google Scholar] [CrossRef]
- Luo, J.; Yang, F.; Wang, Y.; Ya, Y.; Deng, W.; Zhang, X.; Liu, Z. Mechanism of soil sodification at the local scale in Songnen Plain, northeast China, as affected by shallow groundwater table. Arid. Land Res. Manag. 2011, 25, 234–256. [Google Scholar] [CrossRef]
- Qin, Y.; Bai, Y.; Chen, G.; Liang, Y.; Li, X.; Wen, B.; Lu, X.; Li, Z. The effects of soil freeze–thaw processes on water and salt migrations in the western Songnen Plain, China. Sci. Rep. 2021, 11, 3888. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, J.; Zhao, X.; Zhuge, Y. Soil moisture ecological characteristics of typical shrub and grass vegetation on Shell Island in the Yellow River Delta, China. Geoderma 2019, 348, 45–53. [Google Scholar] [CrossRef]
- Guo, K.; Liu, X. Reclamation effect of freezing saline water irrigation on heavy saline-alkali soil in the Hetao Irrigation District of North China. CATENA 2021, 204, 105420. [Google Scholar] [CrossRef]
- Litskas, V.D.; Aschonitis, V.G.; Lekakis, E.H. Antonopoulos VZ Effects of land use and irrigation practices on Ca, Mg, K, Na loads in rice-based agricultural systems. Agric. Water Manag. 2014, 132, 30–36. [Google Scholar] [CrossRef]
- USDA. 1938. Available online: http://www.nrcs.usda.gov (accessed on 12 November 2022).
- Cui, X.; Han, W.; Zhang, H.; Cui, J.; Ma, W.; Zhang, L.; Li, G. Estimating soil salinity under sunflower cover in the Hetao Irrigation District based on unmanned aerial vehicle remote sensing. Land Degrad. Dev. 2022, 34, 84–97. [Google Scholar] [CrossRef]
- Wang, D.; Chen, H.; Wang, Z.; Ma, Y. Inversion of soil salinity according to different salinization grades using multi-source remote sensing. Geocarto Int. 2020, 1, 1274–1293. [Google Scholar] [CrossRef]
- Yin, X.; Feng, Q.; Li, Y.; Liu, W.; Zhu, M.; Xu, G.; Zheng, X.; Sindikubwabo, C. Induced soil degradation risks and plant responses by salinity and sodicity in intensive irrigated agro-ecosystems of seasonally-frozen arid regions. J. Hydrol. 2021, 603, 127036. [Google Scholar] [CrossRef]
- Xu, J.; Lan, W.; Ren, C.; Zhou, X.; Wang, S.; Yuan, J. Modeling of coupled transfer of water, heat and solute in saline loess considering sodium sulfate crystallization. Cold Reg. Sci. Technol. 2021, 189, 103335. [Google Scholar] [CrossRef]
- Wu, M.; Tan, X.; Huang, J.; Wu, J.; Jansson, P.E. Solute and water effects on soil freezing characteristics based on laboratory experiments. Cold Reg. Sci. Technol. 2015, 115, 22–29. [Google Scholar] [CrossRef]
