Combinatorial Effect of Fertigation Rate and Scheduling on Tomato Performance under Naturally Ventilated Polyhouse in Indian Humid Sub-Tropics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth Conditions
2.2. Plant Growth Parameters
2.3. Fruit Yield Parameters
2.4. Fruit Quality Parameters
2.5. Nutrient Uptake by Plants
2.6. Water Use Efficiency
2.7. Economics
2.8. Statistic
2.9. Technique for Order Preference by Similarity to Ideal Solutions (TOPSIS)
- Creation of a matrix, called an “evaluation matrix”, consisting of m alternatives and n criteria as follows:
- Construction of normalized decision matrix: For attributes, comparisons comparable scales are needed, which are obtained by normalization. To calculate the normalized value of Zij, the vector normalization approach divides the rating of each attribute by its sum, as follows:
- Estimation of the positive (Zmax, Z+) and negative (Zmin, Z−) ideal solutions;
- Computation of Euclidean distance (Vi+ and Vi−) with Z+ and Z−, as follows:
- Computation of the comprehensive benefit evaluation index (Ci) for all of the treatments, as follows:
3. Results
3.1. Plant Growth Parameters
3.2. Fruit Yield Parameters
3.3. Fruit Quality Parameters
3.4. Uptake of Plant Nutrients
3.5. Water Use Efficiency (WUE)
3.6. Technique for the Order Preference by Similarity to an Ideal Solution (TOPSIS)
3.7. Correlation Analysis
3.8. Economics
4. Discussion
4.1. Plant Growth and Fruit Yield
4.2. Fruit Quality Attributes
4.3. Nutrient (NPK) Uptake
4.4. Water Use Eefficiency
4.5. Economic Benefit
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, N.P.; Bharadwaj, A.K.; Kumar, A.; Singh, K.M. Modern Technology on Vegetable Production; International Book Distribution Company: Lucknow, India, 2004; pp. 84–98. [Google Scholar]
- Doris, M.; Ehret, D.L.; Papandopoulos, A.P. Tomato (SolanIum lycopersicum) health component: From the seed to the consumer. Phytochem. Rev. 2008, 7, 231–250. [Google Scholar] [CrossRef]
- Bacalni, M.; Basaran, N.; Basaran, A. Lycopene: Is it Beneficial to Human Health as an Antioxidant? Turk. J. Pharm. Sci. 2017, 14, 311–318. [Google Scholar]
- Lin, M.; Srinivasan, R. Growing tomato under protected cultivation conditions: Overall effects on productivity, nutritional yield and pest incidences. Crops 2021, 1, 97–110. [Google Scholar]
- Khapte, P.S.; Kumar, P.; Saxena, A.; Singh, A. Performance evaluation and character association studies in arid region greenhouse tomato hybrids. Indian J. Hortic. 2018, 75, 457–462. [Google Scholar] [CrossRef]
- Kumar, P.; Khapte, P.; Saxena, A.; Singh, A.; Parwar, N. Intergeneric grafting for enhanced growth, yield and nutrient acquisition in greenhouse cucumber during winter. J. Environ. Biol. 2019, 40, 295–301. [Google Scholar] [CrossRef]
- Gariya, M.S.; Bhatt, L.; Uniyal, S.P.; Maurya, S.K. Optimization of planting geometry and water requirement through drip irrigation in sprouting broccoli. Res. Crops 2016, 17, 562–567. [Google Scholar] [CrossRef]
