Estimation of Chlorophyll Content in Soybean Crop at Different Growth Stages Based on Optimal Spectral Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area and Test Design
2.2. Data Collection
2.3. Spectral Data Processing and Spectral Index Construction
2.4. Model Construction and Verification
2.4.1. Model Construction
2.4.2. Model Verification
2.5. Data Analysis and Verification of the Prediction Accuracy of the Models
3. Results
3.1. Optimal Spectral Index Band Combination Extraction
3.2. Construction and Comparison of Soybean Chlorophyll Prediction Models at Different Growth Stages
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Jin, J.; Wang, G.; Herbert, S. Soybean yield physiology and development of high–yielding practices in Northeast China. Field Crop. Res. 2008, 105, 157–171. [Google Scholar] [CrossRef]
- Wang, C.; Linderholm, H.W.; Song, Y.; Wang, F.; Liu, Y.; Tian, J.; Xu, J.; Song, Y.; Ren, G. Impacts of drought on maize and soybean production in northeast China during the past five decades. Int. J. Environ. Res. Public Health 2020, 17, 2459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Zhou, G. Estimation of vegetation water content using hyperspectral vegetation indices: A comparison of crop water indicators in response to water stress treatments for summer maize. BMC Ecol. 2019, 19, 18. [Google Scholar] [CrossRef] [Green Version]
- Steele, M.R.; Gitelson, A.A.; Rundquist, D.C. A comparison of two techniques for nondestructive measurement of chlorophyll content in grapevine leaves. Agron. J. 2008, 100, 779–782. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agr. Forest Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Wang, J.; Wu, W.; Wang, T.; Cai, C. Estimation of leaf chlorophyll content and density in Populus euphratica based on hyperspectral characteristic variables. Spectrosc. Lett. 2018, 51, 485–495. [Google Scholar] [CrossRef]
- Liu, C.; Hu, Z.; Islam, A.T.; Kong, R.; Yu, L.; Wang, Y.; Chen, S.; Zhang, X. Hyperspectral characteristics and inversion model estimation of winter wheat under different elevated CO2 concentrations. Int. J. Remote Sens. 2021, 42, 1035–1053. [Google Scholar] [CrossRef]
- Yuan, H.; Yang, G.; Li, C.; Wang, Y.; Liu, J.; Yu, H.; Feng, H.; Xu, B.; Zhao, X.; Yang, X. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: Analysis of RF, ANN, and SVM regression models. Remote Sens. 2017, 9, 309. [Google Scholar] [CrossRef] [Green Version]
- Xia, K.; Xia, S.; Shen, Q.; Yang, B.; Song, Q.; Xu, Y.; Zhang, S.; Zhou, X.; Zhou, Y. Moisture spectral characteristics and hyperspectral inversion of fly ash–filled reconstructed soil. Spectrochim. Acta. A. 2021, 253, 119590. [Google Scholar] [CrossRef]
- Leyden, K.; Goodwine, B. Fractional–order system identification for health monitoring. Nonlinear. Dynam. 2018, 92, 1317–1334. [Google Scholar] [CrossRef]
- Tang, Z.; Guo, J.; Xiang, Y.; Lu, X.; Wang, Q.; Wang, H.; Cheng, M.; Wang, H.; Wang, X.; An, J.; et al. Estimation of Leaf Area Index and Above–Ground Biomass of Winter Wheat Based on Optimal Spectral Index. Agronomy 2022, 12, 1729. [Google Scholar] [CrossRef]
- An, D.; Zhao, G.; Chang, C.; Wang, Z.; Li, P.; Zhang, T.; Jia, J. Hyperspectral field estimation and remote–sensing inversion of salt content in coastal saline soils of the Yellow River Delta. Int. J. Remote Sens. 2016, 37, 455–470. [Google Scholar] [CrossRef]
- Ge, X.; Ding, J.; Jin, X.; Wang, J.; Chen, X.; Li, X.; Liu, J.; Xie, B. Estimating agricultural soil moisture content through UAV–based hyperspectral images in the arid region. Remote Sens. 2021, 13, 1562. [Google Scholar] [CrossRef]
