How Much Impact Has the Cover Crop Mulch in Mitigating Soil Compaction?—A Field Study in North Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Cone Index
2.2. Rut Profile Analysis
2.3. Soil Bulk Density and Soil Moisture
2.4. Biomass
2.5. Mean Normal Stress
2.6. Statistics
3. Results
3.1. Soil Cone Index
3.2. Rut Profile Analysis
3.3. Soil Bulk Density and Soil Moisture
3.4. Biomass
3.5. Mean Normal Stress
4. Discussion
4.1. Effect of Cover Crop Mulch
4.2. Effect of Repeated Traffic
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osman, K.T. Physical Deterioration of Soil BT. In Soil Degradation, Conservation and Remediation; Osman, K.T., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 45–67. ISBN 978-94-007-7590-9. [Google Scholar]
- Soane, B.D.; van Ouwerkerk, C. Soil Compaction Problems in World Agriculture. In Soil Compaction in Crop Production-Developments in Agricultural Engineering 11; Elsevier: Amsterdam, The Netherlands, 1994; pp. 1–21. [Google Scholar]
- Keller, T.; Lamandé, M.; Schjønning, P.; Dexter, A.R. Analysis of soil compression curves from uniaxial confined compression tests. Geoderma 2011, 163, 13–23. [Google Scholar] [CrossRef]
- Batey, T. Soil compaction and soil management—A review. Soil Use Manag. 2009, 25, 335–345. [Google Scholar] [CrossRef]
- ten Damme, L.; Stettler, M.; Pinet, F.; Vervaet, P.; Keller, T.; Munkholm, L.J.; Lamandé, M. Construction of modern wide, low-inflation pressure tyres per se does not affect soil stress. Soil Tillage Res. 2020, 204, 104708. [Google Scholar] [CrossRef]
- Antille, D.L.; Peets, S.; Galambošová, J.; Botta, G.F.; Rataj, V.; Macak, M.; Tullberg, J.N.; Chamen, W.C.T.; White, D.R.; Misiewicz, P.A.; et al. Review: Soil compaction and controlled traffic farming in arable and grass cropping systems. Agron. Res. 2019, 17, 653–682. [Google Scholar] [CrossRef]
- Poltorak, B.J.; Labelle, E.R.; Jaeger, D. Soil displacement during ground-based mechanized forest operations using mixed-wood brush mats. Soil Tillage Res. 2018, 179, 96–104. [Google Scholar] [CrossRef]
- Ess, D.R.; Vaughan, D.H.; Perumpral, J.V. Crop residue and root effects on soil compaction. Trans. ASAE 1998, 41, 1271–1275. [Google Scholar] [CrossRef]
- Holthusen, D.; Brandt, A.A.; Reichert, J.M.; Horn, R.; Fleige, H.; Zink, A. Soil functions and in situ stress distribution in subtropical soils as affected by land use, vehicle type, tire inflation pressure and plant residue removal. Soil Tillage Res. 2018, 184, 78–92. [Google Scholar] [CrossRef]
- Gupta, S.C.; Schneider, E.C.; Larson, W.E.; Hadas, A. Influence of corn residue on compression and compaction behavior of soils. Soil Sci. Soc. Am. J. 1987, 51, 207–212. [Google Scholar] [CrossRef]
- Reichert, J.M.; Brandt, A.A.; Rodrigues, M.F.; Reinert, D.J.; Braida, J.A. Load dissipation by corn residue on tilled soil in laboratory and field-wheeling conditions. J. Sci. Food Agric. 2016, 96, 2705–2714. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Franchi, M.R.A.; de Lima, R.P.; de Moraes, M.T.; Luz, F.B. da Sugarcane straw effects on soil compaction susceptibility. Soil Tillage Res. 2021, 212, 105066. [Google Scholar] [CrossRef]
- Piccoli, I.; Sartori, F.; Polese, R.; Berti, A. Crop yield after 5 decades of contrasting residue management. Nutr. Cycl. Agroecosystems 2020, 117, 231–241. [Google Scholar] [CrossRef]
- Dal Ferro, N.; Piccoli, I.; Berti, A.; Polese, R.; Morari, F. Organic carbon storage potential in deep agricultural soil layers: Evidence from long-term experiments in northeast Italy. Agric. Ecosyst. Environ. 2020, 300, 106967. [Google Scholar] [CrossRef]
- Bolling, I. Bodenverdichtung und Triebkraftverhalten bei Reifen-Neue Meß-und Rechenmethoden; Lehrstuhl für Landmaschinen, Technische Universität: München, Germany, 1987. [Google Scholar]
- Berli, M.; Eggers, C.G.; Accorsi, M.L.; Or, D. Theoretical Analysis of Fluid Inclusions for In Situ Soil Stress and Deformation Measurements. Soil Sci. Soc. Am. J. 2006, 70, 1441–1452. [Google Scholar] [CrossRef]
- Défossez, P.; Richard, G.; Boizard, H.; O’Sullivan, M.F. Modeling change in soil compaction due to agricultural traffic as function of soil water content. Geoderma 2003, 116, 89–105. [Google Scholar] [CrossRef]
- Keller, T.; Ruiz, S.; Stettler, M.; Berli, M. Determining Soil Stress beneath a Tire: Measurements and Simulations. Soil Sci. Soc. Am. J. 2016, 80, 541–553. [Google Scholar] [CrossRef]
- de Lima, R.P.; Keller, T. Impact of sample dimensions, soil-cylinder wall friction and elastic properties of soil on stress field and bulk density in uniaxial compression tests. Soil Tillage Res. 2019, 189, 15–24. [Google Scholar] [CrossRef]
