Diversity of Summer Weed Communities in Response to Different Plum Orchard Floor Management in-Row
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site, Material and Design
- Control with limited weeding (manual weeding in spring within a radius of 0.5 from the tree trunk);
- Spraying with post-emergence herbicides (glyphosate—two treatments per year at the rate of 2.88 kg a.i./ha in May and in the second half of August; glufosinate ammonium—one treatment, 0.6 kg a.i./ha in mid-June);
- Mulching with organic waste—cereal straw with 2-yers-old compost from plant wastes in a volume ratio of 2:1 (layer of about 10 cm, filled in every 2 years, which was enough to effectively reduce the emergence of weeds);
- Tillage—mechanical soil cultivation with the use of rotary cultivators and hoe—three times from the beginning of May to August, on average every six weeks;
- Weed mowing—3 times between May and September. Mowing reduces weed growth less than tillage and herbicides. The last mowing was carried out about two weeks after tillage and herbicide spraying to limit weed regrowth closer to the onset of winter. Strong weed infestation in autumn attracts rodents.
2.2. Measurements and Analyses
2.2.1. Phytosociological Relevés
2.2.2. Phytosociological Stability (S)
2.2.3. The Cover Factor (CF)
2.2.4. Weed Infestation Rate
2.2.5. Diversity of Weed Communities
- -
- Shannon–Wiener diversity index–H’ [37]
H’ = −∑ pi ln pi,
i = 1
- -
- Simpson dominance index–D [38]
D = ∑ (pi)2,
i = 1
2.3. Statistical Analysis
3. Results
3.1. Weed Species Number, Density and Cover
3.2. Weed Infestation Rate
3.3. Shannon–Wiener Diversity Index (H’)
3.4. Simpson Dominance Index (D)
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- EUROSTAT. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agricultural_production_-_orchards (accessed on 20 April 2023).
- Mia, M.J.; Massetani, F.; Murri, G.; Facchi, J.; Monaci, E.; Amadio, L.; Neri, D. Integrated weed management in high density fruit orchards. Agronomy 2020, 10, 1492. [Google Scholar] [CrossRef]
- Granatstein, D.; Andrews, P.; Groff, A. Productivity, economics, and fruit and soil quality of weed management systems in commercial organic orchards in Washington State, USA. Org. Agr. 2014, 4, 197–207. [Google Scholar] [CrossRef]
- Mia, M.J.; Furmańczyk, E.M.; Golian, J.; Kwiatkowska, J.; Malusá, E.; Neri, D. Living mulch with selected herbs for soil management in organic apple orchards. Horticulturae 2021, 7, 59. [Google Scholar] [CrossRef]
- Paušič, A.; Tojnko, S.; Lešnik, M. Permanent, undisturbed, in-row living mulch: A realistic option to replace glyphosate-dominated chemical weed control in intensive pear orchards. Agric. Ecosyst. Environ. 2021, 318, 107502. [Google Scholar] [CrossRef]
- Żelazny, W.R.; Licznar-Małańczuk, M. Living mulch persistence in an apple orchard and its effect on the weed flora in temperate climatic conditions. Weed Res. 2022, 62, 85–99. [Google Scholar] [CrossRef]
- Lipecki, J. Weeds in orchards–pros and contras. J. Fuit Ornam. Plant Res. 2006, 14, 13–18. [Google Scholar]
- Yvoz, S.; Cordeau, S.; Ploteau, A.; Petit, S. A framework to estimate the contribution of weeds to the delivery of ecosystem (dis)services in agricultural landscapes. Ecol. Indic. 2021, 132, 108321. [Google Scholar] [CrossRef]
- Blaix, C.; Moonen, A.C.; Dostatny, D.F.; Izquierdo, J.; Le Corff, J.; Morrison, J.; von Redwitz, C.; Schumacher, M.; Westerman, P.R. Quantification of regulating ecosystem services provided by weeds in annual cropping systems using a systematic map approach. Weed Res. 2018, 58, 151–164. [Google Scholar] [CrossRef]
- MacLaren, C.; Storkey, J.; Menegat, A.; Metcalfe, H.; Dehnen-Schmutz, K. An ecological future for weed science to sustain crop production and the environment. A review. Agron. Sustain. Dev. 2020, 40, 24. [Google Scholar] [CrossRef]
- Balfour, N.J.; Ratnieks, L.F.W. The disproportionate value of ‘weeds’ to pollinators and biodiversity. J. Appl. Ecol. 2022, 59, 1209–1218. [Google Scholar] [CrossRef]
- European Commission. Common Agricultural Policy. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/income-support/greening_en (accessed on 11 May 2023).
