Morphological and Transcriptome Analysis of Flooding Mitigation of the Damage Induced by Low-Temperature Stress on Direct-Seeded Early Indica Rice at the Seedling Stage
Abstract
:1. Introduction
2. Results
2.1. Phenotypic
2.2. Agronomic Characters
2.3. Physiological Characteristic
2.4. RNA-Seq Data Analysis
2.5. Differential Expression Gene Analysis
2.6. GO Enrichment Analysis of DEGs
2.7. KEGG Pathway Analysis
2.8. qRT-PCR Verification
3. Discussion
3.1. Response to Flooding Mitigation of Low Temperature Stress by Agronomic Characters
3.2. Potential DEGs Play Important Roles in Flooding Mitigation of Low Temperature Stress
3.3. Photosynthesis, Energy Metabolism and Signal Transduction Pathway Play Important Roles under Flooding Mitigation of Low Temperature Stress
3.4. Some Candidate Genes for Plant Low Temperature stress Tolerance Breeding
4. Conclusions
5. Materials and Methods
5.1. Plant Materials and Growth Conditions
5.2. Experimental Design
5.3. Agronomic Characters
5.4. Physiological Characteristic
5.5. Isolation of RNA, Library Construction, and Illumina Sequencing
5.6. GO and KEGG Enrichment Analysis of DEGs
5.7. qRT-PCR Verification
5.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, X.Q.; Wang, W.S.; Zhang, F.; Zhang, T.; Zhao, W.; Fu, B.Y.; Li, Z.K. Temporal profiling of primary metabolites under chilling stress and its association with seedling chilling tolerance of rice (Oryza sativa L.). Rice 2013, 6, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grohs, M.; Marchesan, E.; Roso, R.; Moraes, B.S. Attenuation of low-temperature stress in rice seedlings. Pesqui. Agropecu. Trop. 2016, 46, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Andaya, V.C.; Tai, T.H. Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theor. Appl. Genet. 2006, 113, 467–475. [Google Scholar] [CrossRef]
- Baldoni, E.; Bagnaresi, P.; Locatelli, F.; Mattana, M.; Genga, A. Comparative leaf and root transcriptomic analysis of two rice japonica cultivars reveals major differences in the root early response to osmotic stress. Rice 2016, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Li, L.; Fan, Y.; Wan, J.; Wang, L. ZmCBF3 overexpression improves tolerance to abiotic stress in transgenic rice without yield penalty. Plant Cell Rep. 2011, 30, 1949–1957. [Google Scholar] [CrossRef] [PubMed]
- Siddik, M.A.; Zhang, J.; Chen, J.; Qian, H.Y.; Jiang, Y.; Raheem, A.K.; Deng, X.X.; Song, Z.W.; Zheng, C.Y.; Zhang, W.J. Responses of indica rice yield and quality to extreme high and low temperatures during the reproductive period. Eur. J. Agron. 2019, 106, 30–38. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, S.C.; Hong, S.K.; An, K.; An, G.; Kim, S.R. Ectopic expression of a cold-responsive OsAsr1 cDNA gives enhanced cold tolerance in transgenic rice plants. Mol. Cells 2009, 27, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Tran, L.S.; Nguyen, D.; Fujita, M.; Maruyama, K.; Todaka, D.; Ito, Y.; Hayashi, N.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 2007, 51, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Zia, M.S.; Salim, M.; Aslam, M.; Gill, M.A. Effect of low temperature of irrigation water on rice growth and nutrient uptake. J. Agron. Crop Sci. 1994, 173, 22–31. [Google Scholar] [CrossRef]
- Lal, B.; Gautam, P.; Mohanty, S.; Raja, R.; Tripathi, R.; Shahid, M.; Nayak, A.K. Combined application of silica and nitrogen alleviates the damage of flooding stress in rice. Crop Pasture Sci. 2015, 66, 679–688. [Google Scholar] [CrossRef]