- Kirby, J.M. Soil stress measurement: Part I. Transducer in a uniform stress field. J. Agric. Eng. Res. 1999, 72, 151–160. [Google Scholar] [CrossRef]
- Naderi-Boldaji, M.; Alimardani, R.; Hemmat, A.; Sharifi, A.; Keyhani, A.; Tekeste, M.Z.; Keller, T. 3D finite element simulation of a single-tip horizontal penetrometer-soil interaction. Part II: Soil bin verification of the model in a clay-loam soil. Soil Tillage Res. 2014, 144, 211–219. [Google Scholar] [CrossRef]
- Angers, D.A.; Caron, J. Plant-induced changes in soil structure: Processes and feedbacks. Biogeochemistry 1998, 42, 55–72. [Google Scholar] [CrossRef]
- Mischler, R.A.; Curran, W.S.; Duiker, S.W.; Hyde, J.A. Use of a Rolled-rye Cover Crop for Weed Suppression in No-Till Soybeans. Weed Technol. 2010, 24, 253–261. [Google Scholar] [CrossRef]
- Chen, G.; Weil, R.R. Root growth and yield of maize as affected by soil compaction and cover crops. Soil Tillage Res. 2011, 117, 17–27. [Google Scholar] [CrossRef]
- Kooistra, M.J.; Tovey, N.K. Effects of Compaction on Soil Microstructure. In Developments in Agricultural Engineering; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Roberson, E.B.; Firestone, M.K.; Sarig, S. Cover Crop Management of Polysaccharide-Mediated Aggregation in an Orchard Soil. Soil Sci. Soc. Am. J. 1991, 55, 734–739. [Google Scholar] [CrossRef]
- Seehusen, T.; Riggert, R.; Fleige, H.; Horn, R.; Riley, H. Soil compaction and stress propagation after different wheeling intensities on a silt soil in South-East Norway. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 343–355. [Google Scholar] [CrossRef]
- ten Damme, L.; Schjønning, P.; Munkholm, L.J.; Green, O.; Nielsen, S.K.; Lamandé, M. Soil structure response to field traffic: Effects of traction and repeated wheeling. Soil Tillage Res. 2021, 213, 105128. [Google Scholar] [CrossRef]
- Pulido-Moncada, M.; Munkholm, L.J.; Schjønning, P. Wheel load, repeated wheeling, and traction effects on subsoil compaction in northern Europe. Soil Tillage Res. 2019, 186, 300–309. [Google Scholar] [CrossRef]
Name | Unit | Model |
---|---|---|
Tractor Model | Fiat 680 | |
Total mass | kg | 4310 |
Front axle | kg | 780 |
Rear axle | kg | 3530 |
Rear tyre | Kleber traker | 420/85R30 |
Front tyre | Vredestein multirill | 7.50–16 |
Front tyre inflation pressure | bar | 1.7 |
Rear tyre inflation pressure | bar | 1.45 |
Analysis of Variance Summary | ||||||
---|---|---|---|---|---|---|
Cover Crop Mulch | Traffic Events | Depth | Soil Moisture | CCM × TE | CCM × Depth | |
Bulk Density | <0.001 | <0.001 | 0.04 | 0.02 | ||
Cone Index | <0.001 | <0.001 | <0.001 | <0.001 | 0.01 | |
Volumetric Water Content | <0.001 | <0.001 | ns | ns | ||
Rut profile area | 0.004 | <0.001 | ns | |||
Surface Biomass | <0.001 | |||||
Mean Normal Stress | 0.004 | <0.001 | 0.001 |
Treatment | Rut Profile Area | Standard Error | Treatment | Rut Profile Area | Standard Error | ||
---|---|---|---|---|---|---|---|
Crimped | 1405.94 | 55.13 | ab | 5 | 1639.06 | 50.56 | a |
Shredded | 1328.75 | 54.31 | b | 3 | 1495.63 | 59.43 | b |
Bare | 1507.19 | 54.35 | a | 1 | 1365.00 | 38.84 | bc |
Harvested | 1498.44 | 66.80 | a | 0 | 1240.63 | 36.97 | c |
alpha: 00.5 |
Treatment | Mulch Dry Biomass (Mg ha−1) | Standard Error | |
---|---|---|---|
Crimped | 11.24 | a | 4.18 |
Shredded | 12.63 | a | 3.08 |
Bare | 1.14 | b | 0.61 |
Harvested | 3.54 | b | 4.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benetti, M.; Liu, K.; Guerrini, L.; Gasparini, F.; Peruzzi, A.; Sartori, L. How Much Impact Has the Cover Crop Mulch in Mitigating Soil Compaction?—A Field Study in North Italy. Agronomy 2023, 13, 686. https://doi.org/10.3390/agronomy13030686
Benetti M, Liu K, Guerrini L, Gasparini F, Peruzzi A, Sartori L. How Much Impact Has the Cover Crop Mulch in Mitigating Soil Compaction?—A Field Study in North Italy. Agronomy. 2023; 13(3):686. https://doi.org/10.3390/agronomy13030686
Chicago/Turabian StyleBenetti, Marco, Kaihua Liu, Lorenzo Guerrini, Franco Gasparini, Andrea Peruzzi, and Luigi Sartori. 2023. "How Much Impact Has the Cover Crop Mulch in Mitigating Soil Compaction?—A Field Study in North Italy" Agronomy 13, no. 3: 686. https://doi.org/10.3390/agronomy13030686
APA StyleBenetti, M., Liu, K., Guerrini, L., Gasparini, F., Peruzzi, A., & Sartori, L. (2023). How Much Impact Has the Cover Crop Mulch in Mitigating Soil Compaction?—A Field Study in North Italy. Agronomy, 13(3), 686. https://doi.org/10.3390/agronomy13030686