- FAO. High Level Expert Forum—Global Agriculture towards 2050. 2009. Available online: https://www.fao.org/ (accessed on 17 July 2022).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements); FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nation: Rome, Italy, 1998; p. 300. [Google Scholar]
- Debbarma, S.; Bhatt, L.; Singh, P.K.; Gautam, P.; Raghav, M.; Yadav, L.; Singh, A.K. Standardization of fertigation scheduling in broccoli (Brassica oleracea var italica). Indian J. Agric. Sci. 2021, 91, 1160–1164. [Google Scholar] [CrossRef]
- Savvas, D.; Ntatsi, G.; Barouchas, P.E. Soil conservation, soil fertility and plant nutrition management. In FAO Plant Production and Protection Paper: Good Agricultural Practices for Green House Vegetable Production in the South East European Countries; Food and Agriculture Organization of The United Nations: Rome, Italy, 2017; pp. 53–78. [Google Scholar]
- Ranganna, S. Manuals of Analysis of Fruits and Vegetable Products; Tata McGraw Hill Book Company: New Delhi, India, 1979; p. 1112. [Google Scholar]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for estimation of available nitrogen in acid soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Dean, L.A. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. In Methods of Soil Analysis: Part 2; Black, C.A., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA, 1957; pp. 1044–1046. [Google Scholar]
- Pratt, P.F. Potassium. In Methods of Soil Analysis. Chemical and Biological Properties: Part 2; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 1023–1030. [Google Scholar]
- Rangaswamy, R. A Textbook of Agricultural Statistics; New Age International (P) Ltd.: New Delhi, India, 2015; p. 329. [Google Scholar]
- Deng, H.; Yeh, C.H.; Willis, R.J. Inter-company comparison using modified TOPSIS with objective weights. Comp. Operat. Res. 2000, 27, 963–973. [Google Scholar] [CrossRef]
- Kakade, S.; Bhale, V.; Deshmukh, J.; Wadatkar, S. Growth, Nutrient uptake and seed cotton yield as influenced by split application of nutrients through fertigation in Bt cotton. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 2982–2990. [Google Scholar] [CrossRef] [Green Version]
- Sollapur, D.L.; Hiremath, S.M. Effects of planting geometry and fertilizer levels on growth and yield of hybrid brinjal. Int. J. Agric. Sci. 2017, 13, 97–100. [Google Scholar] [CrossRef]
- Tanaskovik, V.; Cukaliev, O.; Romic, D.; Ondrasek, G. The influence of drip fertigation on water use efficiency in tomato crop production. Agric. Conspec. Sci. 2011, 76, 57–63. [Google Scholar]
- Sato, S.; Peet, M.M.; Thomas, J.F. Physiological factors limit fruit set of tomato (Lycopersicin esculentum Mill.) under chronic, mild heat stress. Plant Cell Environ. 2000, 23, 719–726. [Google Scholar] [CrossRef]