- Dąbkowska, T.; Grabowska-Orządała, M.; Łabza, T. The study of the transformation of segetal flora richness and diversity in selected habitats of southern Poland over a 20-year interval. Acta Agrobot. 2017, 70, 1712. [Google Scholar] [CrossRef]
- Štefanić, E.; Kovačević, V.; Antunović, S. Decline of arable flora diversity in Istria (from the year 2005 to the year 2017). Zbornik Veleučilišta Rijeci 2018, 6, 385–398. [Google Scholar] [CrossRef]
- Radzikowski, P.; Matyka, M.; Berbeć, A.K. Biodiversity of Weeds and Arthropods in Five Different Perennial Industrial Crops in Eastern Poland. Agriculture 2020, 10, 636. [Google Scholar] [CrossRef]
- Haq, S.M.; Lone, F.A.; Kumar, M.; Calixto, E.S.; Waheed, M.; Casini, R.; Mahmoud, E.A.; Elansary, H.O. Phenology and diversity of weeds in the agriculture and horticulture cropping systems of Indian Western Himalayas: Understanding implications for agro-ecosystems. Plants 2023, 12, 1222. [Google Scholar] [CrossRef] [PubMed]
- Baessler, C.; Klotz, S. Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric. Ecosyst. Environ. 2006, 115, 43–50. [Google Scholar] [CrossRef]
- Glemnitz, M.; Radics, L.; Hoffmann, J.; Czimber, G. Land use impacts on weed floras along a climate gradient from South to North Europe. J. Plant Dis. Prot. 2006, 20, 577–586. [Google Scholar]
- Raselle, R.L.; Freitas, S.P.; Colombo, J.N.; Krause, R.M.; Barth, H.; Barth, H.T. Phytosociological survey of weeds in the grapevine. Biosci. J. 2022, 38, e38093. [Google Scholar] [CrossRef]
- Hawes, C.; Squire, G.R.; Hallett, P.D.; Watson, C.A.; Young, M. Arable plant communities as indicators of farming practice. Agric. Ecosyst. Environ. 2010, 138, 17–26. [Google Scholar] [CrossRef]
- Ryan, M.R.; Smith, R.G.; Mirsky, S.B.; Mortensen, D.A.; Seidel, R. Management filters and species traits: Weed community assembly in long-term organic and conventional systems. Weed Sci. 2010, 58, 265–277. [Google Scholar] [CrossRef]
- Gaba, S.; Fried, G.; Kazakou, E. Agroecological weed control using a functional approach: A review of cropping systems diversity. Agron. Sustain. Dev. 2014, 34, 103–119. [Google Scholar] [CrossRef]
- Schumacher, M.; Ohnmacht, S.; Rosenstein, R.; Gerhards, R. How management factors influence weed communities of cereals, their diversity and endangered weed species in Central Europe. Agriculture 2018, 8, 172. [Google Scholar] [CrossRef]
- Meng, J.; Li, L.; Liu, H.; Li, Y.; Li, C.; Wu, G.; Yu, X.; Guo, L.; Cheng, D.; Muminov, M.A.; et al. Biodiversity management of organic orchard enhances both ecological and economic profitability. PeerJ 2016, 4, e2137. [Google Scholar] [CrossRef] [PubMed]
