Shedding Light on Dasineura oleae Parasitoids: Local and Landscape Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Parasitoid Trapping and Identification
2.3. Landscape Features Assessment
2.4. Dasineura oleae Density and Parasitism Rate
2.5. Statistical Analysis
2.5.1. Difference in Parasitoid Abundance among Sampling Sites
2.5.2. Landscape and Local Effects
2.5.3. Correlation between Parasitism Rate and Pest Suppression
3. Results
3.1. Difference in Parasitoid Abundance among Sampling Sites
3.2. Local and Landscape Effects on the Olive Orchard Parasitoid Community and on Dasineura oleae Parasitoids
3.3. Dasineura oleae Density and Parasitism Rate
4. Discussion
4.1. Dasineura oleae Parasitoids in the Olive Orchards
4.2. Local and Landscape Features on D. oleae Parasitoids and on the Overall Parasitoid Community
4.3. Relationship between Dasineura oleae Density and Its Parasitoids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caselli, A.; Petacchi, R. Climate change and major pests of mediterranean olive orchards: Are we ready to face the global heating? Insects 2021, 12, 802. [Google Scholar] [CrossRef] [PubMed]
- Cimato, A.; Attilio, C. Worldwide diffusion and relevance of olive culture. In Olive Diseases and Disorders; Schena, L., Agosteo, G.E., Cacciola, S., Eds.; Transworld Research NetWork: Trivandrum, India, 2011; pp. 1–21. [Google Scholar]
- Skuhravá, M.; Skuhravý, V. Species richness of gall midges (diptera: Cecidomyiidae) in Europe (west palaearctic): Biogeography and coevolution with host plants. Acta Soc. Zool. Bohem. 2009, 73, 87–156. [Google Scholar]
- Arambourg, Y. Traite d’entomologie Oleicole; Consejo Oleicola Internacional Madrid: Madrid, Spain, 1986. [Google Scholar]
- Batta, Y. New findings on infestation and phenology of Dasineura oleae angelini (Diptera, cecidomyiidae): An emerging pest on olive trees in the palestinian territories. J. Plant Dis. Prot. 2018, 126, 55–66. [Google Scholar] [CrossRef]
- Perdikis, D.; Arvaniti, Κ.; Malliaraki, S.; Aggelaki, A. The outbreak of the olive leaf gall midge populations and the importance of indigenous natural enemies in its control. IOBC-WPRS Bull. 2017, 121, 119–122. [Google Scholar]
- Simoglou, K.B.; Karataraki, A.; Roditakis, N.E.; Roditakis, E. Euzophera bigella (Zeller) (Lepidoptera: Pyralidae) and Dasineura oleae (F. Low) (Diptera: Cecidomyiidae): Emerging olive crop pests in the mediterranean? J. Pest Sci. 2012, 85, 169–177. [Google Scholar] [CrossRef]
- Tondini, E.; Petacchi, R. First observations on the parasitoid complex and on the biology of Dasineura oleae during an outbreak in Tuscany, Italy. Bull. Insectol. 2019, 72, 93–102. [Google Scholar]
- Picchi, M.S.; Tondini, E.; Albertarelli, N.; Monteforti, G.; Petacchi, R. Following the pest outbreak: Preliminary findings on the landscape effect on Dasineura oleae and its parasitoids in central Italy. Phytoparasitica 2022, 50, 375–389. [Google Scholar] [CrossRef]
- Caselli, A.; Francini, A.; Minnocci, A.; Petacchi, R. Dasineura oleae: Morphological and physiological characterization following the midge attack on olive leaves. J. Plant Dis. Prot. 2020, 128, 173–182. [Google Scholar] [CrossRef]
- He, X.Z.; Wang, Q. Phenological dynamics of Dasineura mali (Diptera: Cecidomyiidae) and its parasitoid Platygaster demades (Hymenoptera: Platygasteridae) in apple orchards. J. Econ. Entomol. 2011, 104, 1640–1646. [Google Scholar] [CrossRef] [PubMed]