- Shen, L.; Sippola, H.; Li, X.; Lindberg, D.; Taskinen, P. Thermodynamic Modeling of Calcium Sulfate Hydrates in the CaSO4-H2O System from 273.15 to 473.15 K with Extension to 548.15 K. J. Chem. Eng. Data 2019, 64, 2697–2709. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Liu, X. Dynamics of meltwater quality and quantity during saline ice melting and its effects on the infiltration and desalinization of coastal saline soils. Agric. Water Manag. 2014, 139, 1–6. [Google Scholar] [CrossRef]
- Bond, W.J.; Phillips, I.R. Ion transport during unsteady water flow in an unsaturated clay soil. Soil Sci. Soc. Am. J. 1990, 54, 636–645. [Google Scholar] [CrossRef]
- Gong, Y.; Tian, R.; Li, H. Coupling effects of surface charges, adsorbed counterions and particle-size distribution on soil water infiltration and transport. Eur. J. Soil Sci. 2018, 69, 1008–1017. [Google Scholar] [CrossRef]
- Peng, Y.; Zhu, Y.; Mao, Y.; Wang, S.; Su, W.; Tang, Z. Alkali grass resists salt stress through high [K+] and an endodermis barrier to Na+. J. Exp. Bot. 2004, 55, 939–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawat, L.; Singh, Y.; Shukla, N.; Kumar, J. Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant Soil 2011, 347, 387–400. [Google Scholar] [CrossRef]
- Lao, C.; Chen, J.; Zhang, Z.; Chen, Y.; Ma, Y.; Chen, H.; Gu, X.; Ning, J.; Jin, J.; Li, X. Predicting the contents of soil salt and major water-soluble ions with fractional-order derivative spectral indices and variable selection. Comput. Electron. Agric. 2021, 182, 106031. [Google Scholar] [CrossRef]
- Tavakkoli, E.; Fatehi, F.; Coventry, S.; Rengasamy, P.; McDonald, G.K. Additive effects of Na+ and Cl- ions on barley growth under salinity stress. J. Exp. Bot. 2011, 62, 2189–2203. [Google Scholar] [CrossRef] [Green Version]
- Bosson, E.; Selroos, J.O.; Stigsson, M.; Gustafsson, L.G.; Destouni, G. Exchange and pathways of deep and shallow groundwater in different climate and permafrost conditions using the Forsmark site, Sweden, as an example catchment. Hydrogeol. J. 2013, 21, 225–237. [Google Scholar] [CrossRef]
- Wan, H.; Bian, J.; Zhang, H.; Li, Y. Assessment of future climate change impacts on water-heat-salt migration in unsaturated frozen soil using CoupModel. Front. Environ. Sci. Eng. 2021, 15, 1–17. [Google Scholar] [CrossRef]