- Karaman, Y.; Iᶊik, D.; Tursun, N. The effect of cover crops on composition and diversity of weeds in an apricot orchard. Plant Prot. Bull. 2021, 61, 10–19. [Google Scholar] [CrossRef]
- Costa, T.; Giacobbo, C.L.; Galon, L.; Forte, C.T.; Damis, R.; Tironi, S.P. Management of soil cover and its influence on phytosociology, physiology and fig production. Comun. Sci. 2020, 11, e3236. [Google Scholar] [CrossRef]
- Fracchiolla, M.; Terzi, M.; Frabboni, L.; Caramia, D.; Lasorella, C.; De Giorgio, D.; Montemurro, P.; Cazzato, E. Influence of different soil management practices on ground-flora vegetation in an almond orchard. Renew. Agric. Food Syst. 2016, 31, 300–308. [Google Scholar] [CrossRef]
- Solomou, A.D.; Sfougaris, A.I.; Kalburtji, K.L.; Nanos, G.D. Effects of organic farming on winter plant composition, cover and diversity in olive grove ecosystems in central Greece. Commun. Soil Sci. Plan. 2013, 44, 312–319. [Google Scholar] [CrossRef]
- Terzi, M.; Barca, E.; Cazzato, E.; D’Amico, F.S.; Lasorella, C.; Fracchiolla, M. Effects of weed control practices on plant diversity in a homogenous olive-dominated landscape (South-East of Italy). Plants 2021, 10, 1090. [Google Scholar] [CrossRef]
- Kazakou, E.; Fried, G.; Richarte, J.; Gimenez, O.; Violle, C.; Metay, A. A plant trait-based response-and-effect framework to assess vineyard inter-row soil management. Bot. Lett. 2016, 163, 373–388. [Google Scholar] [CrossRef]
- Steenwerth, K.L.; Orellana-Calderón, A.; Hanifin, R.C.; Storm, C.; McElrone, A.J. Effects of various vineyard floor management techniques on weed community shifts and grapevine water relations. Am. J. Enol. Vitic. 2016, 67, 153–162. [Google Scholar] [CrossRef]
- Garcia, L.; Celette, F.; Gary, C.; Ripoche, A.; Valdés-Gómez, H.; Metay, A. Management of service crops for the provision of ecosystem services in vineyards: A review. Agric. Ecosyst. Environ. 2018, 251, 158–170. [Google Scholar] [CrossRef]
- MacLaren, C.; Bennett, J.; Dehnen-Schmutz, K. Management practices influence the competitive potential of weed communities and their value to biodiversity in South African vineyards. Weed Res. 2019, 59, 93–106. [Google Scholar] [CrossRef]
- IUSS Working Group Wrb. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Braun-Blanquet, J. Pflanzensoziologie, 3rd ed.; Soringerverlag: Wien, Austria, 1964; 865p. [Google Scholar]