- Ogah, E.O.; Odebiyi, J.; Omoloye, A.; Nwilene, F. A Developmental biology and field performance of platygaster diplosisae risbec (Hymn: Platygasteridae) an egg-larval parasitoid of African rice gall midge Orseolia oryzivora harris and gagné (Diptera: Cecidoymiidae). Afr. J. Environ. Sci. Technol. 2011, 5, 950–955. [Google Scholar] [CrossRef]
- Sampson, B.J.; Roubos, C.R.; Stringer, S.J.; Marshall, D.; Liburd, O.E. Biology and efficacy of aprostocetus (Eulophidae: Hymenoptera) as a parasitoid of the blueberry gall midge complex: Dasineura oxycoccana and prodiplosis vaccinii (Diptera: Cecidomyiidae). J. Econ. Entomol. 2013, 106, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benelli, G.; Giunti, G.; Tena, A.; Desneux, N.; Caselli, A.; Canale, A. The impact of adult diet on parasitoid reproductive performance. J. Pest Sci. 2017, 90, 807–823. [Google Scholar] [CrossRef]
- Inclán, D.J.; Cerretti, P.; Gabriel, D.; Benton, T.G.; Sait, S.M.; Kunin, W.E.; Gillespie, M.A.K.; Marini, L. Organic farming enhances parasitoid diversity at the local and landscape scales. J. Appl. Ecol. 2015, 52, 1102–1109. [Google Scholar] [CrossRef]
- Menalled, F.D.; Marino, P.C.; Gage, S.H.; Landis, D.A.; Applications, S.E.; May, N. Does agricultural landscape structure affect parasitism and parasitoid diversity? Ecol. Aplicat. 2015, 9, 634–641. [Google Scholar] [CrossRef]
- Pak, D.; Iverson, A.L.; Ennis, K.K.; Gonthier, D.J.; Vandermeer, J.H. Parasitoid wasps benefit from shade tree size and landscape complexity in Mexican coffee agroecosystems. Agric. Ecosyst. Environ. 2015, 206, 21–32. [Google Scholar] [CrossRef]
- Bezemer, T.M.; Mills, N.J. Host density responses of mastrus ridibundus, a parasitoid of the codling moth, Cydia pomonella. Biol. Control 2001, 22, 169–175. [Google Scholar] [CrossRef]
- Gunton, R.M.; Pöyry, J. Scale-specific spatial density dependence in parasitoids: A multi-factor meta-analysis. Funct. Ecol. 2016, 30, 1501–1510. [Google Scholar] [CrossRef] [Green Version]
- Hassell, M.P. Host-parasitoid population dynamics. J. Anim. Ecol. 2000, 69, 543–566. [Google Scholar] [CrossRef]
- Umbanhowar, J.; Maron, J.; Harrison, S. Density-dependent foraging behaviors in a parasitoid lead to density-dependent parasitism of its host. Oecologia 2003, 137, 123–130. [Google Scholar] [CrossRef]
- Heimpel, G.; Casas, J. Parasitoid foraging and oviposition behavior in the field. In Behavioral Ecology of Insect Parasitoids; Blackwell: Oxford, UK, 2008; pp. 51–70. [Google Scholar]
- Paull, C.A.; Schellhorn, N.A.; Austin, A.D. Response to host density by the parasitoid Dolichogenidea tasmanica (Hymenoptera: Braconidae) and the influence of grapevine variety. Bull. Entomol. Res. 2014, 104, 79–87. [Google Scholar] [CrossRef]
- Hatt, S.; Uyttenbroeck, R.; Lopes, T.; Chen, J.L.; Piqueray, J.; Monty, A.; Francis, F. Effect of flower traits and hosts on the abundance of parasitoids in perennial multiple species wildflower strips sown within oilseed rape (Brassica napus) crops. Arthropod. Plant. Interact. 2018, 12, 787–797. [Google Scholar] [CrossRef] [Green Version]
- Wäckers, F.L. Assessing the suitability of flowering herbs as parasitoid food sources: Flower attractiveness and nectar accessibility. Biol. Control 2004, 29, 307–314. [Google Scholar] [CrossRef]
- Clavijo McCormick, A.; Unsicker, S.B.; Gershenzon, J. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci. 2012, 17, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Hare, J.D. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu. Rev. Entomol. 2011, 56, 161–180. [Google Scholar] [CrossRef] [PubMed]