- Wang, Y.; Bian, J.; Zhao, Y.; Tang, J.; Jia, Z. Assessment of future climate change impacts on nonpoint source pollution in snowmelt period for a cold area using SWAT. Sci. Rep. 2018, 8, 2402. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Guo, J.; Zhang, W.; Jiang, Y.; Fang, F.; He, W.; Jia, B.; Dang, C. Drying-rewetting changes soil phosphorus status and enzymatically hydrolysable organic phosphorus fractions in the water-level fluctuation zone of Three Gorges reservoir. CATENA 2021, 204, 105416. [Google Scholar] [CrossRef]
- Asensio, E.; Ferreira, V.J.; Gil, G.; García-Armingol, T.; López-Sabirón, A.M.; Ferreira, G. Accumulation of De-Icing Salt and Leaching in Spanish Soils Surrounding Roadways. Int. J. Environ. Res. Pubulic Health 2017, 14, 1498. [Google Scholar] [CrossRef] [Green Version]
- Laurenson, S.; Smith, E.; Bolan, N.S.; McCarthy, M. Effect of K+ on Na-Ca exchange and the SAR-ESP relationship. Soil Res. 2011, 49, 538–546. [Google Scholar] [CrossRef]
- Fu, J.; Xiao, Y.; Wang, Y.; Liu, Z.; Yang, K. Saline–alkaline stress in growing maize seedlings is alleviated by Trichoderma asperellum through regulation of the soil environment. Sci. Rep. 2021, 11, 11152. [Google Scholar] [CrossRef] [PubMed]
Parameters | Soil Layer (cm) | ||||||
---|---|---|---|---|---|---|---|
0–5 | 5–10 | 10–20 | 20–30 | 30–40 | 40–60 | 60–80 | |
Soil salt content (g 100 g−1) | 0.29 ± 0.05 | 0.28 ± 0.06 | 0.23 ± 0.05 | 0.28 ± 0.04 | 0.27 ± 0.02 | 0.21 ± 0.03 | 0.20 ± 0.04 |
Electric conductivity (µS·cm−1) | 681 ± 110 | 479 ± 96 | 406 ± 53 | 505 ± 98 | 662 ± 84 | 495 ± 97 | 541 ± 110 |
Soil moisture Content (%) | 16.78 ± 2.14 | 17.98 ± 0.53 | 19.41 ± 0.94 | 20.21 ± 1.82 | 20.27 ± 1.38 | 19.72 ± 2.51 | 19.39 ± 2.17 |
Na+ (meq 100 g−1) | 2.00 ± 0.40 | 1.69 ± 0.29 | 1.37 ± 0.11 | 1.75 ± 0.26 | 1.86 ± 0.11 | 1.26 ± 0.22 | 1.25 ± 0.21 |
Ca2+(meq 100 g−1) | 1.06 ± 0.24 | 0.90 ± 0.12 | 0.85 ± 0.05 | 0.98 ± 0.10 | 1.00 ± 0.10 | 0.66 ± 0.04 | 0.74 ± 0.03 |
Mg2+(meq 100 g−1) | 1.14 ± 0.50 | 1.50 ± 0.19 | 0.92 ± 0.12 | 1.04 ± 0.22 | 1.08 ± 0.26 | 1.12 ± 0.06 | 0.82 ± 0.04 |
SO42– (meq 100 g−1) | 2.00 ± 0.31 | 2.24 ± 0.31 | 1.56 ± 0.28 | 1.90 ± 0.11 | 2.04 ± 0.08 | 1.64 ± 0.14 | 1.52 ± 0.12 |
Cl− (meq 100 g−1) | 1.84 ± 0.18 | 1.40 ± 0.30 | 1.12 ± 0.18 | 1.82 ± 0.03 | 1.60 ± 0.21 | 1.07 ± 0.22 | 0.90 ± 0.24 |
HCO3− (meq 100 g−1) | 0.85 ± 0.13 | 0.87 ± 0.12 | 0.88 ± 0.23 | 0.87 ± 0.16 | 0.67 ± 0.07 | 0.59 ± 0.07 | 0.67 ± 0.13 |
Soil bulk density (g cm−3) | 1.42 ± 0.06 | 1.40 ± 0.03 | 1.41 ± 0.07 | 1.38 ± 0.05 | 1.35 ± 0.03 | 1.42 ± 0.09 | 1.45 ± 0.05 |
CEC (meq 100 g−1) | 7.22 ± 0.32 | 7.35 ± 0.22 | 7.63 ± 0.37 | – | – | – | – |
Sand (%) | 29.02 ± 0.11 | 27.29 ± 1.60 | 28.00 ± 0.00 | – | – | – | – |
Silt (%) | 66.57 ± 0.27 | 68.04 ± 2.12 | 67.24 ± 0.24 | – | – | – | – |