- Wysocki, C.; Sikorski, P. Fitosocjologia Stosowana; Wyd. SGGW: Warszawa, Poland, 2002; 449p. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell System Tech. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Mirek, Z.; Piękoś-Mirkowa, H.; Zając, A.; Zając, M. Flowering plants and pteridophytes of Poland: A checklist. In Biodiversity of Poland; Polish Academy of Sciences, W. Szafer Institute of Botany: Cracow, Poland, 2002; Volume 1, 441p. [Google Scholar]
- Tymrakiewicz, W. Atlas Chwastów; PWRiL: Warszawa, Poland, 1976; 450p. [Google Scholar]
- Woo, I.S.; Pyon, J.Y. Characterization of weed occurrence in apple orchards. Korean J. Weed Sci. 1988, 8, 164–168. [Google Scholar]
- Pfiffner, L.; Cahenzli, F.; Steinemann, B.; Jamar, L.; Bjorn, M.C.; Porcel, M.; Tasin, M.; Telfser, J.; Kelderer, M.; Lisek, J.; et al. Design, implementation and management of perennial flower strips to promote functional agrobiodiversity in organic apple orchards: A pan-European study. Agric. Ecosyst. Environ. 2019, 278, 61–71. [Google Scholar] [CrossRef]
- Qureshi, H.; Anwar, T.; Arshad, M.; Osunkoya, O.O.; Adkins, S.W. Impacts of Xanthium strumarium L. invasion on vascular plant diversity in Pothwar region (Pakistan). Ann. Bot. 2019, 9, 73–82. [Google Scholar] [CrossRef]
- Lisek, J.; Buler, Z. Growth and yield of plum trees in response to in-row orchard floor management. Turk. J. Agric. For. 2018, 42, 97–102. [Google Scholar] [CrossRef]
- Lisek, J.; Stępień, T. Macroelements concentration in plum tree leaves and soil in response to orchard floor management. Acta Sci. Pol. Hortorum Cultus 2021, 20, 115–124. [Google Scholar] [CrossRef]
- Rabcewicz, J.; Białkowski, P. The efficiency of mechanical weed control in ecological apple production. J. Res. Appl. Agric. Eng. 2011, 56, 79–83. [Google Scholar]
Feature | Base Year | Seventh Year of Implementation | ||||
---|---|---|---|---|---|---|
Control | Herbicides | Mulch | Tillage | Mowing | ||
Total number of weed species | 36 | 20 | 21 | 14 | 22 | 19 |
Number of short-lived species | 25 | 11 | 14 | 4 | 14 | 12 |
Number of perennial species | 11 | 9 | 7 | 10 | 8 | 7 |
Number of broad-leaved species | 32 | 16 | 18 | 12 | 17 | 17 |
Number of grassy species | 4 | 4 | 3 | 3 | 5 | 2 |
Total CF | 9692 | 9971 | 8433 | 1188 | 8890 | 9183 |
Total CF of short-lived weeds | 9196 | 358 | 7425 | 272 | 3386 | 2040 |
Total CF of perennial weeds | 496 | 9613 | 1008 | 916 | 5504 | 7143 |
Share of short-lived species in weed cover (%) | 94.9 | 3.6 | 88.0 | 22.9 | 38.1 | 22.2 |
Share of perennial species in weed cover (%) | 5.1 | 96.4 | 12.0 | 77.1 | 61.9 | 77.8 |
Share of broad-leaved species in weed cover (%) | 85.8 | 14.6 | 72.0 | 26.6 | 58.1 | 30.5 |