- Farrell, T.C.; Fox, K.M.; Williams, R.L.; Fukai, S. Genotypic variation for cold tolerance during reproductive develop ment in rice: Screening with cold air and cold water. Field Crops Res. 2006, 98, 178–194. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Guo, C.C.; Zhong, Y.; Xing, M.W.; Li, B.; Yang, Y.G.; Yuan, X.J.; Wen, Y.F.; Shu, C.H.; Yang, Z.Y.; et al. Relationship between seed germination physiological characteristics and germination percentages of direct-seeded hybrid indica rice under low-temperature and anaerobic interaction. Seed Sci. Technol. 2022, 50, 241–256. [Google Scholar] [CrossRef]
- Rativa, A.G.S.; Junior, A.T.A.; Friedrich, D.D.S.; Gastmann, R.; Lamb, T.I.; Silva, A.D.S.; Adamski, J.M.; Fett, J.P.; Ricachenevsky, F.K.; Sperotto, R.A. Root responses of contrasting rice genotypes to low temperature stress. J. Plant Physiol. 2020, 255, 153307. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, H.Z.; Qu, J.; Wang, X.; Wang, Z.; Wang, L.; Yang, D.; Zhang, D.; Zou, H. Transcriptome sequencing and iTRAQ of different rice cultivars provide insight into molecular mechanisms of cold-tolerance response in Japonica rice. Rice 2020, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, J.A.; Graham, M.A. Gene expression responses to sequential nutrient deficiency stresses in soybean. Int. J. Mol. Sci. 2021, 22, 1252. [Google Scholar] [CrossRef] [PubMed]
- Robles, J.A.; Qureshi, S.E.; Stephen, S.J.; Wilson, S.R.; Burden, C.J.; Taylor, J.M. Efficient experimental design and analysis strategies for the detection of differential expression using rna-sequencing. BMC Genom. 2012, 13, 484. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Li, C.; Zhang, X.; Li, Y.; Zhang, D.; Shi, Y.; Song, Y.; Li, Y.; Yang, D.; Wang, T. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. Plant Sci. 2020, 292, 110380. [Google Scholar] [CrossRef]
- Janiak, A.; Kwasniewski, M.; Sowa, M.; Kuczynska, A.; Mikołajczak, K.; Ogrodowicz, P.; Szarejko, I. Insights into barley root transcriptome under mild drought stress with an emphasis on gene expression regulatory mechanisms. Int. J. Mol. Sci. 2019, 20, 6139. [Google Scholar] [CrossRef] [Green Version]
- Lantzouni, O.; Alkofer, A.; Falter-Braun, P.; Schwechheimer, C. Growth-regulating factors interact with DELLAs and regulate growth in cold stress. Plant Cells 2020, 32, 1018–1034. [Google Scholar] [CrossRef]
- Suzuki, K.; Nagasuga, K.; Okada, M. The chilling injury induced by high root temperature in the leaves of rice seedlings. Plant Cell Physiol. 2008, 49, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.R.; Seghal, A.; Jumaa, S.; Bheemanahalli, R.; Kakar, N.; Redona, E.D.; Wijewardana, C.; Alsajri, F.A.; Chastain, D.; Gao, W.; et al. Morpho-physiological characterization of diverse rice genotypes for seedling stage high-and low-temperature tolerance. Agronomy 2021, 11, 112. [Google Scholar] [CrossRef]
- Nagasuga, K.; Murai-Hatano, M.; Kuwagata, T. Effects of low root temperature on dry matter production and root water uptake in rice plants. Plant Prod. Sci. 2011, 14, 22–29. [Google Scholar] [CrossRef]
- Wu, L.Q.; Cai, Z.H.; Zhang, G.L.; Liu, Y.T.; Zhao, R. Effects of low temperature on physiological characteristics of rice seedlings with different cold tolerance and anatomical structure of root tip. J. Agrometeorol. 2008, 39, 805–813. [Google Scholar]
- Yang, Z.; Sasaki, O.; Shimotashiro, T. Studies on the low-temperature damage in rice seedlings: Effect of a low temperature on several characteristics of rice seedlings. Jpn. J. Crop Sci. 2001, 70, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.S.; Ou, S.L.; Yang, C.Y. The seedlings of different japonica rice varieties exhibit differ physiological properties to modulate plant survival rates under submergence stress. Plants 2020, 9, 982. [Google Scholar] [CrossRef]