- Mithöfer, A.; Boland, W. Plant defense against herbivores: Chemical aspects. Annu. Rev. Plant Biol. 2012, 63, 431–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaplin-Kramer, R.; O’Rourke, M.E.; Blitzer, E.J.; Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 2011, 14, 922–932. [Google Scholar] [CrossRef]
- Picchi, M.S.; Bocci, G.; Petacchi, R.; Entling, M.H. Effects of local and landscape factors on spiders and olive fruit flies. Agric. Ecosyst. Environ. 2016, 222, 138–147. [Google Scholar] [CrossRef]
- Bianchi, F.J.J.A.; Booij, C.J.H.; Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B Biol. Sci. 2006, 273, 1715–1727. [Google Scholar] [CrossRef] [Green Version]
- Ingrao, A.J.; Schmidt, J.; Jubenville, J.; Grode, A.; Komondy, L.; VanderZee, D.; Szendrei, Z. Biocontrol on the edge: Field margin habitats in asparagus fields influence natural enemy-pest interactions. Agric. Ecosyst. Environ. 2017, 243, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Tscharntke, T.; Rand, T.A.; Bianchi, F.J.J.A.; Annales, S.; Fennici, Z.; Ecology, S.; Herbivorous, O.F.; Tschamtke, T.; Rand, T.A.; Bianchi, F.J.J.A. The landscape context of trophic interactions: Insect spillover across the crop—Noncrop interface. Ann. Zool. Fennici 2005, 42, 421–432. [Google Scholar]
- Rusch, A.; Chaplin-Kramer, R.; Gardiner, M.M.; Hawro, V.; Holland, J.; Landis, D.; Thies, C.; Tscharntke, T.; Weisser, W.W.; Winqvist, C.; et al. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agric. Ecosyst. Environ. 2016, 221, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Veres, A.; Petit, S.; Conord, C.; Lavigne, C. Does landscape composition affect pest abundance and their control by natural enemies? A review. Agric. Ecosyst. Environ. 2013, 166, 110–117. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; Kremen, C. Pest control experiments show benefits of complexity at landscape and local scales. Ecol. Appl. 2012, 22, 1936–1948. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, M.; Straub, C.S.; Didham, R.K.; Buckley, H.L.; Case, B.S.; Hale, R.J.; Gratton, C.; Wratten, S.D. Experimental evidence that the effectiveness of conservation biological control depends on landscape complexity. J. Appl. Ecol. 2015, 52, 1274–1282. [Google Scholar] [CrossRef]
- Thies, C.; Tscharntke, T. Landscape structure and biological control in agroecosystems. Science 1999, 285, 893–895. [Google Scholar] [CrossRef]
- Karp, D.S.; Chaplin-Kramer, R.; Meehan, T.D.; Martin, E.A.; DeClerck, F.; Grab, H.; Gratton, C.; Hunt, L.; Larsen, A.E.; Martínez-Salinas, A.; et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. USA 2018, 115, E7863–E7870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghahari, H.; Buhl, P.N. Check-list of Iranian platygastridae (hymenoptera, platygastroidea). Entomofauna 2011, 32, 329–336. [Google Scholar]
- Miller, D. Parasites of the pear midge (Peyysia pyri): First attempt at the establishment in New Zealand. N. Z. J. Agric. Res. 1926, 31, 379–393. [Google Scholar]
- Todd, D.H. A preliminary account of Dasyneura mali kieffer (Cecidomyiidae: Dipt.) and an associated hymenopterous parasite in New Zealand. N. Z. J. Sci. Technol. 1956, 37, 462–464. [Google Scholar]
- Batta, Y.; Doǧanlar, M. Olive leaf gall midge (Dasineura oleae angelini, diptera, cecidomyiidae): Determination of olive tree infestation rates and quantification of parasitism by indigenous parasitoids. J. Plant Dis. Prot. 2020, 127, 91–101. [Google Scholar] [CrossRef]