Share of grassy species in weed cover (%) | 13.1 | 84.8 | 26.5 | 60.9 | 41.9 | 69.5 |
Mean number of weed species in one plot | 21.5 ± 2.52 d | 11.25 ± 1.26 b | 14.5 ± 1.91 c | 7.75 ± 0.5 a | 14.0 ± 0.82 c | 12.25 ± 1.26 b |
Weed density (pcs m2) | 188.5 ± 9.75 d | 138.8 ± 6.67 c | 121.9 ± 5.63 b | 18.4 ± 2.01 a | 121.6±7.69 b | 143.7 ± 5.10 c |
Species | Phytosociological Stability (S) | Cover Factor (CF) | Weed Infestation Rate (Class) | Mean Number of Weeds (Pcs m2) |
---|---|---|---|---|
Short-lived | ||||
Chenopodium album L. | 5 | 2146 | I | 44.3 |
Capsella bursa-pastoris (L.) Medik. | 5 | 1772 | I | 34.8 |
Stellaria media (L.) Vill. | 5 | 1554 | I | 30.5 |
Poa annua L.(G) | 5 | 1116 | I | 26.3 |
Polygonum aviculare L. | 5 | 574 | II | 10.7 |
Senecio vulgaris L. | 5 | 376 | III | 7.0 |
Polygonum persicaria L. (P. maculosa Gray) | 4 | 224 | IV | 6.3 |
Matricaria maritima L. ssp. inodora (L.) Dostál | 4 | 212 | IV | 4.3 |
Galium aparine L. | 4 | 158 | IV | 3.0 |
Fallopia convolvulus (L.) A. Löve | 4 | 148 | IV | 2.8 |
Veronica persica Poir. | 4 | 145 | IV | 2.3 |
Echinochloa crus-galli (L.) P. Beauv. (G) | 3 | 128 | V | 2.0 |
Veronica arvensis L. | 2 | 106 | V | 1.5 |
Viola arvensis Murr. | 2 | 101 | V | 1.3 |
Lamium purpureum L. | 2 | 98 | V | 1.0 |
Geranium pusillum Burm. F. ex L. | 2 | 82 | V | 1.0 |
Chamomilla suaveolens (Pursh) Rydb. | 1 | 64 | V | 0.5 |
Amaranthus retroflexus L. | 1 | 42 | V | 0.5 |
Conyza canadensis (L.) Cronq. | 1 | 41 | V | 0.5 |
Crepis capillaris (L.) Wallr. | 1 | 38 | V | 0.3 |
Crepis biennis L. | 1 | 32 | V | 0.2 |
Vicia villosa Roth. | 1 | 12 | V | <0.05 |
Bromus hordeaceus L. (G) | 1 | 10 | V | <0.05 |
Erodium cicutarium (L.) L’Her. | 1 | 9 | V | <0.05 |
Atriplex patula L. | 1 | 8 | V | <0.05 |
Perennial | ||||
Equisetum arvense L. | 3 | 114 | V | 2.3 |
Taraxacum officinale F. H. Wigg. | 3 | 102 | V | 2.0 |
Cerastium holosteoides Fr. em. Hyl. | 3 | 76 | V | 1.3 |
Trifolium repens L. | 2 | 44 | V | 0.5 |
Plantago major L. | 1 | 42 | V | 0.5 |
Epilobium ciliatum Raf. | 1 | 38 | V | 0.5 |
Convolvulus arvensis L. | 1 | 26 | V | 0.2 |
Cirsium arvense (L.) Scop | 1 | 18 | V | 0.1 |
Rumex acetosella L. | 1 | 16 | V | <0.05 |
Elymus repens (L.) Gould (G) | 1 | 12 | V | <0.05 |
Urtica dioica L. | 1 | 8 | V | <0.05 |
Species | Phytosociological Stability (S) | Cover Factor (CF) | Weed Infestation Rate (Class) | Mean Number of Weeds (Pcs m2) |
---|---|---|---|---|
Short-lived | ||||
Matricaria maritima L. ssp. inodora (L.) | 4 | 85 | IV | 1.8 |
Dostál | ||||
Galium aparine L. | 4 | 62 | IV | 1.3 |
Crepis biennis L. | 4 | 54 | IV | 1.0 |