Clay (%) | 4.41 ± 0.38 | 4.67 ± 0.52 | 4.76 ± 0.24 | – | – | – | – |
Soil texture | Silt loam | Silt loam | Silt loam | -– | -– | -– | -– |
Time | Soil Layer (cm) | Proportion of Anion Equivalent Concentration (%) | Proportion of Cation Equivalent Concentration (%) | |||||
---|---|---|---|---|---|---|---|---|
HCO3− | SO42− | Cl− | Ca2+ | Mg2+ | K+ | Na+ | ||
T1 | 0–5 | 18.63 | 40.95 | 40.42 | 19.06 | 20.54 | 4.55 | 55.85 |
5–10 | 19.94 | 48.02 | 32.04 | 17.34 | 28.96 | 3.38 | 50.32 | |
10–20 | 25.37 | 42.30 | 32.34 | 19.86 | 23.13 | 4.31 | 52.69 | |
20–30 | 19.50 | 40.77 | 39.74 | 19.50 | 20.69 | 5.85 | 53.96 | |
30–40 | 15.95 | 45.75 | 38.30 | 19.78 | 21.47 | 1.85 | 56.89 | |
40–60 | 18.45 | 47.99 | 33.57 | 17.27 | 29.68 | 1.92 | 51.14 | |
60–80 | 22.45 | 47.69 | 29.86 | 20.75 | 23.05 | 2.24 | 53.96 | |
T3 | 0–5 | 17.29 | 36.91 | 45.79 | 20.53 | 26.35 | 2.71 | 50.41 |
5–10 | 18.16 | 43.11 | 38.73 | 20.30 | 21.09 | 3.47 | 55.15 | |
10–20 | 18.55 | 39.01 | 42.44 | 17.75 | 19.04 | 2.75 | 60.46 | |
20–30 | 15.65 | 41.61 | 42.74 | 17.23 | 16.56 | 2.54 | 63.67 | |
30–40 | 17.82 | 41.31 | 40.87 | 17.88 | 14.57 | 2.33 | 65.21 | |
40–60 | 24.92 | 40.06 | 35.02 | 19.46 | 11.68 | 1.86 | 67.00 | |
60–80 | 49.27 | 31.83 | 18.90 | 25.74 | 7.59 | 1.40 | 65.27 | |
T6 | 0–5 | 3.06 | 33.42 | 63.52 | 19.62 | 23.71 | 1.965 | 54.71 |
5–10 | 16.23 | 39.20 | 44.56 | 21.43 | 18.27 | 3.154 | 57.15 | |
10–20 | 20.63 | 33.21 | 46.17 | 23.39 | 15.70 | 2.930 | 57.98 | |
20–30 | 16.99 | 40.43 | 42.58 | 20.21 | 17.66 | 1.896 | 60.24 | |
30–40 | 19.58 | 37.23 | 43.20 | 21.52 | 13.64 | 1.312 | 63.53 | |
40–60 | 22.62 | 35.75 | 41.63 | 20.45 | 13.29 | 1.003 | 65.25 | |
60–80 | 31.89 | 31.45 | 36.66 | 20.81 | 12.14 | 0.685 | 66.36 |
Soil Layer (cm) | T1 | T2 | T3 | T4 | T5 | T6 | |
---|---|---|---|---|---|---|---|
SAR | 0–5 | 3.76 ± 0.57 bA | 4.19 ± 0.71 bA | 3.85 ± 1.1 bAB | 4.21 ± 1.54 bAB | 6.27 ± 1.39 aA | 6.51 ± 1.47 aA |
5–10 | 3.03 ± 0.61 aA | 3.47 ± 0.34 aAB | 3.80 ± 1.42 aAB | 3.04 ± 0.73 aC | 4.16 ± 1.43 aB | 3.91 ± 1.08 aB | |
10–20 | 2.90 ± 0.93 aA | 3.03 ± 0.93 aB | 4.30 ± 0.81 aAB | 3.23 ± 0.39 aBC | 4.12 ± 1.43 aB | 3.78 ± 0.79 aB | |
20–30 | 3.43 ± 1.28 bA | 3.21 ± 0.33 bAB | 4.89 ± 0.89 aA | 3.40 ± 0.66 abBC | 4.01 ± 1.4 abB | 4.01 ± 0.96 abB | |
30–40 | 3.58 ± 1.38 bA | 3.57 ± 0.46 bAB | 4.82 ± 0.57 aA | 4.30 ± 0.47 abAB | 4.36 ± 1.94 abB | 4.18 ± 0.48 abB | |
40–60 | 2.62 ± 0.69 cA | 3.41 ± 0.58 bcAB | 4.44 ± 0.61 abAB | 4.69 ± 0.88 aA | 3.73 ± 1.81 abcB | 4.06 ± 0.78 abB | |
60–80 | 2.77 ± 1.18 aA | 2.84 ± 0.60 aB | 3.21 ± 0.53 aB | 3.23 ± 0.61 aBC | 3.49 ± 1.9 aB | 3.79 ± 0.73 aB | |