- Doǧanlar, M. Parasitoids complex of the olive leaf gall midges, Dasineura oleae (Angelini 1831) and Lasioptera oleicola Skuhrava, 2011. Turk. J. Entomol. 2011, 35, 245–264. [Google Scholar]
- Askew, R.R. Observations on the hosts and host food plants of some Pteromalidae (hym., chalcidoidea). Entomophaga 1970, 15, 379–385. [Google Scholar] [CrossRef]
- Askew, R.R.; Blasco Zumeta, J.; Pujade Villar, J. Chalcidoidea y Mymarommatoidea (Hymenoptera) de un sabinar de Juniperus thurifera L. en los Monegros, Zaragoza. Soc. Entomol. Aragon. 2001, 4, 76. [Google Scholar]
- Herting, B. Neuroptera, Diptera, Siphonaptera. In A Catalogue of Parasites and Predators of Terrestrial Arthropods. Section A. Host or Prey/Enemy; Commonwealth Agricultural Bureaux, Commonwealth Institute of Biological Control: Farnham Royal, UK, 1978; pp. 5–123. [Google Scholar]
- Askew, R.R.; Melika, G.; Pujade-Villar, J.; Schönrogge, K.; Stone, G.N.; Nieves-Aldrey, J.L. Catalogue of parasitoids and inquilines in cynipid oak galls in the west palaearctic. Zootaxa 2013, 3643, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, J.U.; Hagen, S.B.; Ims, R.A.; Yoccoz, N.G. Climate change and outbreaks of the geometrids Operophtera brumata and epirrita autumnata in subarctic birch forest: Evidence of a recent outbreak range expansion. J. Anim. Ecol. 2008, 77, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Gravano, E.; Bertini, S.; Mori, P. Rapporto Sullo Stato Delle Foreste in Toscana 2016; Compagnia delle Foreste S.r.l.: Arezzo, Italy, 2018; ISBN 9788898850303. [Google Scholar]
- Eunis Habitat Classification. Available online: https://www.eea.europa.eu/data-and-maps/data/eunis-habitat-classification-1 (accessed on 10 December 2022).
- Braun-Blanquet, J. Plant Sociology: The Study of Plant Communities; McGraw-Hill: New York, NY, USA, 1932. [Google Scholar]
- Fraser, S.E.M.; Dytham, C.; Mayhew, P.J. The effectiveness and optimal use of malaise traps for monitoring parasitoid wasps. Insect Conserv. Divers. 2008, 1, 22–31. [Google Scholar] [CrossRef]
- Hagvar, E.B.; Hofsvang, T.; Trandem, N.; Grendstad Saeterbo, K. Six-year malaise trapping of the leaf miner Chromatomyia fuscula (Diptera: Agromyzidae) and its chalcidoid parasitoid complex in a barley field and its boundary. Eur. J. Entomol. 1998, 95, 529–543. [Google Scholar]
- Skvarla, M.J.; Larson, J.L.; Fisher, J.R.; Dowling, A.P. A review of terrestrial and canopy malaise traps. Ann. Entomol. Soc. Am. 2020, 114, 27–47. [Google Scholar] [CrossRef]
- Goulet, H.; Huber, J.T. Hymenoptera of the World: An Identification Guide to Families; Agriculture Canada: Ottawa, ON, Canada, 1993; ISBN 00660-14933-8. [Google Scholar]
- Noyes Universal Chalcidoidea Database. Available online: https://www.nhm.ac.uk/our-science/data/chalcidoids/database/ (accessed on 30 September 2022).
- GEOSCOPIO. Available online: https://www.regione.toscana.it/-/geoscopio-wms (accessed on 30 September 2022).
- Magagnoli, S.; Tondini, E.; Ratti, C.; Burgio, G.; Petacchi, R. A new PCR based molecular method for early and precise quantification of parasitization in the emerging olive pest Dasineura oleae. Pest Manag. Sci. 2022, 78, 1842–1849. [Google Scholar] [CrossRef] [PubMed]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. 2019. Available online: http://www.sthda.com/english/rpkgs/factoextra (accessed on 10 December 2022).