- Khapte, P.S.; Kumar, P.; Singh, A.; Wakchaure, G.C.; Saxena, A.; Sabatino, L. Integrative Effect of Protective Structures and Irrigation Levels on Tomato Performance in Indian Hot-Arid Region. Plants 2022, 11, 2743. [Google Scholar] [CrossRef] [PubMed]
- Khapte, P.S.; Kumar, P.; Panwar, N.R.; Burman, U.; Rouphel, y.; Kumar, P. Combined influence of grafting and type of protected environment structure on agronomic and physiological traits of single and cluster bearing cucumber hybrids. Agronomy 2021, 11, 1604. [Google Scholar] [CrossRef]
- Adawadkar, M.; Deshmukh, M.; Wadatkar, S. Effect of drip fertigation with different fertilizer levels and traditional method of fertilizer application on growth and yield of brinjal. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 2793–2800. [Google Scholar] [CrossRef]
- Hebbar, S.; Ramachandrappa, B.; Nanjappa, H.; Prabhakar, M. Studies on NPK drip fertigation in field grown tomato (Lycopersicon esculentum Mill.). Eur. J. Agron. 2004, 21, 117–127. [Google Scholar] [CrossRef]
- Nangare, D.D.; Singh, Y.; Kumar, P.S.; Minhas, P.S. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phonological basis. Agric. Water Mang. 2016, 171, 73–79. [Google Scholar] [CrossRef]
- Sumathi, T.; Ponnuswami, V.; Thangamani, C.; Pugalendhi, L. Effect of shade and fertigation on quality of cucumber (Cucumis sativus L.). Plant Arch. 2011, 11, 275–279. [Google Scholar]
- Jeelani, J.; Katoch, K.K.; Sandal, S.K.; Gupta, R.K. Effect of Varying Drip Irrigation Levels and Different Methods of NPK Fertilizer Application on Soil Water Dynamics, Water use Efficiency and Yield of Broccoli (Brassica oleracea L. var. italica) in Wet Temperate Zone of Himachal Pradesh. Int. J. Pure Appl. Biosci. 2017, 5, 210–220. [Google Scholar] [CrossRef]
- Debbarma, S.; Bhatt, L. Nutrient uptake, soil nutrient status and water use efficiency as influenced by drip fertigation in broccoli (Brassica oleracea var. italica). J. Plant Nutr. 2022, 45, 674–685. [Google Scholar] [CrossRef]
- Ughade, S.R.; Tumbare, A.D.; Surve, U.S. Response of tomato to different fertigation levels and schedules under polyhouse. Int. J. Agric. Sci. 2016, 12, 76–80. [Google Scholar] [CrossRef]
- Sheeded, S.I.; Zaghloul, S.M.; Yaseen, A.A. Effect of method and rate of fertilizer application under drip irrigation on yield and nutrient uptake of tomato. Ozean J. App. Sci. 2009, 2, 139–147. [Google Scholar]
- Vankooten, O.; Heuvelink, E.; Stanghellini, C. New development in greenhouse technology can mitigate the water shortage problem in the 21st centuary. Acta Hortic. 2008, 767, 45–51. [Google Scholar] [CrossRef]
- Sagar, A.; Singh, P.K. Evaporation based micro irrigation scheduling of tomato crop under naturally ventilated polyhouse. Curr. J. Appl. Sci. Tech. 2019, 36, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Saxena, A.; Kumar, P.; Goyal, R.K.; Patel, N.; Khapte, P.S. Assessment of Water Productivity of Different Cropping Systems under Drip Irrigation in Arid Region of Western India. Ann. Arid Zone 2016, 55, 101–105. [Google Scholar]