- Tang, Z.J.; Xiang, Y.Z.; Wang, X.; An, J.Q.; Guo, J.J.; Wang, H.; Li, Z.J.; Zhang, F.C. Comparison of SPAD Value and LAI Spectral Estimation of Soybean Leaves Based on Different Analysis Models. Soyb. Sci. 2023, 42, 55–63, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Xiaobo, Z.; Jiewen, Z.; Holmes, M.; Hanpin, M.; Jiyong, S.; Xiaopin, Y.; Yanxiao, L. Independent component analysis in information extraction from visible/near–infrared hyperspectral imaging data of cucumber leaves. Chemom. Intell. Lab. 2010, 104, 265–270. [Google Scholar] [CrossRef]
- Bannari, A.; Khurshid, K.S.; Staenz, K.; Schwarz, J. Potential of Hyperion EO–1 hyperspectral data for wheat crop chlorophyll content estimation. Can. J. Remote Sens. 2008, 34, S139–S157. [Google Scholar] [CrossRef]
- Kennard, W.; Stone, L.A. Computer aided design of experiments. Technimetrics 1969, 11, 137–148. [Google Scholar] [CrossRef]
- Rossel, R.V.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Lin, H.; Liang, L.; Zhang, L.; Du, P. Wheat leaf area index inversion with hyperspectral remote sensing based on support vector regression algorithm. Trans. Chin. Soc. Agric. Eng. 2013, 29, 139–146. [Google Scholar] [CrossRef]
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, L.; Fan, H.; Guo, X.; Wang, S.; Lu, J.W. Real–time and multi–stage recommendations for nitrogen fertilizer topdressing rates in winter oilseed rape based on canopy hyperspectral data. Ind. Crop. Prod. 2020, 154, 112699. [Google Scholar] [CrossRef]
- Chen, X.; Ishwaran, H. Random forests for genomic data analysis. Genomics 2012, 99, 323–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonobe, R.; Tani, H.; Wang, X.F.; Kobayashi, N.; Shimamuru, H. Parameter tuning in the support vector machine and random forest and their performances in cross–and same–year crop classification using TerraSAR–X. Int. J. Remote Sens. 2014, 35, 7898–7909. [Google Scholar] [CrossRef] [Green Version]
- Leonard, J.; Kramer, M.A. Improvement of the backpropagation algorithm for training neural networks. Comput. Chem. Eng. 1990, 14, 337–341. [Google Scholar] [CrossRef]
- Li, Y.Y.; Chang, Q.R.; Liu, X.Y.; Yan, L.; Luo, D.; Wang, S. Remote sensing estimation of SPAD value of maize leaves based on hyperspectral and BP neural network. Trans. Chin. Soc. Agric. Eng. 2016, 32, 135–142, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Duan–yang, S.; Qiang, L.; Bing, H.; Jia–xun, C. Radar Clutter Suppression Method Based on Neural Network Optimized by Genetic Algorithm. Mod. Def. Technol. 2021, 49, 74–83. [Google Scholar] [CrossRef]
- Liu, N.; Xing, Z.; Zhao, R.; Xiao, L.; Li, M.; Liu, G.; Sun, H. Analysis of chlorophyll concentration in potato crop by coupling continuous wavelet transform and spectral variable optimization. Remote Sens. 2020, 12, 2826. [Google Scholar] [CrossRef]
- Tanaka, S.; Kawamura, K.; Maki, M.; Muramoto, Y.; Yoshida, K.; Akiyama, T. Spectral index for quantifying leaf area index of winter wheat by field hyperspectral measurements: A case study in Gifu Prefecture, Central Japan. Remote Sens. 2015, 7, 5329–5346. [Google Scholar] [CrossRef] [Green Version]
- Delegido, J.; Verrelst, J.; Meza, C.M.; Rivera, J.P.; Alonso, L.; Moreno, J. A red–edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 2013, 46, 42–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Sui, B.; Shen, H.O.; Ouyang, L. Mapping stocks of soil total nitrogen using remote sensing data: A comparison of random forest models with different predictors. Comput. Electron. Agr. 2019, 160, 23–30. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Zhang, F.; Chan, N.W.; Kung, H.-T.; Liu, S.; Deng, L. Estimation of soil salt content using machine learning techniques based on remote–sensing fractional derivatives, a case study in the Ebinur Lake Wetland National Nature Reserve, Northwest China. Ecol. Indic. 2020, 119, 106869. [Google Scholar] [CrossRef]