- Le, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. 2019. Available online: https://cran.r-project.org/package=vegan (accessed on 10 December 2022).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. [Google Scholar]
- Harrison, X.A. Using observation-level randomeffects to model overdispersion in count data in ecology and evolution. PeerJ 2014, 2, e616. [Google Scholar] [CrossRef] [Green Version]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Maechler, M.; Bolker, B.M. GlmmTMB balances speed and flexibility among packages for zero-inflated generalized. Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef] [Green Version]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Belcari, A.; Dagnino, A. Preliminary study of the insects caught by a ‘“malaise”’ trap in an olive grove in Northern Tuscany. Agric. Mediterr. 1995, 125, 184–192. [Google Scholar]
- Rodríguez, E.; González, B.; Campos, M. Natural enemies associated with cereal cover crops in olive groves. Bull. Insectol. 2012, 65, 43–49. [Google Scholar]
- Gharbi, N.; Dibo, A.; Ksantini, M. Observation of arthropod populations during outbreak of olive psyllid Euphyllura olivina in Tunisian olive groves. Tunis. J. Plant Prot. 2012, 7, 27–34. [Google Scholar]
- Paredes, D.; Cayuela, L.; Campos, M. Synergistic effects of ground cover and adjacent vegetation on natural enemies of olive insect pests. Agric. Ecosyst. Environ. 2013, 173, 72–80. [Google Scholar] [CrossRef]
- Hajek, A.; Eilenberg, J. Natural Enemies: An Introduction to Biological; Cambridge University: Cambridge, UK, 2018. [Google Scholar]
- Tondini, E.; Petacchi, R. Laboratory rearing of Dasineura oleae parasitoids, 2018, Unpubished raw data. Unpubished raw data. 2018. [Google Scholar]
- Baidaq, Z.M.; Ramadhane, A.M.; Tara, R.A. Biological synchronization of the endo-parasitoid Platygaster demades walker (Hymenoptera: Platygasteridae) with its host the olive leaf midge Dasineura oleae F. loew (Diptera: Cecidomyiidae). Int. J. Agric. Environ. Sci. 2015, 2, 1–8. [Google Scholar]
- Censier, F.; Chavalle, S.; San Martin y Gomez, G.; De Proft, M.; Bodson, B. Targeted control of the saddle gall midge, Haplodiplosis marginata (von Roser) (Diptera: Cecidomyiidae), and the benefits of good control of this pest to winter wheat yield. Pest Manag. Sci. 2016, 72, 731–737. [Google Scholar] [CrossRef]
- Chavalle, S.; Censier, F.; San Martin y Gomez, G.; De Proft, M. Protection of winter wheat against orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae): Efficacy of insecticides and cultivar resistance. Pest Manag. Sci. 2015, 71, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Tomkins, A.R.; Wilson, D.J.; Thomson, C.; Bradley, S.; Cole, L.; Shaw, P.; Gibb, A.; Suckling, D.M.; Marshall, R.; Wearing, C.H. Emergence of apple leafcurling midge (Dasineura mali) and its parasitoid (Platygaster demades). N. Z. Plant Prot. 2000, 53, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Shaw, P.W.; Wallis, D.R.; Rogers, D.J. The impact of early season insecticides on biological control of apple leafcurling midge (Dasineura mali). N. Z. Plant Prot. 2003, 56, 164–167. [Google Scholar] [CrossRef]
- He, X.Z.; Wang, Q. Ability of Platygaster demades (Hymenoptera: Platygastridae) to parasitize both eggs and larvae makes it an effective natural enemy of Dasineura mali (Diptera: Cecidomyiidae). J. Econ. Entomol. 2015, 108, 1884–1889. [Google Scholar] [CrossRef] [PubMed]
- Shaw, P.W.; Wallis, D.R.; Alspach, P.A.; Sandanayaka, W.R.M. Phenology of apple leafcurling midge (Dasineura mali) in relation to parasitism by platygaster demades. N. Z. Plant Prot. 2005, 58, 306–310. [Google Scholar] [CrossRef] [Green Version]
- Trapman, M. Apple leaf gall midge population build-up and natural regulation. Fruitteelt 1988, 78, 34–35. [Google Scholar]
- Langellotto, G.A.; Denno, R.F. Responses of invertebrate natural enemies to complex-structured habitats: A meta-analytical synthesis. Oecologia 2004, 139, 1–10. [Google Scholar] [CrossRef]