- Li, X.J.; Guo, C.J.; Lu, W.J.; Duan, W.W.; Zhao, M.; Ma, C.Y.; Gu, J.T.; Xiao, K. Expression pattern analysis of zinc finger protein genes in wheat (Triticum aestivum L.) under phosphorus deprivation. J. Int. Agric. 2014, 13, 1621–1633. [Google Scholar] [CrossRef]
- Li, H.; Hu, T.; Amombo, E.; Fu, J. Transcriptome profilings of two tall fescue (Festuca arundinacea) cultivars in response to lead (Pb) stres. BMC Genom. 2017, 18, 145. [Google Scholar]
- Pradhan, S.K.; Pandit, E.; Nayak, D.K.; Behera, L.; Mohapatra, T. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. BMC Plant Biol. 2019, 19, 352. [Google Scholar] [CrossRef] [Green Version]
- Lima, J.M.; Nath, M.; Dokku, P.; Raman, K.V.; Kulkarni, K.P.; Vishwakarma, C.; Sahoo, S.P.; Mohapatra, U.B.; Mithra, S.V.; Chinnusamy, V.; et al. Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance. AoB Plants 2015, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Buti, M.; Pasquariello, M.; Ronga, D.; Milc, J.A.; Pecchioni, N.; Ho, V.T.; Pucciariello, C.; Perata, P.; Francia, E. Transcriptome profiling of short-term response to chilling stress in tolerant and sensitive Oryza sativa ssp. Japonica seedlings. Funct. Integr. Genom. 2018, 18, 627–644. [Google Scholar] [CrossRef]
- Qiao, D.; Zhang, Y.; Xiong, X.; Li, M.; Cai, K.; Luo, H.; Zeng, B. Transcriptome analysis on responses of orchardgrass (Dactylis glomerata L.) leaves to a short term flooding. Hereditas 2020, 157, 20. [Google Scholar] [CrossRef]
- Pan, Y.H.; Liang, H.F.; Gao, L.J.; Dai, G.X.; Chen, W.W.; Yang, X.H.; Qing, D.J.; Gao, J.; Wu, H.; Huang, J.; et al. Transcriptomic profiling of germinating seeds under cold stress and characterization of the cold-tolerant gene LTG5 in rice. BMC Plant Biol. 2020, 20, 371. [Google Scholar] [CrossRef]
- Adamski, J.M.; Rosa, L.M.; Menezes-Peixoto, C.R.; Pinheiro, C.L.; Fett, J.P.; Sperotto, R.A. Photosynthetic activity of indica rice sister lines with contrasting cold tolerance. Physiol. Mol. Biol. Plants 2020, 26, 955–964. [Google Scholar] [CrossRef]
- Cui, G.W.; Chai, H.; Yin, H.; Yang, M.; Hu, G.F.; Guo, M.Y.; Yi, R.; Zhang, P. Full-length transcriptome sequencing reveals the low-temperature-tolerance mechanism of Medicago falcata roots. BMC Plant Biol. 2019, 19, 575. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.Y.; Kim, H.S.; Lee, C.J.; Kim, S.E.; Lee, H.U.; Nam, S.S.; Li, Q.; Ma, D.F.; Kwak, S.S. Comparative transcriptome profiling of tuberous roots of two sweetpotato lines with contrasting low temperature tolerance during storage. Gene 2020, 727, 144244. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Chen, S.J.; Ma, X.S.; Wei, H.B.; Chen, C.; Gao, N.N.; Zou, Y.Q.; Kong, D.Y.; Li, T.F.; et al. An APETALA2/ethylene responsive factor, OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice. Mol. Genet. Genom. 2020, 295, 941–956. [Google Scholar] [CrossRef]
- Bowley, S.R.; Mckersie, B.D. Relationships among freezing, low temperature flooding, and ice encasement tolerance in alfalfa. Can. J. Plant Sci. 1990, 70, 227–235. [Google Scholar] [CrossRef]
- Vighi, I.L.; Benitez, L.C.; Amaral, M.N.; Moraes, G.P.; Auler, P.A.; Rodrigues, G.S.; Deuner, S.; Maia, L.C.; Braga, J.B. Functional characterization of the antioxidant enzymes in rice plants exposed to salinity stress. Biol. Plant. 2017, 61, 540–550. [Google Scholar] [CrossRef]