- Kasyap, S.; Phookan, D.B.; Baruah, P.; Bhuyan, P. Effect of drip irrigation and polythene mulch on yield, quality, water use efficiency and economics of broccoli production. Indian J. Hortic. 2009, 66, 323–325. [Google Scholar]
- Edossa, D.C.; Emana, T.G. Interaction effects of drip irrigation level and planting method on water use efficiency, irrigation uniformity and yield in green pepper (Capsicum annuum L.). Philipp. Agric. Sci. 2011, 94, 350–358. [Google Scholar]
- Ankush; Sharma, S.K. Yield, quality, nutrient and water use efficiency of tomato as affected by different fertigation rates through drip irrigation system. India J. Agric. Res. 2017, 51, 478–482. [Google Scholar]
- Rathore, V.S.; Nathawat, N.S.; Bhardwaj, S.; Yadav, B.M.; Kumar, M.; Santra, P.; Kumar, P.; Reagar, M.L.; Yadav, N.D.; Yadav, O.P. Optimization of deficit irrigation and nitrogen fertilizer management for peanut production in an arid region. Sci. Rep. 2021, 11, 5456. [Google Scholar] [CrossRef]
A. Fertigation levels (recommended dose of fertilizers—RDF): 4 | |||||
1. F1—120% RDF | |||||
2. F2—100% RDF | |||||
3. F3—80% RDF | |||||
4. F4—60% RDF | |||||
B. Scheduling, i.e., delivery of NPK fertigation during growth stages: 3 | |||||
Growth Stage | No. of splits | Nutrients applied | |||
N | P2O5 | K2O | |||
S1 (Scheduling 1) | |||||
15–45 DAT (P1) | 4 | 15% of total N | 10% of total P2O5 | 10% of total K2O | |
46–76 DAT (P2) | 4 | 40% of total N | 40% of total P2O5 | 40% of total K2O | |
77–107 DAT (P3) | 4 | 30% of total N | 40% of total P2O5 | 40% of total K2O | |
108–138 DAT (P4) | 4 | 15% of total N | 10% of total P2O5 | 10% of total K2O | |
S2 (Scheduling 2) | |||||
15–45 DAT (P1) | 4 | 25% of total N | 25% of total P2O5 | 25% of total K2O | |
46–76 DAT (P2) | 4 | 25% of total N | 25% of total P2O5 | 25% of total K2O | |
77–107 DAT (P3) | 4 | 25% of total N | 25% of total P2O5 | 25% of total K2O | |
108–138 DAT (P4) | 4 | 25% of total N | 25% of total P2O5 | 25% of total K2O | |
S3 (Scheduling 3) | |||||
15–45 DAT (P1) | 4 | 20% of total N | 20% of total P2O5 | 20% of total K2O | |
46–76 DAT (P2) | 4 | 30% of total N | 30% of total P2O5 | 30% of total K2O | |
77–107 DAT (P3) | 4 | 30% of total N | 30% of total P2O5 | 30% of total K2O | |
108–138 DAT (P4) | 4 | 20% of total N | 20% of total P2O5 | 20% of total K2O |
Fertigation Levels | Total Water Applied through Drip Irrigation System (mm) | |
---|---|---|
2020–2021 (I Year) | 2021–2022 (II Year) | |
120% | 926.10 | 882.00 |
100% | 922.26 | 878.16 |
80% | 918.42 | 874.32 |
60% | 914.58 | 870.48 |
Control | 1060.02 | 1015.92 |
Treatments | Plant Height (cm) | |||||
---|---|---|---|---|---|---|
30 DAT | 60 DAT | 90 DAT | 120 DAT | 150 DAT | At Final Harvest | |
Fertigation levels | ||||||