- Hong, Y.; Guo, L.; Chen, S.; Linderman, M.; Mouazen, A.M.; Yu, L.; Chen, Y.; Liu, Y.; Liu, Y.; Cheng, H.; et al. Exploring the potential of airborne hyperspectral image for estimating topsoil organic carbon: Effects of fractional–order derivative and optimal band combination algorithm. Geoderma 2020, 365, 114228. [Google Scholar] [CrossRef]
- Hansen, P.; Schjoerring, J. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Liu, S.; Yu, H.Y.; Zhang, J.H.; Zhou, H.G.; Kong, L.J.; Zhang, L.; Dang, J.M.; Sui, Y.Y. Study on Inversion Model of Chlorophyll Content in Soybean Leaf Based on Optimal Spectral Indices. Spectrosc. Spect. Anal. 2021, 41, 1912–1919, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Li, L.; Ren, T.; Ma, Y.; Wei, Q.; Wang, S.; Li, X.; Cong, R.; Liu, S.; Lu, J. Evaluating chlorophyll density in winter oilseed rape (Brassica napus L.) using canopy hyperspectral red–edge parameters. Comput. Electron. Agr. 2016, 126, 21–31. [Google Scholar] [CrossRef]
- Tan, C.; Du, Y.; Zhou, J.; Wang, D.; Luo, M.; Zhang, Y.; Guo, W. Analysis of different hyperspectral variables for diagnosing leaf nitrogen accumulation in wheat. Front. Plant Sci. 2018, 9, 674. [Google Scholar] [CrossRef]
- Chen, Z.; Jia, K.; Wei, X.; Liu, Y.; Zhan, Y.L.; Xia, M.; Yao, Y.J.; Zhang, X.T. Improving leaf area index estimation accuracy of wheat by involving leaf chlorophyll content information. Comput. Electron. Agr. 2022, 196, 106902. [Google Scholar] [CrossRef]
- Fu, Z.; Jiang, J.; Gao, Y.; Krienke, B.; Wang, M.; Zhong, K.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; et al. Wheat growth monitoring and yield estimation based on multi-rotor unmanned aerial vehicle. Remote Sens. 2020, 12, 508. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.-F.; Liu, T.; Wang, Q.-Y.; Du, M.-Z.; Yang, T.-L.; Liu, D.-Z.; Li, S.-J.; Liu, S.-P. Rapid determination of leaf water content for monitoring waterlogging in winter wheat based on hyperspectral parameters. J. Integr. Agr. 2021, 20, 2613–2626. [Google Scholar] [CrossRef]
- Wu, J.; Guo, D.; Li, G.; Guo, X.; Zhong, L.; Zhu, Q.; Guo, J.; Ye, Y. Multivariate methods with feature wavebands selection and stratified calibration for soil organic carbon content prediction by Vis–NIR spectroscopy. Soil Sci. Soc. Am. J. 2022, 86, 1153–1166. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, R.; Dai, Z.; He, B.; Yao, Y. Prediction model for the water jet falling point in fire extinguishing based on a GA–BP neural network. PLoS ONE 2019, 14, e0221729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, H.; Jiang, K.; Sun, W.; Xu, Y.; Ma, X. Irrigation decision method for winter wheat growth period in a supplementary irrigation area based on a support vector machine algorithm. Comput. Electron. Agr. 2021, 182, 106032. [Google Scholar] [CrossRef]
- Shah, C.; Du, Q.; Xu, Y. Enhanced TabNet: Attentive interpretable tabular learning for hyperspectral image classification. Remote Sens. 2022, 14, 716. [Google Scholar] [CrossRef]
- He, W.; He, H.; Wang, F.; Wang, S.; Li, R.; Chang, J.; Li, C. Rapid and uninvasive characterization of bananas by hyperspectral imaging with extreme gradient boosting (XGBoost). Anal. Lett. 2022, 55, 620–633. [Google Scholar] [CrossRef]
Indexes (Unitless) | Chlorophyll Content at Different Growth Stages (Unitless) | |||
---|---|---|---|---|
V4 | R2 | R4 | R6 | |
Sample size | 63 | 63 | 63 | 63 |
Maximum values | 36.87 | 46.26 | 55.96 | 51.01 |
