Assessing the Bioenergy Potential of Novel Non-Edible Biomass Resources via Ultrastructural Analysis of Seed Sculpturing Using Microscopic Imaging Visualization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Identification and Morphology
2.3. Seed Surface Ornamentation
2.4. Seed Oil Content
2.5. Free Fatty Acid Content Determination
2.6. Statistical Analysis
3. Results and Discussion
3.1. Cucumis melo var. agrestis
3.2. Bischofia javanica
3.3. Praecitrullus fistulosus
3.4. Luffa acutangula
3.5. Diospyros lotus
3.6. Solanum surattense
3.7. Multivariate Analysis
- -
- Luffa acutangula had a higher seed oil content than Solanum surattense and Diospyros lotus species (discrimination on PC1);
- -
- Cucumis melo and Bischofia javanica had a higher biodiesel potential and a lower FFA content than the other species (discrimination on PC2).
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neupane, D.; Lohaus, R.H.; Solomon, J.K.; Cushman, J.C. Realizing the Potential of Camelina sativa as a Bioenergy Crop for a Changing Global Climate. Plants 2022, 11, 772. [Google Scholar] [CrossRef] [PubMed]
- López-Yerena, A.; Guerra-Ramírez, D.; Reyes-Trejo, B.; Salgado-Escobar, I.; Cruz-Castillo, J.G. Waste from Persea schiedeana Fruits as Potential Alternative for Biodiesel Production. Plants 2022, 11, 252. [Google Scholar] [CrossRef] [PubMed]
- Ameen, M.; Zafar, M.; Ahmad, M.; Shaheen, A.; Yaseen, G. Wild melon: A novel non-edible feedstock for bioenergy. Pet. Sci. 2018, 15, 405–411. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Sudheer, W.N.; Preetha, T.R.; Nagella, P.; Rezk, A.A.; Shehata, W.F. Biotechnological Research Progress in Jatropha, a Biodiesel-Yielding Plant. Plants 2022, 11, 1292. [Google Scholar] [CrossRef]
- Cheema, S.I.; Ahmad, M.; Ullah, R.; Mothana, R.A.; Noman, O.M.; Zafar, M.; Sultana, S.; Hameed, A.; Naz, S.; Akhtar, M.T. Implication, visualization, and characterization through scanning electron microscopy as a tool to identify nonedible oil seeds. Microsc. Res. Tech. 2021, 84, 379–393. [Google Scholar] [CrossRef]
- Wang, Z.; Bui, Q.; Zhang, B. The relationship between biomass energy consumption and human development: Empirical evidence from BRICS countries. Energy 2020, 194, 116906. [Google Scholar] [CrossRef]
- Dawood, S.; Ahmad, M.; Zafar, M.; Ali, M.I.; Ahmad, K.; Sultana, S.; Usma, A.; Nazish, M.; Butt, M.A.; Ozdemir, F.A. Identification of novel nonedible oil seeds via scanning electron microscopy for biodiesel production. Microsc. Res. Tech. 2020, 83, 165–175. [Google Scholar] [CrossRef]
- Vishal, D.; Dubey, S.; Goyal, R.; Dwivedi, G.; Baredar, P.; Chhabra, M. Optimization of alkali-catalyzed transesterification of rubber oil for biodiesel production & its impact on engine performance. Renew. Energy 2020, 158, 167–180. [Google Scholar]
- Massa, T.; Iwassa, I.; Stevanato, N.; Garcia, V.; Silva, C. Passion fruit seed oil: Extraction and subsequent transesterification reaction. Grasas Y Aceites 2021, 72, e409. [Google Scholar] [CrossRef]
- Castiglia, D.; Landi, S.; Esposito, S. Advanced applications for protein and compounds from microalgae. Plants 2021, 10, 1686. [Google Scholar] [CrossRef]
- Sánchez-Borrego, F.J.; Barea de Hoyos-Limón, T.J.; García-Martín, J.F.; Álvarez-Mateos, P. Production of bio-oils and biochars from olive stones: Application of biochars to the esterification of oleic acid. Plants 2021, 11, 70. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.; Ahmad, M.; Saeed, M.; Waseem, A.; Nizami, A.-S.; Sultana, S.; Zafar, M.; Rehan, M.; Srinivasan, G.R.; Ali, A.M. Biodiesel production from novel non-edible caper (Capparis spinosa L.) seeds oil employing Cu-Ni doped ZrO2 catalyst. Renew. Sustain. Energy Rev. 2021, 138, 110558. [Google Scholar] [CrossRef]