- Fang, C.X.; Zhang, P.L.; Jian, X.; Chen, W.S.; Lin, H.M.; Li, Y.Z.; Lin, W.X. Overexpression of Lsi1 in cold-sensitive rice mediates transcriptional regulatory networks and enhances resistance to chilling stress. Plant Sci. 2017, 262, 115–126. [Google Scholar] [CrossRef]
- Sanghera, G.S.; Wani, S.H.; Hussain, W.; Singh, N.B. Engineering cold stress tolerance in crop plants. Curr. Genom. 2011, 12, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Huang, F.; Wang, J.; Ma, X.; Cheng, Y.; Liu, J. A proteomic analysis of cold stress responses in rice seedlings. Proteomics 2005, 5, 3162–3172. [Google Scholar] [CrossRef]
- Minami, A.; Yano, K.; Gamuyao, R.; Nagai, K.; Kuroha, T.; Ayano, M.; Nakamori, M.; Koike, M.; Kondo, Y.; Niimi, Y.; et al. Time-course transcriptomics analysis reveals key responses of submerged deepwater rice to flooding. Plant Physiol. 2018, 176, 3081–3102. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.P.; Sun, X.J.; Xu, F.Y.; Zhang, Y.J.; Zhang, Q.; Miao, R.; Zhang, J.H.; Liang, J.S.; Xu, W.F. Suppression of OsMDHAR4 enhances heat tolerance by mediating H2O2-induced stomatal closure in rice plants. Rice 2018, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.M.; Muhlemann, J.K.; Gayomba, S.R.; Muday, G.K. RBOH-Dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chem. Res. Toxicol. 2019, 32, 370–396. [Google Scholar] [CrossRef] [PubMed]
- Song, H.S.; Seo, H.M.; Jeon, J.M.; Moon, Y.M.; Hong, J.W.; Hong, Y.G.; Bhatia, S.K.; Ahn, J.; Lee, H.; Kim, W.; et al. Enhanced isobutanol production from acetate by combinatorial overexpression of acetyl-CoA synthetase and anaplerotic enzymes in engineered Escherichia coli. Biotechnol. Bioeng. 2018, 115, 1971–1978. [Google Scholar] [CrossRef]
- Garcia, T.A.; Zenteno, S.T.; Peregrino, A.B.; Yepiz, P.G. Hypoxia, reoxygenation and cytosolic manganese superoxide dismutase (cMnSOD) silencing in Litopenaeus vannamei: Effects on cMnSOD transcripts, superoxide dismutase activity and superoxide anion production capacity. Dev. Comp. Immunol. 2010, 34, 1230–1235. [Google Scholar] [CrossRef]
- Campion, E.M.; Loughran, S.T.; Walls, D. Protein quantitation and analysis of purity. Methods. Mol. Biol. 2011, 681, 229–258. [Google Scholar]
- Guan, S.; Xu, Q.; Ma, D.; Zhang, W.; Xu, Z.; Zhao, M.; Guo, Z. Transcriptomics profiling in response to cold stress in cultivated rice and weedy rice. Gene 2019, 685, 96–105. [Google Scholar] [CrossRef]
Treatment | Seedling Height /cm | Root Number /plant | Root Length /cm | Fresh Weight mg /100 plants | Dry Weight mg /100 plants | T1 /cm | T2 /cm | T3 /cm |
---|---|---|---|---|---|---|---|---|
LT | 18.9 ± 0.40 c | 10.7 ± 0.58 c | 5.3 ± 0.77 b | 186.0 ± 1.00 c | 27.2 ± 0.46 c | 2.4 ± 0.25 b | 9.3 ± 0.20 b | 7.1 ± 0.20 c |
LTF | 19.9 ± 0.24 b | 11.0 ± 0.58 b | 5.5 ± 0.11 b | 212.4 ± 0.59 b | 32.5 ± 0.58 b | 2.4 ± 0.25 b | 9.8 ± 0.55 b | 8.1 ± 0.30 b |
CK | 28.4 ± 0.29 a | 14.1 ± 1.07 a | 7.9 ± 0.20 a | 253.5 ± 0.50 a | 36.4 ± 0.46 a | 3.7 ± 0.26 a | 10.6 ± 0.30 a | 10.5 ± 0.22 a |
Treatment | POD Activity /μ g−1·min−1 | SOD Activity /μ g−1 | CAT Activity /U·g−1·min−1 | Cpr Content /Mg−1 mL |
---|---|---|---|---|
LT | 288.67 ± 10.26 a | 304.73 ± 9.87 a | 777.79 ± 44.65 a | 8.02 ± 0.34 a |
LTF | 269.29 ± 5.89 a | 255.51 ± 3.64 a | 741.34 ± 12.86 b | 7.49 ± 0.07 b |
CK | 221.42 ± 6.50 b | 234.74 ± 3.70 b | 639.21 ± 40.29 c | 6.76 ± 0.19 c |
Sample | Total Reads | Clean Reads | Mapped Ratio | Q20 (%) | Q30 (%) | GC (%) | Multiple Mapped | Uniquely Mapped |
---|---|---|---|---|---|---|---|---|
LT | 51,839,643 | 44,476,183 | 85.79% | 96.82% | 91.82% | 52.45 | 232,023 (52.33%) | 44,244,160 (99.48%) |