F1: 120% of RDF | 77.1 a | 123.7 a | 172.3 a | 224.3 a | 274.7 a | 324.0 a |
F2: 100% of RDF | 74.6 ab | 121.0 a | 168.9 ab | 222.4 a | 270.0 a | 316.6 ab |
F3: 80% of RDF | 72.8 bc | 118.9 ab | 165.2 ab | 216.4 ab | 261.7 b | 305.6 bc |
F4: 60% of RDF | 70.6 c | 114.5 b | 161.2 b | 209.9 b | 254.7 b | 295.0 c |
sEm ± | 1.27 | 2.22 | 2.72 | 3.67 | 4.41 | 5.32 |
LSD (5%) | 3.70 | 6.48 | 7.93 | 10.72 | 12.87 | 15.52 |
Scheduling | ||||||
S1: Scheduling 1 # | 74.8 a | 123.1 a | 171.3 a | 223.81 a | 273.5 a | 320.6 a |
S2: Scheduling 2 | 72.9 a | 116.0 b | 162.4 b | 212.0 b | 257.0 b | 298.2 b |
S3: Scheduling 3 | 73.85 a | 119.4 ab | 167.0 ab | 219.0 ab | 265.4 ab | 312.1 a |
sEm ± | 1.10 | 1.92 | 2.35 | 3.18 | 3.82 | 4.60 |
LSD (5%) | NS | 5.61 | 6.87 | 9.29 | 11.15 | 13.44 |
Control vs. Rest | ||||||
Control | 65.3 b | 111.3 a | 156.6 a | 204.5 a | 245.8 a | 281.8 b |
Rest | 73.8 a | 119.5 a | 166.9 a | 218.3 a | 265.38 a | 310.3 a |
sEm ± | 2.29 | 4.00 | 4.90 | 6.62 | 7.95 | 9.58 |
LSD (5%) | 6.67 | NS | NS | NS | NS | 27.97 |
Interaction (F × S) | ||||||
sEm ± | 2.19 | 3.84 | 4.7 | 6.36 | 7.64 | 9.20 |
LSD (5%) | NS | NS | NS | NS | NS | NS |
Treatments | Number of Side Shoots Plant−1 | |||||
---|---|---|---|---|---|---|
30 DAT | 60 DAT | 90 DAT | 120 DAT | 150 DAT | At Final Harvest | |
Fertigation levels (F) | ||||||
F1: 120% of RDF | 2.36 a | 6.17 a | 10.65 a | 14.21 a | 18.27 a | 22.31 a |
F2: 100% of RDF | 2.30 a | 5.92 ab | 10.21 a | 13.97 ab | 16.76 ab | 20.82 ab |
F3: 80% of RDF | 2.18 a | 5.64 bc | 9.94 ab | 12.65 bc | 16.04 b | 19.72 b |
F4: 60% of RDF | 2.11 a | 5.39 c | 9.30 b | 12.15 c | 14.97 b | 19.19 b |
sEm ± | 0.10 | 0.15 | 0.25 | 0.47 | 0.62 | 0.58 |
LSD (5%) | NS | 0.44 | 0.72 | 1.38 | 1.82 | 1.68 |
Scheduling (S) | ||||||
S1: Scheduling 1 # | 2.28 a | 6.15 a | 10.58 a | 13.91 a | 17.68 a | 21.57 a |
S2: Scheduling 2 | 2.19 a | 5.43 b | 9.65 b | 12.31 b | 15.36 b | 19.38 b |
S3: Scheduling 3 | 2.24 a | 5.77 ab | 9.85 b | 13.51 a | 16.49 ab | 20.59 ab |
sEm ± | 0.08 | 0.13 | 0.21 | 0.41 | 0.54 | 0.50 |
LSD (5%) | NS | 0.38 | 0.63 | 1.19 | 1.57 | 1.45 |
Control vs. Rest | ||||||
Control | 1.92 a | 4.81 b | 8.90 a | 10.76 a | 13.70 a | 17.50 a |
Rest | 2.24 a | 5.78 a | 10.02 a | 13.24 a | 16.51 a | 20.51 a |
sEm ± | 0.18 | 0.27 | 0.45 | 0.85 | 1.12 | 1.04 |
LSD (5%) | NS | 0.80 | NS | NS | NS | NS |
Interaction (F × S) | ||||||
sEm ± | 0.16 | 0.26 | 0.42 | 0.81 | 1.07 | 0.99 |
LSD (5%) | NS | NS | NS | NS | NS | NS |
Treatments | No. of Flower Clusters Plant−1 | No. of Fruits Plant−1 | Average Fruit Weight (g) | Yield (t ha−1) |
---|---|---|---|---|
Fertigation levels (F) | ||||
F1: 120% of RDF | 19.8 a | 63.9 | 97.7 ab | 177.7 ab |
F2: 100% of RDF | 19.1 a | 66.6 a | 102.3 a | 182.0 a |
F3: 80% of RDF | 18.0 b | 60.6 ab | 94.0 bc | 171.3 b |
F4: 60% of RDF | 17.1 b | 57.8 b | 87.0 c | 161.9 c |
sEm ± | 0.36 | 1.42 | 1.94 | 2.99 |