- Munir, M.; Ahmad, M.; Rehan, M.; Saeed, M.; Lam, S.S.; Nizami, A.; Waseem, A.; Sultana, S.; Zafar, M. Production of high quality biodiesel from novel non-edible Raphnus raphanistrum L. seed oil using copper modified montmorillonite clay catalyst. Environ. Res. 2021, 193, 110398. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.; Ahmad, M.; Mubashir, M.; Asif, S.; Waseem, A.; Mukhtar, A.; Saqib, S.; Munawaroh, H.S.H.; Lam, M.K.; Khoo, K.S. A practical approach for synthesis of biodiesel via non-edible seeds oils using trimetallic based montmorillonite nano-catalyst. Bioresour. Technol. 2021, 328, 124859. [Google Scholar] [CrossRef] [PubMed]
- Dawood, S.; Koyande, A.K.; Ahmad, M.; Mubashir, M.; Asif, S.; Klemeš, J.J.; Bokhari, A.; Saqib, S.; Lee, M.; Qyyum, M.A. Synthesis of biodiesel from non-edible (Brachychiton populneus) oil in the presence of nickel oxide nanocatalyst: Parametric and optimisation studies. Chemosphere 2021, 278, 130469. [Google Scholar] [CrossRef] [PubMed]
- Kamran, E.; Mashhadi, H.; Mohammadi, A.; Ghobadian, B. Biodiesel production from Elaeagnus angustifolia L seed as a novel waste feedstock using potassium hydroxide catalyst. Biocatal. Agric. Biotechnol. 2020, 25, 101578. [Google Scholar] [CrossRef]
- Ahmad, M.; Asif, S.; Klemeš, J.J.; Mubashir, M.; Bokhari, A.; Sultana, S.; Mukhtar, A.; Zafar, M.; Bazmi, A.A.; Ullah, S. Conversion of the toxic and hazardous Zanthoxylum armatum seed oil into methyl ester using green and recyclable silver oxide nanoparticles. Fuel 2022, 310, 122296. [Google Scholar]
- Fatima, A.; Zafar, M.; Ahmad, M.; Yaseen, G.; Sultana, S.; Gulfraz, M.; Khan, A.M. Scanning electron microscopy as a tool for authentication of oil yielding seed. Microsc. Res. Tech. 2018, 81, 624–629. [Google Scholar] [CrossRef]
- Munir, M.; Ahmad, M.; Waseem, A.; Zafar, M.; Saeed, M.; Wakeel, A.; Nazish, M.; Sultana, S. Scanning electron microscopy leads to identification of novel nonedible oil seeds as energy crops. Microsc. Res. Tech. 2019, 82, 1165–1173. [Google Scholar] [CrossRef]
- Luqman, M.; Zafar, M.; Ahmad, M.; Ozturk, M.; Sultana, S.; Alam, F.; Ullah, F. Micromorphological observation of seed coat of Eucalyptus species (Myrtaceae) using scanning electron microscopy technique. Microsc. Res. Tech. 2019, 82, 75–84. [Google Scholar] [CrossRef]
- Rozina; Ahmad, M.; Khan, A.; Abbas, Q.; Arfan, M.; Mahmood, T.; Zafar, M.; Raza, J.; Sultana, S.; Akhtar, M.; et al. Implication of scanning electron microscopy as a tool for identification of novel, nonedible oil seeds for biodiesel production. Microsc. Res. Tech. 2021, 85, 1671–1684. [Google Scholar] [CrossRef]
- Dawood, S.; Ahmad, M.; Ullah, K.; Zafar, M.; Khan, K. Synthesis and characterization of methyl esters from non-edible plant species yellow oleander oil, using magnesium oxide (MgO) nano-catalyst. Mater. Res. Bull. 2018, 101, 371–379. [Google Scholar] [CrossRef]
- Aziz, A.; Ahmad, M.; Ullah, R.; Bari, A.; Khan, M.Y.; Zafar, M.; Sultana, S.; Ameen, M.; Anar, M. Microscopic techniques for characterization and authentication of oil-yielding seeds. Microsc. Res. Tech. 2021, 85, 900–916. [Google Scholar] [CrossRef] [PubMed]
- Noor-Ziarat, R.; Rezvani, M.; Bagherani, N.; Grichar, W.J. Studies on seed biology, distribution, and chemical control of smellmelon (Cucumis melo var. Agrestis Naudin): An invasive weed. Weed Technol. 2019, 33, 202–209. [Google Scholar] [CrossRef]
