Study of the Effects of Different Agronomic Practices on Inorganic Carbon in the Plough Layer of Dryland Field: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and methods
2.1. Data Extraction and Collection
2.2. Data Analysis
3. Results
3.1. Distribution of SIC Contents under Different Agronomic Practices
3.2. Effect of No-tillage and No-tillage Straw Return on SIC Contents of the Plough Layer of Dryland Field
3.3. Effect of Organic Manure on the SIC Contents of the Plough Layer of Dryland Field
3.4. Effect of Plastic Film Mulching and Straw Return Mulching on the SIC Contents of the Plough Layer of Dryland Field
4. Discussion
4.1. Effect of Organic Manure, Straw Return Mulching and Plastic Film Mulching on the Distribution of SIC in the Plough Layer of Dryland Field
4.2. Effects of No-tillage and Its Synergistic Effect with Straw Returning on SIC of Plough Layer in Dryland Field
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 2014, 65, 10–21. [Google Scholar] [CrossRef]
- Mehra, P.; Baker, J.; Sojka, R.E. A Review of Tillage Practices and Their Potential to Impact the Soil Carbon Dynamics. Adv. Agron. 2018, 150, 185–230. [Google Scholar] [CrossRef]
- Huo, H.X.; Zhang, J.G.; Ma, A.S. Progress and prospects of soil carbon cycle in arid deserts. J. Northwest For. Univ. 2018, 33, 98–104. [Google Scholar]
- Zamanian, K.; Pustovoytov, K.; Kuzyakov, Y. Pedogenic carbonates: Forms and formation processes. Earth-Sci. Rev. 2016, 157, 1–17. [Google Scholar] [CrossRef]
- Beerling, D.J.; Kantzas, E.P.; Lomas, M.R. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 2020, 583, 242–248. [Google Scholar] [CrossRef]
- Monger, H.C. Soils as Generators and Sinks of Inorganic Carbon in Geologic Time. In Soil Carbon; Hartemink, A., McSweeney, K., Eds.; Springer: Cham, Switzerland, 2014; pp. 27–36. [Google Scholar] [CrossRef]
- Birkland, P.W. Soils and Geomorphology; Oxford University: New York, NY, USA, 1999. [Google Scholar]
- Duniway, M.C.; Herrick, J.E.; Monger, H.C. The high water-holding capacity of petrocalcic horizons. Soil Sci. 2007, 71, 812–819. [Google Scholar] [CrossRef] [Green Version]
- Duniway, M.C.; Herrick, J.E.; Monger, H.C. Spatial and temporal variability of plant-available water in calcium carbonate-cemented soils and consequences for arid ecosystem resilience. Oecologia 2010, 163, 215–226. [Google Scholar] [CrossRef]
- Gile, L.H.; Peterson, F.F.; Grossman, R.B. Morphology and genetic sequences of carbonate accumulation in desert soils. Soil Sci. 1966, 101, 347–360. [Google Scholar] [CrossRef]
- Hennessy, J.T.; Gibbens, R.P.; Tromble, J.M.; Cardenas, M. Water properties of caliche. J. Range Manag. 1983, 36, 723–726. [Google Scholar] [CrossRef] [Green Version]
- Herbel, C.H.; Wright, A.R. Drought Effects on a Semidesert Grassland Range. Ecology 1972, 53, 1084–1093. [Google Scholar] [CrossRef]
- Groshans, G.R.; Mikhailova, E.A.; Post, C.J. Accounting for soil inorganic carbon in the ecosystem services framework for United Nations sustainable development goals. Geoderma 2018, 324, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Batjes, N.H. Soil carbon stocks of Jordan and projected changes upon improved management of croplands. Geoderma 2006, 132, 361–371. [Google Scholar] [CrossRef]
- Landi, A.; Mermut, A.; Anderson, D. Origin and rate of pedogenic carbonate accumulation in Saskatchewan soils. Geoderma 2003, 117, 143–156. [Google Scholar] [CrossRef]
- Jin, Z.; Dong, Y.; Wang, Y.; Wei, X.; Wang, Y.; Cui, B.; Zhou, W. Natural vegetation restoration is more beneficial to soil surface organic and inorganic carbon sequestration than tree plantation on the Loess Plateau of China. Sci. Total Environ. 2014, 1, 615–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raheb, A.; Heidari, A.S. Mahmoodi Organic and inorganic carbon storage in soils along an arid to dry sub-humid climosequence in northwest of Iran. Catena 2017, 153, 66–74. [Google Scholar] [CrossRef]
- Bertrand, I.; Delfosse, O.; Mary, B. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biol. Biochem. 2007, 39, 276–288. [Google Scholar] [CrossRef]