LSD (5%) | 1.05 | 4.14 | 5.67 | 8.72 |
Scheduling (S) | ||||
S1: Scheduling 1 # | 19.1 a | 64.9 a | 100.3 a | 180.4 a |
S2: Scheduling 2 | 17.6 b | 59.6 b | 90.3 b | 164.7 b |
S3: Scheduling 3 | 18.1 b | 62.1 ab | 95.2 b | 174.1 a |
sEm ± | 0.31 | 1.23 | 1.68 | 2.59 |
LSD (5%) | 0.91 | 3.59 | 4.91 | 7.55 |
Control vs. Rest | ||||
Control | 15.1 b | 54.3 b | 78.7 b | 145.2 b |
Rest | 18.5 a | 62.2 a | 95.3 a | 173.7 a |
sEm ± | 0.65 | 2.56 | 3.50 | 5.38 |
LSD (5%) | 1.90 | 7.47 | 10.22 | 15.71 |
Interaction (F × S) | ||||
sEm ± | 0.62 | 2.45 | 3.36 | 5.17 |
LSD (5%) | NS | NS | NS | NS |
Treatments | TSS (°Brix) | Ascorbic Acid (mg 100 mL−1) |
---|---|---|
Fertigation Levels (F) | ||
F1: 120% of RDF | 11.45 a | 26.30 a |
F2: 100% of RDF | 10.51 b | 25.25 ab |
F3: 80% of RDF | 10.09 bc | 25.03 b |
F4: 60% of RDF | 9.80 c | 24.52 b |
sEm ± | 0.21 | 0.43 |
LSD (5%) | 0.62 | 1.25 |
Scheduling (S) | ||
S1: Scheduling 1 # | 10.46 a | 25.45 a |
S2: Scheduling 2 | 10.46 a | 25.13 a |
S3: Scheduling 3 | 10.47 a | 25.25 a |
sEm ± | 0.18 | 0.37 |
LSD (5%) | NS | NS |
Control vs. Rest | ||
Control | 8.52 b | 23.25 a |
Rest | 10.46 a | 25.27 a |
sEm ± | 0.38 | 0.77 |
LSD (5%) | 1.11 | NS |
Interaction (F × S) | ||
sEm ± | 0.36 | 0.74 |
LSD (5%) | NS | NS |
Treatments | Nitrogen Uptake (kg ha−1) | Phosphorus Uptake (kg ha−1) | Potassium Uptake (kg ha−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Vegetative Stage | Flowering Stage | Fruiting Stage | Harvesting Stage | Vegetative Stage | Flowering Stage | Fruiting Stage | Harvesting Stage | Vegetative Stage | Flowering Stage | Fruiting Stage | Harvesting Stage | |
Fertigation levels (F) | ||||||||||||
F1: 120% of RDF | 61.6 a | 101.5 a | 131.3 a | 154.4 a | 18.3 a | 22.3 a | 29.5 a | 34.4 a | 35.5 a | 44.5 a | 66.6 a | 78.9 a |
F2: 100% of RDF | 55.1 b | 94.9 b | 124.8 a | 147.8 a | 15.4 b | 19.4 b | 26.6 b | 31.5 b | 32.6 b | 42.5 b | 63.9 ab | 74.8 ab |
F3: 80% of RDF | 45.9 c | 85.7 c | 115.5 b | 138.5 b | 12.5 c | 16.5 c | 23.7 c | 29.3 c | 29.7 c | 40.5 c | 60.6 bc | 71.8 bc |
F4: 60% of RDF | 38.3 d | 78.1 d | 108.0 c | 131.0 c | 9.5 d | 13.5 d | 20.7 d | 25.6 d | 26.7 d | 38.6 d | 57.8 c | 68.7 c |
sEm ± | 1.08 | 1.64 | 2.45 | 2.40 | 0.382 | 0.38 | 0.61 | 0.45 | 0.45 | 0.51 | 1.42 | 1.54 |
LSD (5%) | 3.15 | 4.78 | 7.14 | 7.01 | 1.116 | 1.12 | 1.78 | 1.30 | 1.60 | 1.51 | 4.14 | 4.50 |
Scheduling (S) | ||||||||||||
S1: Scheduling 1 # | 52.8 a | 92.7 a | 122.5 a | 145.5 a | 15.8 a | 19.8 a | 27.0 a | 32.0 a | 32.9 a | 42.2 a | 64.9 a | 76.2 a |
S2: Scheduling 2 | 45.8 b | 85.6 b | 115.4 b | 138.5 b | 11.9 c | 15.9 c | 23.1 c | 28.4 c | 29.1 c | 40.9 a | 59.6 b | 71.4 b |
S3: Scheduling 3 | 52.0 a | 91.8 a | 121.8 a | 144.7 a | 14.1 b | 18.1 b | 25.3 b | 30.2 b | 31.3 b | 41.5 a | 62.1 ab | 73.1 ab |
sEm ± | 0.94 | 1.42 | 2.12 | 2.08 | 0.33 | 0.33 | 0.53 | 0.39 | 0.39 | 0.45 | 1.23 | 1.34 |