- Thies, C.; Steffan-Dewenter, I.; Tscharntke, T. Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 2003, 101, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Boccaccio, L.; Petacchi, R. Landscape effects on the complex of Bactrocera Oleae parasitoids and implications for conservation biological control. BioControl 2009, 54, 607–616. [Google Scholar] [CrossRef]
- Rusch, A.; Valantin-Morison, M.; Sarthou, J.P.; Roger-Estrade, J. Multi-scale effects of landscape complexity and crop management on pollen beetle parasitism rate. Landsc. Ecol. 2011, 26, 473–486. [Google Scholar] [CrossRef]
- Darrouzet-Nardi, A.; Hoopes, M.F.; Walker, J.D.; Briggs, C.J. Dispersal and foraging behaviour of Platygaster Californica: Hosts can’t run, but they can hide. Ecol. Entomol. 2006, 31, 298–306. [Google Scholar] [CrossRef]
- Pomari-Fernandes, A.; de Freitas Bueno, A.; De Bortoli, S.A.; Favetti, B.M. Dispersal capacity of the egg parasitoid Telenomus Remus nixon (Hymenoptera: Platygastridae) in maize and soybean crops. Biol. Control 2018, 126, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, H.A.; Morente, M.; Oi, F.S.; Rodríguez, E.; Campos, M.; Ruano, F. Semi-natural habitat complexity affects abundance and movement of natural enemies in organic olive orchards. Agric. Ecosyst. Environ. 2019, 285, 106618. [Google Scholar] [CrossRef]
- Villa, M.; Santos, S.A.; Mexia, A.; Bento, A.; Pereira, J.A. Ground cover management affects parasitism of Prays oleae (Bernard). Biol. Control 2016, 96, 72–77. [Google Scholar] [CrossRef]
- Otto, S.; Buzzetti, F.M.; Zanin, G.; Duso, C. Evaluating predator diversity and abundance in vineyards and the contiguous hedgerows. In Proceedings of the Landscape management for functional biodiversity IOBC wprs Bulletin, Bordeaux, France, 14–17 May 2008; Volume 34, pp. 77–80. [Google Scholar]
- Miliczky, E.R.; Horton, D.R. Densities of beneficial arthropods within pear and apple orchards affected by distance from adjacent native habitat and association of natural enemies with extra-orchard host plants. Biol. Control 2005, 33, 249–259. [Google Scholar] [CrossRef]
- Eilers, E.J.; Klein, A.M. Landscape context and management effects on an important insect pest and its natural enemies in almond. Biol. Control 2009, 51, 388–394. [Google Scholar] [CrossRef]
- Stiling, P. The frequency of density dependence in insect host-parasitoid systems. Ecology 1987, 68, 844–856. [Google Scholar] [CrossRef]
Olive Orchard | Locality | Coordinates | Adjacent Vegetation | Olive Orchard Size (ha) |
---|---|---|---|---|
A | Caldana | 42.88793; 10.94198 | Quercus ilex woodland (EUNIS habitat type G2.12) | 8.38 |
B | Grilli | 42.89278; 10.97986 | Western Quercus pubescens woods (EUNIS habitat type G1.711) with aspects of Western garrigues (EUNIS habitat type F6.1) | 7.01 |
C | Caldana | 42.88969; 10.94707 | Quercus ilex woodland (EUNIS habitat type G2.12) | 5.88 |
D | Giuncarico | 42.90452; 10.99963 | Western Quercus pubescens woods (EUNIS habitat type G1.711) | 2.60 |
E | Giuncarico | 42.90870; 10.99753 | Western Quercus pubescens woods (EUNIS habitat type G1.711) | 1.11 |
F | Giuncarico | 42.90768; 11.00312 | Western Quercus pubescens woods (EUNIS habitat type G1.711) with aspects of Western garrigues (EUNIS habitat type F6.1) | 5.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tondini, E.; Sommaggio, D.; Monteforti, G.; Petacchi, R. Shedding Light on Dasineura oleae Parasitoids: Local and Landscape Effects. Agronomy 2023, 13, 667. https://doi.org/10.3390/agronomy13030667
Tondini E, Sommaggio D, Monteforti G, Petacchi R. Shedding Light on Dasineura oleae Parasitoids: Local and Landscape Effects. Agronomy. 2023; 13(3):667. https://doi.org/10.3390/agronomy13030667
Chicago/Turabian StyleTondini, Elena, Daniele Sommaggio, Gaia Monteforti, and Ruggero Petacchi. 2023. "Shedding Light on Dasineura oleae Parasitoids: Local and Landscape Effects" Agronomy 13, no. 3: 667. https://doi.org/10.3390/agronomy13030667
APA StyleTondini, E., Sommaggio, D., Monteforti, G., & Petacchi, R. (2023). Shedding Light on Dasineura oleae Parasitoids: Local and Landscape Effects. Agronomy, 13(3), 667. https://doi.org/10.3390/agronomy13030667