- Stevenson, B.; Verburg, P. Effluxed CO2-13C from sterilized and unsterilized treatments of a calcareous soil. Soil Biol. Biochem. 2006, 38, 1727–1733. [Google Scholar] [CrossRef]
- Tamir, G.; Shenker, M.; Heller, H.; Bloom, P.; Fine, P.; Bar-Tal, A. Can soil carbonate dissolution lead to overestimation of soil respiration? Soil Sci. Soc. Am. J. 2011, 75, 1414–1422. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Z.Y.; Stevenson, B. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils. Sci. Rep. 2013, 3, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Mooney, H.; Roy, J.; Saugier, B. Terrestrial Global Productivity: Past, Present and Future; Academic: San Diego, CA, USA, 2001. [Google Scholar]
- Moreno, F.; Murillo, J.M.; Pelegrín, F. Long-term impact of conservation tillage on stratification ratio of soil organic carbon and loss of total and active CaCO3. Soil Till. Res. 2006, 85, 86–93. [Google Scholar] [CrossRef]
- Walmsley, D.; Siemens, J.; Kindler, R. Dissolved carbon leaching from an Irish cropland soil is increased by reduced tillage and cover cropping. Agr. Ecosyst. Environ. 2011, 142, 393–402. [Google Scholar] [CrossRef]
- Bughio, M.A.; Wang, P.; Meng, F. Neoformation of pedogenic carbonates by irrigation and fertilization and their contribution to carbon sequestration in soil. Geoderma 2016, 262, 12–19. [Google Scholar] [CrossRef]
- Doran, J.W.; Sarrantonio, M.; Liebig, M.A. Soil Health and Sustainability. Adv. Agron. 1996, 56, 1–54. [Google Scholar] [CrossRef]
- Li, F.M.; Guo, A.H.; Hong, W. Effects of clear plastic film mulch on yield of spring wheat. Field. Crop. Res. 1999, 63, 79–86. [Google Scholar] [CrossRef]
- Li, Z.G.; Tian, C.Y.; Zhang, R.H. Plastic mulching with drip irrigation increases soil carbon stocks of natrargid soils in arid areas of northwestern China. Catena 2015, 133, 179–185. [Google Scholar] [CrossRef]
- Wu, H.; Guo, Z.; Gao, Q. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China. Agric. Ecosyst. Environ. 2009, 129, 413–421. [Google Scholar] [CrossRef]
- Denef, K.; Stewart, C.E.; Brenner, J. Does long-term center-pivot irrigation increase soil carbon stocks in semi-arid agro-ecosystems? Geoderma 2008, 145, 121–129. [Google Scholar] [CrossRef]
- Obear, G.R.; Barak, P.; Soldat, D.J. Soil Inorganic Carbon Accumulation in Sand Putting Green Soils II: Acid-Base Relationships as affected by Water Chemistry and Nitrogen Source. Crop Sci. 2016, 56, 8–51. [Google Scholar] [CrossRef]
- Dong, B.; Zeng, J.; Zhang, D.W.; Bao, X.G. Effects of no-tillage and wheat-maze rotation on soil organic carbon, Soil Inorganic Carbon and microbial biomass carbon contents. Chin. J. Soil Sci. 2013, 44, 376–379. [Google Scholar] [CrossRef]
- Zeng, J.; Guo, T.W.; Bao, X.G.; Wang, Z.; Sun, J.H. Effects of long-term fertilization on soil organic and inorganic carbon. Soil Fertil. Sci. China 2008, 2, 11–14. [Google Scholar]
- Li, L.L.; Wang, Z.H.; Wang, X.N.; Zhang, W.W.; Li, X.H.; Li, S.X. Effects of different ground cover cultivation on organic, inorganic and light organic carbon in dryland soils. J. Plant Nutr. Fertil. 2009, 15, 478–483. [Google Scholar]
- Gao, Y.; Tian, J.; Pang, Y.; Liu, J. Soil inorganic carbon sequestration following afforestation is probably induced by pedogenic carbonate formation in Northwest China. Front. Plant Sci. 2017, 8, 1282. [Google Scholar] [CrossRef] [Green Version]
- Sanderman, J. Can management induced changes in the carbonate system drive soil carbon sequestration? A review with particular focus on Australia. Agric. Ecosyst. Environ. 2012, 155, 70–77. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, M.; Hu, S. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl. Acad. Sci. USA 2018, 115, 4045–4050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bender, D.J.; Contreras, T.A.; Fahrig, L. Habitat loss and population decline: A meta a-nalysis of the patch size effect. Ecology 1998, 79, 517–533. [Google Scholar] [CrossRef]
- Werf, E.V. Lack’s clutch size hypothesis: An examination of the evidence using meta-analysis. Ecology 1992, 73, 1699–1705. [Google Scholar] [CrossRef]