- Memon, M.; Ghanghro, A.; Memon, A.; Usman, G.; Shah, A.; Abro, A. Nutritional Profile and Medicinal Properties of Cucumis melo var Agrestis: A Non-Conventional Vegetable. Sindh Univ. Res. J.-SURJ (Sci. Ser.) 2018, 50, 115–118. [Google Scholar] [CrossRef]
- Gopalasatheeskumar, K.; Kalaichelvan, V.; Ariharasivakumar, G.; Sengottuvel, T.; Devan, S.V. In vitro Antidiabetic activity of hydroalcoholic leaf extract of Cucumis melo var agrestis (Cucurbitaceae). Res. J. Pharm. Technol. 2020, 13, 5851–5854. [Google Scholar] [CrossRef]
- Singh, S.; Devi, B. Anti-inflammatory activity of Cucumis melo L. subsp. agrestis (Naudin) Pangalo. Int. J. Pharm. Sci. Res. 2020, 11, 3819–3823. [Google Scholar]
- Kapoor, M.; Sharma, C.; Kaur, N.; Kaur, G.; Kaur, R.; Batra, K.; Rani, J. Phyto-Pharmacological Aspects of Cucumis melo var. agrestis: A Systematic Review. Pharmacogn. Rev. 2020, 14, 28–32. [Google Scholar] [CrossRef]
- Gopalasatheeskumar, K.; Ariharasivakumar, G.; Kalaichelvan, V.; Sengottuvel, T.; Devan, V.S.; Srividhya, V. Antihyperglycemic and antihyperlipidemic activities of wild musk melon (Cucumis melo var. agrestis) in streptozotocin-nicotinamide induced diabetic rats. Chin. Herb. Med. 2020, 12, 399–405. [Google Scholar] [CrossRef]
- Ajaib, M.U.H.A.M.M.A.D.; Khan, Z. Bischofia javanica: A new record to the Flora of Pakistan. Biol. Soc. Pak. 2012, 58, 179–183. [Google Scholar]
- Rai, I.; Bachheti, R.; Joshi, A.; Pandey, D. Physicochemical properties and elemental analysis of some non cultivated seed oils collected from Garhwal region, Uttarakhand (India). Bioengineered 2013, 5, 232–236. [Google Scholar]
- Lee, S.; Ha, J.; Park, J.; Kang, E.; Jeon, S.-H.; Han, S.B.; Ningsih, S.; Paik, J.H.; Cho, S. Antioxidant and Anti-Inflammatory Effects of Bischofia javanica (Blume) Leaf Methanol Extracts through the Regulation of Nrf2 and TAK1. Antioxidants 2021, 10, 1295. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.R.; Chowdhury, K.H.; Hanif, N.B.; Sayeed, M.A.; Mouah, J.; Mahmud, I.; Kamal, A.M.; Chy, M.N.U.; Adnan, M. An integrated exploration of pharmacological potencies of Bischofia javanica (Blume) leaves through experimental and computational modeling. Heliyon 2020, 6, e04895. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, N.; Sharma, G.N.; Hooda, V. Medicinal value of Praecitrullus fistulosus: An overview. Int. J. Pharm. Ther. 2012, 3, 136–142. [Google Scholar]
- Al-Snafi, A.E. A review on Luffa acutangula: A potential medicinal plant. Magnesium 2019, 52, 53. [Google Scholar]
- Schaefer, H.; Renner, S.S. Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxon 2011, 60, 122–138. [Google Scholar] [CrossRef]
Plant Name | Family | Seed Color | Inner Color | Seed Shape | Surface Sculpturing | Wall Ornamentation | Hilum | Compression | ||
---|---|---|---|---|---|---|---|---|---|---|
Occurrence | Position | Level | ||||||||
Cucumis melo var. agrestis Naudin | Cucurbitaceae | Dark brown | Off white | Ovoid | Ruminate | Thick and raised | Visible | Terminal | Raised | Lateral |
Bischofia javanica blume | Phyllanthaceae | Light brown | Brown/black | Ovoid-oblong | Verrucate | Very thick and raised | Not visible | Sub-terminal | Depressed | Lateral |
Praecitrullus fistulosus (Stocks) Pangalo | Cucurbitaceae | Dark brown | Pale yellow | Ovate-oblong | Wrinkled | Thick and raised | Not visible | Terminal | Raised | Lateral |
Luffa acutangula (L.) Roxb | Cucurbitaceae | Black | Yellow | Ovate-Obovate | Verrucate | Very thick and raised | Visible | Terminal | Raised | Dorso-ventral |