Conyza canadensis (L.) Cronq. | 4 | 48 | V | 0.8 |
Bromus hordeaceus L.(G) | 3 | 30 | V | 0.5 |
Fallopia convolvulus (L.) A. Löve | 3 | 22 | V | 0.3 |
Stellaria media (L.) Vill. | 2 | 19 | V | 0.2 |
Chenopodium album L. | 2 | 12 | V | 0.1 |
Echinochloa crus-galli (L.) P. Beauv. (G) | 1 | 10 | V | 0.1 |
Geranium pusillum Burm. F. ex L. | 1 | 9 | V | 0.1 |
Tragopogon pratensis L. | 1 | 7 | V | < 0.05 |
Perennial | ||||
Festuca rubra L. ssp. rubra (G) | 5 | 8452 | I | 115.8 |
Epilobium ciliatum Raf. | 5 | 508 | I | 6.5 |
Rumex acetosella L. | 5 | 316 | III | 4.3 |
Taraxacum officinale F. H. Wigg. | 5 | 89 | IV | 1.8 |
Cerastium holosteoides Fr. em. Hyl. | 5 | 82 | IV | 1.5 |
Equisetum arvense L. | 4 | 64 | IV | 1.3 |
Convolvulus arvensis L. | 3 | 55 | V | 0.8 |
Elymus repens (L.) Gould (G) | 2 | 28 | V | 0.5 |
Artemisia vulgaris L. | 1 | 19 | V | <0.1 |
Species | Phytosociological Stability (S) | Cover Factor (CF) | Weed Infestation Rate (Class) | Mean Number of Weeds (Pcs∙m2) |
---|---|---|---|---|
Short-lived | ||||
Stellaria media (L.) Vill. | 5 | 4080 | I | 52.3 |
Poa annua L. (G) | 5 | 1950 | I | 27.5 |
Lamium purpureum L. | 5 | 375 | III | 6.8 |
Conyza canadensis (L.) Cronq. | 5 | 280 | III | 4.8 |
Echinochloa crus-galli (L.) P. Beauv. (G) | 5 | 212 | IV | 4.5 |
Chenopodium album L. | 4 | 169 | IV | 3.3 |
Capsella bursa-pastoris (L.) Medik. | 4 | 115 | IV | 2.5 |
Bromus hordeaceus L. (G) | 3 | 76 | V | 1.5 |
Viola arvensis Murr. | 3 | 59 | V | 1.0 |
Veronica arvensis L. | 4 | 38 | V | 0.8 |
Polygonum aviculare L. | 2 | 29 | V | 0.5 |
Fallopia convolvulus (L.) A. Löve | 1 | 19 | V | 0.3 |
Geranium pusillum Burm. F. ex L. | 1 | 15 | V | 0.3 |
Galium aparine L. | 1 | 8 | V | 0.1 |
Perennial | ||||
Taraxacum officinale F. H. Wigg. | 5 | 460 | III | 7.3 |
Epilobium ciliatum Raf. | 5 | 302 | III | 5.3 |
Equisetum arvense L. | 5 | 124 | IV | 2.5 |
Cerastium holosteoides Fr. em. Hyl. | 3 | 62 | V | 1.3 |
Trifolium repens L. | 1 | 26 | V | 0.5 |
Rumex acetosella L. | 1 | 18 | V | <0.1 |
Urtica dioica L. | 1 | 16 | V | <0.1 |
Species | Phytosociological Stability (S) | Cover Factor (CF) | Weed Infestation Rate (Class) | Mean Number of Weeds (Pcs∙m2) |
---|---|---|---|---|
Short-lived | ||||
Galium aparine L. | 5 | 152 | IV | 2.3 |
Atriplex patula L. | 4 | 69 | IV | 1.0 |
Chenopodium album L. | 4 | 42 | V | 0.5 |
Fallopia convolvulus (L.) A. Löve | 3 | 9 | V | 0.1 |
Perennial | ||||
Festuca rubra L. ssp. rubra (G) | 5 | 640 | II | 10.5 |
Urtica dioica L. | 4 | 115 | IV | 1.5 |
Elymus repens (L.) Gould (G) | 4 | 84 | IV | 1.3 |
Convolvulus arvensis L. | 4 | 18 | V | 0.3 |