LTF | 47,035,894 | 40,810,432 | 86.71% | 96.78% | 91.66% | 51.73 | 176,840 (43.00%) | 40,633,593 (99.57%) |
CK | 43,688,132 | 38,060,065 | 87.08% | 97.07% | 92.29% | 53.00% | 158,285 (41.00%) | 37,901,780 (99.59%) |
Pathway Name | Count | Percent (%) | p-Value |
---|---|---|---|
KEGG Pathways between LT and CK | |||
Ribosome | 159 | 6.37 | 1 × 10−12 |
Flavonoid biosynthesis | 44 | 1.76 | 1.09 × 10−3 |
Glycosaminoglycan biosynthesis-chondroitin sulfate | 8 | 0.32 | 1.09 × 10−2 |
Tryptophan metabolism | 42 | 1.68 | 1.20 × 10−2 |
Phenylalanine, tyrosine and tryptophan biosynthesis | 23 | 0.92 | 1.52 × 10−2 |
Plant hormone signal transduction | 135 | 5.41 | 1.74 × 10−2 |
Carotenoid biosynthesis | 25 | 1.00 | 1.81 × 10−2 |
Diterpenoid biosynthesis | 25 | 1.00 | 3.58 × 10−2 |
Indole alkaloid biosynthesis | 10 | 0.40 | 4.47 × 10−2 |
Glycolysis/Gluconeogenesis | 58 | 2.32 | 4.50 × 10−2 |
KEGG Pathways between LTF and CK | |||
Ribosome | 239 | 7.10 | 5 × 10−12 |
Photosynthesis | 39 | 1.16 | 1.19 × 10−7 |
Ribosome biogenesis in eukaryotes | 61 | 1.81 | 3.88 × 10−5 |
Carotenoid biosynthesis | 38 | 1.13 | 2.25 × 10−4 |
Photosynthesis-antenna proteins | 11 | 0.33 | 4.48 × 10−4 |
Flavonoid biosynthesis | 54 | 1.61 | 2.46 × 10−3 |
Glycolysis/Gluconeogenesis | 81 | 2.41 | 7.05 × 10−3 |
Galactose metabolism | 51 | 1.52 | 8.56 × 10−3 |
KEGG Pathways between LTF and LT | |||
Photosynthesis | 27 | 2.39 | 7 × 10−12 |
Photosynthesis-antenna proteins | 8 | 0.71 | 2.21 × 10−5 |
Carotenoid biosynthesis | 181 | 1.59 | 3.79 × 10−4 |
Carbon fixation in photosynthetic organisms | 30 | 2.65 | 4.98 × 10−4 |
Glyoxylate and dicarboxylate metabolism | 23 | 2.03 | 7.44 × 10−4 |
Nitrogen metabolism | 13 | 1.15 | 1.28 × 10−3 |
Circadian rhythm-plant | 25 | 2.21 | 1.80 × 10−3 |
Porphyrin and chlorophyll metabolism | 18 | 1.59 | 7.28 × 10−3 |
Methane metabolism | 22 | 1.95 | 1.36 × 10−2 |
Flavonoid biosynthesis | 21 | 1.86 | 1.57 × 10−2 |
Plant hormone signal transduction | 67 | 5.92 | 1.64 × 10−2 |
Glycine, serine and threonine metabolism | 23 | 2.03 | 1.78 × 10−2 |
Soil pH | Organic Matter (g·kg−1) | Total Nitrogen (g·kg−1) | Available Phosphorus (mg·kg−1) | Available Potassium (mg·kg−1) |
---|---|---|---|---|
6.1 | 30.35 | 2.4 | 25.17 | 84.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Du, J.; Wu, Z.; Zeng, Y.; Pan, X.; Cheng, S.; Zeng, Y. Morphological and Transcriptome Analysis of Flooding Mitigation of the Damage Induced by Low-Temperature Stress on Direct-Seeded Early Indica Rice at the Seedling Stage. Agronomy 2023, 13, 834. https://doi.org/10.3390/agronomy13030834
Wang W, Du J, Wu Z, Zeng Y, Pan X, Cheng S, Zeng Y. Morphological and Transcriptome Analysis of Flooding Mitigation of the Damage Induced by Low-Temperature Stress on Direct-Seeded Early Indica Rice at the Seedling Stage. Agronomy. 2023; 13(3):834. https://doi.org/10.3390/agronomy13030834
Chicago/Turabian StyleWang, Wenxia, Jie Du, Ziming Wu, Yongjun Zeng, Xiaohua Pan, Shanmei Cheng, and Yanhua Zeng. 2023. "Morphological and Transcriptome Analysis of Flooding Mitigation of the Damage Induced by Low-Temperature Stress on Direct-Seeded Early Indica Rice at the Seedling Stage" Agronomy 13, no. 3: 834. https://doi.org/10.3390/agronomy13030834
APA StyleWang, W., Du, J., Wu, Z., Zeng, Y., Pan, X., Cheng, S., & Zeng, Y. (2023). Morphological and Transcriptome Analysis of Flooding Mitigation of the Damage Induced by Low-Temperature Stress on Direct-Seeded Early Indica Rice at the Seedling Stage. Agronomy, 13(3), 834. https://doi.org/10.3390/agronomy13030834