Diospyros lotus L. | Ebenaceae | Dark brown | Grey | Semi-spheroid | Striate | Thin and raised | Visible | Depressed | Depressed | Lateral |
Solanum surattense Burm. f. | Solanaceae | Orange to yellow | Yellow | Discoid-obovate | Ruminate | Thick and raised | Visible | Terminal | Depressed | Lateral |
Plant Name | Seed Length (mm) | Mean ± Standard Deviation (Length) | Seed Width (mm) | Mean ± Standard Deviation (Width) | Length/Width Ratio | No. of Seeds/kg | Seed Oil Content (%) | Mean ± Standard Deviation (Seed Oil Content) | FFA Content (mg KOH/g) | Mean ± Standard Deviation (FFA Content) | Biodiesel Potential (%) | Mean ± Standard Deviation (Biodiesel Potential) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cucumis melo var. agrestis | 10–12 (11) | 11.0 ± 1.0 | 5–6 (5.5) | 5.2 ± 0.26 | 2 | 1000–11,000 | 30 | 30.0 ± 1.0 | 0.63 | 0.63 ± 0.01 | 96 | 95.0 ± 1.45 |
Bischofia javanica | 3–4 (3.5) | 3.5 ± 0.50 | 2–3 (2.5) | 2.3 ± 0.47 | 1.4 | 205,000–207,000 | 29.7 | 29.7 ± 0.01 | 1.95 | 1.95 ± 0.01 | 98 | 98.5 ± 0.707 |
Praecitrullus fistulosus | 9–11 (10) | 10 ± 1.0 | 5–6 (5.5) | 5.3 ± 0.47 | 1.81 | 1000–11,000 | 34 | 34 ± 1.00 | 2.01 | 2.01 ± 0.01 | 91 | 91 ± 1.00 |
Luffa acutangula | 11–13 (12) | 12.0 ± 1.0 | 6–7 (6.5) | 6.3 ± 0.47 | 1.84 | 5000–6000 | 48 | 48 ± 1.0 | 3.91 | 3.91 ± 0.01 | 93 | 93 ± 1.00 |
Diospyros lotus | 13–15 (14) | 14.0 ± 1.0 | 5–6 (5.5) | 5.3 ± 0.47 | 2.54 | 7000–9000 | 20.3 | 20.4 ± 0.10 | 6.91 | 6.92 ± 0.01 | 87 | 88 ± 1.00 |
Solanum surattense | 3–4 (3.5) | 3.5 ± 0.50 | 2–2.5 (2.25) | 2.1 ± 0.23 | 1.5 | 25,000–260,000 | 21 | 21 ± 1.00 | 3.91 | 3.92 ± 0.01 | 89 | 89 ±1.00 |
Factors/Variable | PC1 | PC2 | PC3 |
---|---|---|---|
Oil content (%) | 0.97733 | −0.21135 | −0.012511 |
FFA content (mg KOH/g) | −0.079398 | −0.42065 | 0.90374 |
Biodiesel potential (%) | 0.19627 | 0.88226 | 0.42789 |
Eigen value | 106.771 | 16.8027 | 1.49917 |
Variablity (%) | 85.367 | 13.434 | 1.1986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ameen, M.; Zafar, M.; Ahmad, M.; Fawzy Ramadan, M.; Eid, H.F.; Makhkamov, T.; Yuldashev, A.; Mamarakhimov, O.; Nizomova, M.; Isaifan, R.J.; et al. Assessing the Bioenergy Potential of Novel Non-Edible Biomass Resources via Ultrastructural Analysis of Seed Sculpturing Using Microscopic Imaging Visualization. Agronomy 2023, 13, 735. https://doi.org/10.3390/agronomy13030735
Ameen M, Zafar M, Ahmad M, Fawzy Ramadan M, Eid HF, Makhkamov T, Yuldashev A, Mamarakhimov O, Nizomova M, Isaifan RJ, et al. Assessing the Bioenergy Potential of Novel Non-Edible Biomass Resources via Ultrastructural Analysis of Seed Sculpturing Using Microscopic Imaging Visualization. Agronomy. 2023; 13(3):735. https://doi.org/10.3390/agronomy13030735
Chicago/Turabian StyleAmeen, Maria, Muhammad Zafar, Mushtaq Ahmad, Mohamed Fawzy Ramadan, Heba F. Eid, Trobjon Makhkamov, Akramjon Yuldashev, Oybek Mamarakhimov, Maxsuda Nizomova, Rima J. Isaifan, and et al. 2023. "Assessing the Bioenergy Potential of Novel Non-Edible Biomass Resources via Ultrastructural Analysis of Seed Sculpturing Using Microscopic Imaging Visualization" Agronomy 13, no. 3: 735. https://doi.org/10.3390/agronomy13030735
APA StyleAmeen, M., Zafar, M., Ahmad, M., Fawzy Ramadan, M., Eid, H. F., Makhkamov, T., Yuldashev, A., Mamarakhimov, O., Nizomova, M., Isaifan, R. J., Jabeen, S., & Majeed, S. (2023). Assessing the Bioenergy Potential of Novel Non-Edible Biomass Resources via Ultrastructural Analysis of Seed Sculpturing Using Microscopic Imaging Visualization. Agronomy, 13(3), 735. https://doi.org/10.3390/agronomy13030735