LSD (5%) | 2.73 | 4.14 | 6.19 | 6.07 | 0.97 | 0.97 | 1.54 | 1.13 | 1.38 | NS | 3.59 | 3.90 |
Control vs. Rest | ||||||||||||
Control | 40.7 b | 80.6 b | 110.4 a | 133.4 a | 5.8 b | 9.8 b | 17.0 b | 21.9 b | 23.0 b | 35.2 b | 54.3 b | 67.8 b |
Rest | 50.2 a | 90.0 a | 119.9 a | 142.9 a | 13.9 a | 17.9 a | 25.1 a | 30.2 a | 31.1 a | 41.5 a | 62.2 a | 73.6 a |
sEm ± | 1.95 | 2.95 | 4.41 | 4.33 | 0.69 | 0.69 | 1.10 | 0.80 | 0.99 | 0.93 | 2.56 | 2.78 |
LSD (5%) | 5.68 | 8.62 | NS | NS | 2.01 | 2.01 | 3.21 | 2.35 | 2.88 | 2.71 | 7.47 | 8.11 |
Interaction (F × S) | ||||||||||||
sEm ± | 5.45 | 8.27 | 12.37 | 4.15 | 1.93 | 1.93 | 3.08 | 2.25 | 0.77 | 0.89 | 2.45 | 7.79 |
LSD (5%) | NS | NS | NS | NS | NS | Ns | NS | NS | NS | NS | NS | NS |
Treatments | Water Use Efficiency (kg ha−1 mm−1) | |
---|---|---|
(2020–2021) | (2021–2022) | |
Fertigation Levels (F) | ||
F1: 120% of RDF | 190.0 ab | 201.8 ab |
F2: 100% of RDF | 195.2 a | 209.5 a |
F3: 80% of RDF | 184.0 b | 198.7 b |
F4: 60% of RDF | 174.9 c | 187.3 c |
sEm ± | 2.94 | 3.03 |
LSD (5%) | 8.60 | 8.80 |
Scheduling (S) | ||
S1: Scheduling 1 # | 193.0 a | 207.3 a |
S2: Scheduling 2 | 176.7 b | 190.2 c |
S3: Scheduling 3 | 186.5 a | 198.1 b |
sEm ± | 2.55 | 2.71 |
LSD (5%) | 7.44 | 7.62 |
Control vs. Rest | ||
Control | 144.3 b | 153.6 b |
Rest | 186.5 a | 199.3 a |
sEm ± | 5.31 | 5.44 |
LSD (5%) | 15.50 | 15.87 |
Interaction (F × S) | ||
sEm ± | 5.1 | 5.2 |
LSD (5%) | NS | NS |
Treatments | V1 | V2 | V3 | V4 | V5 | Vi+ | Vi− | Ci | Rank |
---|---|---|---|---|---|---|---|---|---|
F1S1 | 0.30 | 0.29 | 1.31 | 0.30 | 0.36 | 0.023 | 0.153 | 0.866 | 3 |
F1S2 | 0.29 | 0.27 | 1.21 | 0.28 | 0.27 | 0.033 | 0.183 | 0.845 | 7 |
F1S3 | 0.28 | 0.29 | 1.21 | 0.29 | 0.28 | 0.030 | 0.174 | 0.851 | 6 |
F2S1 | 0.30 | 0.31 | 1.34 | 0.31 | 0.30 | 0.003 | 0.055 | 0.947 | 1 |
F2S2 | 0.29 | 0.29 | 1.23 | 0.30 | 0.29 | 0.024 | 0.156 | 0.864 | 4 |
F2S3 | 0.31 | 0.29 | 1.33 | 0.28 | 0.29 | 0.014 | 0.119 | 0.893 | 2 |
F3S1 | 0.28 | 0.29 | 1.23 | 0.29 | 0.29 | 0.028 | 0.170 | 0.854 | 5 |
F3S2 | 0.26 | 0.26 | 1.18 | 0.26 | 0.25 | 0.056 | 0.238 | 0.807 | 11 |
F3S3 | 0.28 | 0.26 | 1.17 | 0.29 | 0.27 | 0.045 | 0.213 | 0.824 | 9 |
F4S1 | 0.27 | 0.27 | 1.21 | 0.28 | 0.27 | 0.042 | 0.205 | 0.829 | 8 |
F4S2 | 0.23 | 0.24 | 0.97 | 0.24 | 0.23 | 0.093 | 0.305 | 0.765 | 12 |
F4S3 | 0.27 | 0.27 | 1.14 | 0.26 | 0.26 | 0.050 | 0.225 | 0.816 | 10 |
Control | 0.23 | 0.24 | 1.00 | 0.24 | 0.21 | 0.093 | 0.305 | 0.765 | 13 |
Z+ | 0.31 | 0.31 | 1.34 | 0.31 | 0.36 | ||||
Z− | 0.23 | 0.24 | 0.97 | 0.24 | 0.21 |
Variables | PH | NSS | NFCP | NFP | AFW | FY | TSS | AA | WUE |
---|---|---|---|---|---|---|---|---|---|
PH | 1 | 0.474 ** | 0.591 ** | 0.623 ** | 0.479 ** | 0.584 ** | 0.541 ** | 0.175 | 0.608 ** |
NSS | 1 | 0.427 ** | 0.461 ** | 0.407 * | 0.469 ** | 0.450 ** | 0.381 * | 0.479 ** | |
NFCP | 1 | 0.669 ** | 0.782 ** | 0.565 ** | 0.523 ** | 0.427 ** | 0.647 ** | ||