Artemisia vulgaris L. | 3 | 18 | V | 0.3 |
Epilobium ciliatum Raf. | 2 | 15 | V | 0.2 |
Malva neglecta L. | 2 | 8 | V | 0.1 |
Rumex crispus L. | 1 | 8 | V | 0.1 |
Tanacetum vulgare L. | 1 | 5 | V | <0.1 |
Calamagrostis epigejos (L.) Roth (G) | 1 | 5 | V | <0.1 |
Species | Phytosociological Stability (S) | Cover Factor (CF) | Weed Infestation Rate (Class) | Mean Number of Weeds (Pcs∙m2) |
---|---|---|---|---|
Short-lived | ||||
Chenopodium album L. | 5 | 829 | II | 13.0 |
Poa annua L. (G) | 5 | 628 | II | 11.5 |
Stellaria media (L.) Vill. | 5 | 514 | II | 9.3 |
Conyza canadensis (L.) Cronq. | 5 | 382 | III | 5.1 |
Bromus hordeaceus L. (G) | 4 | 246 | IV | 3.0 |
Crepis biennis L. | 4 | 198 | IV | 2.8 |
Echinochloa crus-galli (L.) P. Beauv. (G) | 4 | 154 | IV | 2.5 |
Polygonum persicaria L. (P. maculosa Gray) | 3 | 110 | V | 1.8 |
Polygonum aviculare L. | 3 | 94 | V | 1.3 |
Galium aparine L. | 2 | 81 | V | 0.8 |
Fallopia convolvulus (L.) A. Löve | 2 | 63 | V | 0.5 |
Capsella bursa-pastoris (L.) Medik. | 1 | 42 | V | 0.5 |
Senecio vulgaris L | 1 | 25 | V | 0.3 |
Geranium pusillum Burm. F. ex L. | 1 | 20 | V | 0.3 |
Perennial | ||||
Festuca rubra L. ssp. rubra (G) | 5 | 1620 | I | 21.5 |
Rumex acetosella L. | 5 | 1584 | I | 18.8 |
Elymus repens (L.) Gould (G) | 5 | 1080 | I | 15.5 |
Taraxacum officinale F. H. Wigg. | 5 | 572 | II | 5.3 |
Cerastium holosteoides Fr. em. Hyl. | 4 | 346 | III | 4.5 |
Equisetum arvense L. | 4 | 148 | IV | 1.8 |
Epilobium ciliatum Raf. | 4 | 126 | IV | 1.5 |
Cirsium arvense (L.) Scop. | 1 | 28 | V | <0.1 |
Species | Phytosociological Stability (S) | Cover Factor (CF) | Weed Infestation Rate (Class) | Mean Number of Weeds (Pcs∙m2) |
---|---|---|---|---|
Short-lived | ||||
Bromus hordeaceus L. (G) | 5 | 742 | II | 11.8 |
Crepis biennis L. | 5 | 516 | II | 9.0 |
Conyza canadensis (L.) Cronq. | 5 | 294 | III | 4.3 |
Matricaria maritima L. ssp. inodora (L.) | 4 | 156 | IV | 3.0 |
Dostál | ||||
Stellaria media (L.) Vill. | 3 | 82 | V | 1.8 |
Polygonum aviculare L. | 2 | 76 | V | 1.5 |
Geranium pusillum Burm. F. ex L. | 2 | 54 | V | 1.0 |
Lamium purpureum L. | 1 | 42 | V | 0.8 |
Chenopodium album L. | 1 | 40 | V | 0.8 |
Vicia villosa Roth. | 1 | 22 | V | 0.2 |
Crepis capillaris (L.) Wallr. | 1 | 10 | V | 0.1 |
Tragopogon pratensis L. | 1 | 6 | V | <0.05 |
Perennial | ||||
Festuca rubra L. ssp. rubra (G) | 5 | 5640 | I | 84.0 |
Taraxacum officinale F. H. Wigg. | 5 | 512 | II | 9.5 |
Cerastium holosteoides Fr. em. Hyl. | 5 | 454 | III | 7.3 |
Rumex acetosella L. | 4 | 280 | III | 4.5 |
Epilobium ciliatum Raf. | 4 | 196 | IV | 3.3 |