- Hedges, L.V.; Curtis, G. The Meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.G.; Houghton, R.A. Hidden carbon sink beneath desert. Geophys. Res. Lett. 2015, 42, 5880–5887. [Google Scholar] [CrossRef]
- Xu, X.C.; Huang, Y. Effect of Soil Moisture and Temperature on the Soil Inorganic Carbon Release of Brown Limestone Soil in the Karst Region of Southwestern China. Environ. Sci. 2019, 40, 1965–1972. [Google Scholar]
- Shi, Y.; Baumann, F.; Ma, Y. Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: Pattern, control and implications. Biogeosciences 2012, 9, 2287–2299. [Google Scholar] [CrossRef] [Green Version]
- Jindo, K.; Hernández, T.; García, C. Influence of Stability and Origin of Organic Amendments on Humification in Semiarid Soils. Soil Sci. Soc. Am. J. 2011, 75, 2178–2187. [Google Scholar] [CrossRef]
- Dang, C.; Kong, F.; Li, Y. Soil inorganic carbon dynamic change mediated by anthropogenic activities: An integrated study using meta-analysis and An integrated study using meta-analysis and random forest model. Sci. Total Environ. 2022, 835, 155–463. [Google Scholar] [CrossRef]
- Qin, C.; Li, S.L.; Yu, G.H. Vertical variations of soil carbon under different land uses in a karst critical zone observatory (CZO), SW China. Geoderma 2022, 412, 115–741. [Google Scholar] [CrossRef]
- Lal, R.; Kimble, J.M. Pedogenic Carbonates and the Global Carbon Cycle. In Global Climate Change and Pedogenic Carbonates; Lal, R., Kimble, J.M., Eswaran, H., Stewart, B.A., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2000. [Google Scholar] [CrossRef]
- Niu, W.; Han, L.; Liu, X.; Huang, G.; Yang, Z. Twenty-two compositional characterizations and theoretical energy potentials of extensively diversified China’s crop residues. Energy 2016, 100, 238–250. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, R.C.; Baumhardt, R.L.; Evett, S.R. Tillage effects on soil water redistribution and bare soil evaporation throughout a season. Soil Till. Res. 2010, 110, 221–229. [Google Scholar] [CrossRef]
- Palm, C.; Blanco-Canqui, H.; Declerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Chavarria, D.N.; Pérez-Brandan, C.; Serri, D.L. Response of soil microbial communities to agroecological versus conventional systems of extensive agriculture. Agric. Ecosyst. Environ. 2018, 12, 264–276. [Google Scholar] [CrossRef]
- Sun, M.; Ren, A.X.; Gao, Z.Q.; Wang, P.R.; Mo, F. Long-term evaluation of tillage methods in fallow season for soil water storage, wheat yield and water use efficiency in semiarid southeast of the Loess Plateau. Field. Crop. Res. 2018, 218, 24–32. [Google Scholar] [CrossRef]
- Zhou, Z.J.; Li, Z.Q.; Chen, K.; Chen, Z.M.; Zeng, X.Z.; Yu, H. Changes in soil physicochemical properties and bacterial communities at different soil depths after long-term strawmulching under a no-till system. Soil 2021, 7, 595–609. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, X.; Yu, Y.; Dong, J.; Ma, Y.; Wang, L.; Dai, W.; Luan, Y. Study of the Effects of Different Agronomic Practices on Inorganic Carbon in the Plough Layer of Dryland Field: A Meta-Analysis. Agronomy 2023, 13, 736. https://doi.org/10.3390/agronomy13030736
Niu X, Yu Y, Dong J, Ma Y, Wang L, Dai W, Luan Y. Study of the Effects of Different Agronomic Practices on Inorganic Carbon in the Plough Layer of Dryland Field: A Meta-Analysis. Agronomy. 2023; 13(3):736. https://doi.org/10.3390/agronomy13030736
Chicago/Turabian StyleNiu, Xin, Yanni Yu, Jingyi Dong, Yuanzhang Ma, Lingyan Wang, Wei Dai, and Yaning Luan. 2023. "Study of the Effects of Different Agronomic Practices on Inorganic Carbon in the Plough Layer of Dryland Field: A Meta-Analysis" Agronomy 13, no. 3: 736. https://doi.org/10.3390/agronomy13030736
APA StyleNiu, X., Yu, Y., Dong, J., Ma, Y., Wang, L., Dai, W., & Luan, Y. (2023). Study of the Effects of Different Agronomic Practices on Inorganic Carbon in the Plough Layer of Dryland Field: A Meta-Analysis. Agronomy, 13(3), 736. https://doi.org/10.3390/agronomy13030736