NFP | 1 | 0.730 ** | 0.672 ** | 0.415 ** | 0.393 * | 0.608 ** | |||
AFW | 1 | 0.606 ** | 0.444 ** | 0.396 * | 0.659 ** | ||||
FY | 1 | 0.320 * | 0.522 ** | 0.805 ** | |||||
TSS | 1 | 0.289 | 0.373 * | ||||||
AA | 1 | 0.557 ** | |||||||
WUE | 1 |
Fertigation Levels | Cost of Cultivation (Rs.) | Gross Return (Rs.) | ||||||
---|---|---|---|---|---|---|---|---|
Scheduling | Scheduling | |||||||
S1 | S2 | S3 | Mean | S1 | S2 | S3 | Mean | |
F1: 120% of RDF | 63,065.5 | 66,776.7 | 65,676.7 | 65,173.0 | 177,050 | 170,550 | 174,550 | 174,050.0 |
F2: 100% of RDF | 62,752.9 | 66,464.1 | 65,364.1 | 64,860.4 | 182,400 | 176,850 | 178,400 | 179,216.7 |
F3: 80% of RDF | 62,058.6 | 65,769.8 | 64,670.0 | 64,166.1 | 171,100 | 154,900 | 167,150 | 164,383.3 |
F4: 60% of RDF | 61,143.9 | 64,855.3 | 63,755.2 | 63,251.5 | 161,650 | 141,150 | 158,650 | 153,816.7 |
Mean | 62,255.2 | 65,966.5 | 64,866.5 | 173,050 | 160,862 | 169,687 | ||
Control | 67,520.80 | 134,800 | ||||||
Treatments | Net return | B:C ratio | ||||||
Scheduling | Scheduling | |||||||
Fertigation levels | S1 | S2 | S3 | Mean | S1 | S2 | S3 | Mean |
F1: 120% of RDF | 113,984.50 | 103,773.30 | 108,873.30 | 108,877.03 | 2.81 | 2.55 | 2.66 | 2.67 |
F2: 100% of RDF | 117,347.12 | 110,385.92 | 113,035.92 | 113,589.65 | 2.91 | 2.66 | 2.73 | 2.76 |
F3: 80% of RDF | 109,041.38 | 88,635.18 | 102,480.47 | 100,052.34 | 2.76 | 2.35 | 2.58 | 2.56 |
F4: 60% of RDF | 128,006.06 | 76,294.81 | 94,894.81 | 99,731.89 | 2.64 | 2.17 | 2.48 | 2.43 |
Mean | 117,094.77 | 94,772.30 | 104,821.12 | 2.78 | 2.43 | 2.61 | ||
Control | 67,279.20 | 1.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rawat, S.; Bhatt, L.; Singh, P.K.; Gautam, P.; Kumar Maurya, S.; Priyanka; Sabatino, L.; Kumar, P. Combinatorial Effect of Fertigation Rate and Scheduling on Tomato Performance under Naturally Ventilated Polyhouse in Indian Humid Sub-Tropics. Agronomy 2023, 13, 665. https://doi.org/10.3390/agronomy13030665
Rawat S, Bhatt L, Singh PK, Gautam P, Kumar Maurya S, Priyanka, Sabatino L, Kumar P. Combinatorial Effect of Fertigation Rate and Scheduling on Tomato Performance under Naturally Ventilated Polyhouse in Indian Humid Sub-Tropics. Agronomy. 2023; 13(3):665. https://doi.org/10.3390/agronomy13030665
Chicago/Turabian StyleRawat, Sonam, Lalit Bhatt, Pramod Kumar Singh, Poonam Gautam, Suresh Kumar Maurya, Priyanka, Leo Sabatino, and Pradeep Kumar. 2023. "Combinatorial Effect of Fertigation Rate and Scheduling on Tomato Performance under Naturally Ventilated Polyhouse in Indian Humid Sub-Tropics" Agronomy 13, no. 3: 665. https://doi.org/10.3390/agronomy13030665
APA StyleRawat, S., Bhatt, L., Singh, P. K., Gautam, P., Kumar Maurya, S., Priyanka, Sabatino, L., & Kumar, P. (2023). Combinatorial Effect of Fertigation Rate and Scheduling on Tomato Performance under Naturally Ventilated Polyhouse in Indian Humid Sub-Tropics. Agronomy, 13(3), 665. https://doi.org/10.3390/agronomy13030665