Cirsium arvense (L.) Scop. | 1 | 52 | V | 0.8 |
Trifolium repens L. | 1 | 9 | V | <0.1 |
Treatment | H’ Value | |||||
---|---|---|---|---|---|---|
Base year | 2.310 ± 0.094 c | 2.310 ± 0.094 c | 2.310 ± 0.094 d | 2.310 ± 0.094 d | 2.310 ± 0.094 e | 2.310 ± 0.094 e |
Year of OFM implementation | ||||||
2nd | 3rd | 4th | 5th | 6th | 7th | |
Control | 2.165 ± 0.049 c | 1.747 ± 0.292 b | 1.602 ± 0.147 b | 1.277 ± 0.080 a | 1.055 ± 0.072 a | 0.817 ± 0.130 a |
Herbicides | 1.897 ± 0.057 b | 1.820 ± 0.113 b | 1.786 ± 0.160 b | 1.781 ± 0.064 b | 1.777 ± 0.110 d | 1.770 ± 0.155 d |
Mulch | 1.620 ± 0.259 a | 1.418 ± 0.293 a | 1.360 ± 0.054 a | 1.353 ± 0.049 a | 1.343 ± 0.057 b | 1.338 ± 0.119 b |
Tillage | 1.873 ± 0.092 b | 1.928 ± 0.124 b | 2.059 ± 0.175 c | 2.140 ± 0.154 c | 2.183 ± 0.131 e | 2.285 ± 0.072 e |
Mowing | 1.869 ± 0.095 b | 1.854 ± 0.059 b | 1.709 ± 0.068 b | 1.660 ± 0.045 b | 1.616 ± 0.051 c | 1.536 ± 0.077 c |
Treatment | D Value | |||||
---|---|---|---|---|---|---|
Base | 0.139 ± 0.019 a | 0.139 ± 0.019 a | 0.139 ± 0.019 a | 0.139 ± 0.019 a | 0.139 ± 0.019 a | 0.139 ± 0.019 a |
Year of OFM implementation | ||||||
2nd | 3rd | 4th | 5th | 6th | 7th | |
Control | 0.173 ± 0.009 ab | 0.226 ± 0.057 b | 0.316 ± 0.075 bc | 0.447 ± 0.045 d | 0.569 ± 0.026 d | 0.681 ± 0.064 d |
Herbicides | 0.213 ± 0.016 bc | 0.203 ± 0.030 ab | 0.250 ± 0.074 b | 0.234 ± 0.033 b | 0.240 ± 0.041 b | 0.269 ± 0.026 b |
Mulch | 0.241 ± 0.051 c | 0.372 ± 0.091 c | 0.381 ± 0.030 c | 0.329 ± 0.019 c | 0.330 ± 0.020 c | 0.365 ± 0.047 c |
Tillage | 0.208 ± 0.030 bc | 0.215 ± 0.32 ab | 0.171 ± 0.035 a | 0.155 ± 0.030 a | 0.145 ± 0.027 a | 0.123 ± 0.010 a |
Mowing | 0.245 ± 0.022 c | 0.195 ± 0.012 ab | 0.295 ± 0.022 b | 0.314 ± 0.035 c | 0.329 ± 0.021 c | 0.381 ± 0.022 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisek, J. Diversity of Summer Weed Communities in Response to Different Plum Orchard Floor Management in-Row. Agronomy 2023, 13, 1421. https://doi.org/10.3390/agronomy13051421
Lisek J. Diversity of Summer Weed Communities in Response to Different Plum Orchard Floor Management in-Row. Agronomy. 2023; 13(5):1421. https://doi.org/10.3390/agronomy13051421
Chicago/Turabian StyleLisek, Jerzy. 2023. "Diversity of Summer Weed Communities in Response to Different Plum Orchard Floor Management in-Row" Agronomy 13, no. 5: 1421. https://doi.org/10.3390/agronomy13051421
APA StyleLisek, J. (2023). Diversity of Summer Weed Communities in Response to Different Plum Orchard Floor Management in-Row. Agronomy, 13(5), 1421. https://doi.org/10.3390/agronomy13051421