pH | 0–5 | 6.98 ± 0.23 cA | 7.48 ± 0.28 bC | 8.07 ± 0.45 aA | 7.95 ± 0.04 aB | 8.04 ± 0.07 aB | 8.27 ± 0.06 aA |
5–10 | 7.04 ± 0.32 cA | 7.61 ± 0.32 bBC | 8.12 ± 0.25 aA | 8.01 ± 0.12 abB | 8.29 ± 0.25 aAB | 8.44 ± 0.06 aA | |
10–20 | 7.17 ± 0.17 dA | 7.72 ± 0.32 cABC | 8.11 ± 0.10 bA | 8.00 ± 0.27 bcB | 8.30 ± 0.18 abAB | 8.54 ± 0.15 aA | |
20–30 | 7.42 ± 0.42 cA | 7.85 ± 0.14 bABC | 8.01 ± 0.22 bA | 7.93 ± 0.20 bB | 8.27 ± 0.11 abAB | 8.58 ± 0.18 aA | |
30–40 | 7.36 ± 0.33 cA | 7.93 ± 0.15 aB | 8.00 ± 0.24 bA | 7.95 ± 0.26 bB | 8.31 ± 0.03 aAB | 8.55 ± 0.20 aA | |
40–60 | 7.30 ± 0.15 cA | 8.01 ± 0.17 bAB | 8.07 ± 0.28 abA | 8.19 ± 0.18 abAB | 8.49 ± 0.27 aA | 8.51 ± 0.34 aA | |
60–80 | 7.39 ± 0.16 cA | 8.06 ± 0.08 bA | 8.12 ± 0.23 bA | 8.44 ± 0.33 abA | 8.59 ± 0.25 aA | 8.39 ± 0.26 aB |
Soil Layer (cm) | T1 | T2 | T3 | T4 | T5 | T6 |
---|---|---|---|---|---|---|
0–5 | - | 1.312 | 0.824 | - | - | - |
5–10 | - | 0.148 | 0.327 | - | - | - |
10–20 | - | 0.348 | - | - | - | - |
20–30 | - | - | 0.195 | - | - | - |
30–40 | - | - | - | - | - | - |
40–60 | - | - | - | - | - | - |
60–80 | - | - | - | - | - | - |
T1 | T2 | T3 | T4 | T5 | T6 | |
---|---|---|---|---|---|---|
CEC (meq 100 g−1) | 7.12 | 8.44 | 8.65 | 8.93 | 9.26 | 9.79 |
Total soluble cations (meq 100 g−1) | 4.27 | 7.85 | 6.63 | 7.49 | 16.84 | 18.41 |
Percentage of CEC to total soluble cations (%) | 166.57 | 94.72 | 130.38 | 119.28 | 55.00 | 53.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wu, J.; Zhao, H.; Li, C.; Mao, J.; Zhang, R.; Liu, J.; Zhao, Q. Ions Transport in Seasonal Frozen Farmland Soil and Its Effect on Soil Salinization Chemical Properties. Agronomy 2023, 13, 660. https://doi.org/10.3390/agronomy13030660
Liu Y, Wu J, Zhao H, Li C, Mao J, Zhang R, Liu J, Zhao Q. Ions Transport in Seasonal Frozen Farmland Soil and Its Effect on Soil Salinization Chemical Properties. Agronomy. 2023; 13(3):660. https://doi.org/10.3390/agronomy13030660
Chicago/Turabian StyleLiu, Yawen, Jingwei Wu, Hang Zhao, Changsen Li, Jun Mao, Rui Zhang, Jie Liu, and Qiang Zhao. 2023. "Ions Transport in Seasonal Frozen Farmland Soil and Its Effect on Soil Salinization Chemical Properties" Agronomy 13, no. 3: 660. https://doi.org/10.3390/agronomy13030660
APA StyleLiu, Y., Wu, J., Zhao, H., Li, C., Mao, J., Zhang, R., Liu, J., & Zhao, Q. (2023). Ions Transport in Seasonal Frozen Farmland Soil and Its Effect on Soil Salinization Chemical Properties. Agronomy, 13(3), 660. https://doi.org/10.3390/agronomy13030660