Minimum values | 23.74 | 32.95 | 40.93 | 37.06 |
Mean | 31.56 | 39.48 | 48.93 | 43.65 |
Standard deviation | 3.08 | 3.71 | 4.00 | 3.51 |
Coefficient of variation/% | 0.10 | 0.09 | 0.08 | 0.08 |
Spectral Index | Formula | Reference |
---|---|---|
Ratio Index (RI) | [11] | |
Difference Index (DI) | – | [11] |
Modified Simple Ratio (mSR) | [11] | |
Modified Normalized Difference Index (mNDI) | [11] | |
Triangular Vegetation Index (TVI) | [11] | |
Soil–Adjusted Vegetation Index (SAVI) | [11] | |
Normalized Difference Vegetation Index (NDVI) | [11] |
Growth Stages | Spectral Index | rmax | Wavelength Position (i,j)/(nm) | Optimal Vegetation Index |
---|---|---|---|---|
V4 | mNDI | 0.541 | (759,680) | mNDI, NDVI, RI, mSR, SAVI |
NDVI | 0.531 | (725,714) | ||
RI | 0.521 | (720,706) | ||
mSR | 0.506 | (756,689) | ||
SAVI | 0.500 | (660,676) | ||
DI | 0.500 | (660,676) | ||
TVI | 0.472 | (676,689) | ||
R2 | TVI | 0.777 | (755,691) | TVI, DI, SAVI, RI, NDVI |
DI | 0.757 | (710,734) | ||
SAVI | 0.756 | (721,764) | ||
RI | 0.748 | (691,755) | ||
NDVI | 0.734 | (729,747) | ||
mSR | 0.715 | (752,691) | ||
mNDI | 0.695 | (741,707) | ||
R4 | DI | 0.832 | (707,730) | DI, SAVI, TVI, mSR, RI |
SAVI | 0.831 | (713,752) | ||
TVI | 0.825 | (731,713) | ||
mSR | 0.801 | (739,710) | ||
RI | 0.800 | (713,752) | ||
mNDI | 0.797 | (726,713) | ||
NDVI | 0.794 | (728,752) | ||
R6 | NDVI | 0.538 | (705,718) | NDVI, SAVI, DI, RI, mNDI |
SAVI | 0.520 | (707,723) | ||
DI | 0.520 | (701,711) | ||
RI | 0.519 | (705,688) | ||
mNDI | 0.513 | (723,691) | ||
TVI | 0.503 | (708,692) | ||
mSR | 0.496 | (675,705) |
Growth Stages | Evaluation Indicators | SVM | RF | BPNN | |||
---|---|---|---|---|---|---|---|
Modeling Set | Validation Set | Modeling Set | Validation Set | Modeling Set | Validation Set | ||
V4 | R2 | 0.551 | 0.694 | 0.730 | 0.726 | 0.576 | 0.674 |
RMSE | 1.987 | 1.809 | 1.617 | 2.192 | 1.935 | 2.129 | |
MRE | 4.837 | 4.891 | 4.070 | 4.373 | 5.033 | 5.290 | |
R2 | R2 | 0.651 | 0.645 | 0.776 | 0.746 | 0.731 | 0.726 |
RMSE | 2.124 | 2.496 | 1.684 | 2.149 | 1.863 | 2.221 | |
MRE | 4.104 | 4.930 | 3.507 | 4.746 | 3.676 | 4.353 | |
R4 | R2 | 0.734 | 0.717 | 0.862 | 0.854 | 0.754 | 0.743 |
RMSE | 1.995 | 2.578 | 1.458 | 2.627 | 1.945 | 2.508 | |
MRE | 2.882 | 4.458 | 2.259 | 4.669 | 3.008 | 4.573 | |
R6 | R2 | 0.516 | 0.587 | 0.724 | 0.718 | 0.512 | 0.684 |
RMSE | 2.310 | 2.706 | 1.804 | 2.884 | 2.353 | 2.190 | |
MRE | 4.158 | 5.487 | 3.504 | 5.078 | 4.084 | 3.886 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Guo, J.; An, J.; Tang, Z.; Wang, X.; Li, W.; Zhao, X.; Jin, L.; Xiang, Y.; Li, Z.; et al. Estimation of Chlorophyll Content in Soybean Crop at Different Growth Stages Based on Optimal Spectral Index. Agronomy 2023, 13, 663. https://doi.org/10.3390/agronomy13030663
Shi H, Guo J, An J, Tang Z, Wang X, Li W, Zhao X, Jin L, Xiang Y, Li Z, et al. Estimation of Chlorophyll Content in Soybean Crop at Different Growth Stages Based on Optimal Spectral Index. Agronomy. 2023; 13(3):663. https://doi.org/10.3390/agronomy13030663
Chicago/Turabian StyleShi, Hongzhao, Jinjin Guo, Jiaqi An, Zijun Tang, Xin Wang, Wangyang Li, Xiao Zhao, Lin Jin, Youzhen Xiang, Zhijun Li, and et al. 2023. "Estimation of Chlorophyll Content in Soybean Crop at Different Growth Stages Based on Optimal Spectral Index" Agronomy 13, no. 3: 663. https://doi.org/10.3390/agronomy13030663
APA StyleShi, H., Guo, J., An, J., Tang, Z., Wang, X., Li, W., Zhao, X., Jin, L., Xiang, Y., Li, Z., & Zhang, F. (2023). Estimation of Chlorophyll Content in Soybean Crop at Different Growth Stages Based on Optimal Spectral Index. Agronomy, 13(3), 663. https://doi.org/10.3390/agronomy13030663