Assessing Drought Tolerance of Newly Developed Tissue-Cultured Canola Genotypes under Varying Irrigation Regimes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Site
2.2. Experimental Design and Crop Management
2.3. Measured Traits
2.4. Drought Tolerance Indices
2.5. Statistical Analysis
3. Results
3.1. Physiological Parameters
3.2. Agronomic Traits
3.3. Genotypic Classification
3.4. Relationships among Assessed Treatments and Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations. Statistical Database. Available online: http://www.fao.org/faostat/en/#data (accessed on 17 January 2022).
- Onacik-Gür, S.; Żbikowska, A. Effect of high-oleic rapeseed oil oleogels on the quality of short-dough biscuits and fat migration. J. Food Sci. Technol. 2020, 57, 1609–1618. [Google Scholar] [CrossRef] [PubMed]
- Hamzei, J.; Soltani, J. Deficit irrigation of rapeseed for water-saving: Effects on biomass accumulation, light interception and radiation use efficiency under different N rates. Agric. Ecosyst. Environ. 2012, 155, 153–160. [Google Scholar] [CrossRef]
- Wu, W.; Ma, B.; Whalen, J.K. Enhancing Rapeseed Tolerance to Heat and Drought Stresses in a Changing Climate: Perspectives for Stress Adaptation from Root System Architecture. Adv. Agron. 2018, 151, 87–157. [Google Scholar]
- Tester, M.; Langridge, P. Breeding Technologies to Increase Crop Production in a Changing World. Science 2010, 327, 818–822. [Google Scholar] [CrossRef]
- Aksouh-Harradj, N.M.; Campbell, L.C.; Mailer, R.J. Canola response to high and moderately high temperature stresses during seed maturation. Can. J. Plant Sci. 2006, 86, 967–980. [Google Scholar] [CrossRef]
- Zamani, S.; Nezami, M.; Habibi, D.; Khorshidi, M. Effect of quantitative and qualitative performance of four canola cultivars (Brassica napus L.) to salinity conditions. Adv. Environ. Biol. 2010, 4, 422–428. [Google Scholar]
- Tesfamariam, E.H.; Annandale, J.G.; Steyn, J.M. Water Stress Effects on Winter Canola Growth and Yield. Agron. J. 2010, 102, 658–666. [Google Scholar] [CrossRef] [Green Version]
- Jensen, C.; Mogensen, V.; Mortensen, G.; Fieldsend, J.; Milford, G.; Andersen, M.N.; Thage, J. Seed glucosinolate, oil and protein contents of field-grown rape (Brassica napus L.) affected by soil drying and evaporative demand. Field Crops Res. 1996, 47, 93–105. [Google Scholar] [CrossRef]
- Chaves, M.M.; Oliveira, M.M. Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. J. Exp. Bot. 2004, 55, 2365–2384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.M.; Mansour, E.; Awaad, H.A. Drought tolerance in some field crops: State of the art review. In Mitigating Environmental Stresses for Agricultural Sustainability in Egypt; Springer: Berlin, Germany, 2021; pp. 17–62. [Google Scholar]
- Xie, X.; Zhang, X.; He, Q. Identification of drought resistance of rapeseed (Brassica napus L.) during germination stage under PEG stress. J. Food Agric. Environ. 2013, 11, 751–756. [Google Scholar]
- Desoky, E.-S.M.; Elrys, A.S.; Mansour, E.; Eid, R.S.M.; Selem, E.; Rady, M.M.; Ali, E.F.; Mersal, G.A.M.; Semida, W.M. Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Sci. Hortic. 2021, 288, 110340. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Belal, E.E.; Rady, M.O.A.; Abd El-Mageed, S.A.; Mansour, E.; Awad, M.F.; Semida, W.M. Acidified biochar as a soil amendment to drought stressed (Vicia faba L.) plants: Influences on growth and productivity, nutrient status, and water use efficiency. Agronomy 2021, 11, 1290. [Google Scholar] [CrossRef]
- Jian, H.; Wang, J.; Wang, T.; Wei, L.; Li, J.; Liu, L. Identification of Rapeseed MicroRNAs Involved in Early Stage Seed Germination under Salt and Drought Stresses. Front. Plant Sci. 2016, 7, 658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Ghani, A.H.; Neumann, K.; Wabila, C.; Sharma, R.; Dhanagond, S.; Owais, S.J.; Börner, A.; Graner, A.; Kilian, B. Diversity of germination and seedling traits in a spring barley (Hordeum vulgare L.) collection under drought simulated conditions. Genet. Resour. Crops Evol. 2015, 62, 275–292. [Google Scholar] [CrossRef]
- Ghobadi, M.; Bakhshandeh, M.; Fathi, G.; Gharineh, M.; Alami-Said, K.; Naderi, A.; Ghobadi, M. Short and long periods of water stress during different growth stages of canola (Brassica napus L.): Effect on yield, yield components, seed oil and protein contents. J. Agron. 2006, 5, 336–341. [Google Scholar]
- Jamshidi, Z.A.; Hasanloo, T.; Naji, A. Evaluation of physiological and biochemical characteristics of four canola (Brassica napus L.) cultivars in drought condition. Iran. J. Field Crops Res. 2015, 13, 583–597. [Google Scholar]
- Payam, M.; Ahmad, E.; Hossein, A.F. Studying of oil yield variations in winter rapeseed (Brassica napus L.) cultivars under drought stress conditions. J. Agric. Biotech. Sustain. Dev. 2010, 2, 71–75. [Google Scholar]
- Rad, A.H.S.; Zandi, P. The effect of drought stress on qualitative and quantitative traits of spring rapeseed (Brassica napus L.) cultivars. Agriculture 2012, 99, 47–54. [Google Scholar]
- Sakran, R.M.; Ghazy, M.I.; Rehan, M.; Alsohim, A.S.; Mansour, E. Molecular genetic diversity and combining ability for some physiological and agronomic traits in rice under well-watered and water-deficit conditions. Plants 2022, 11, 702. [Google Scholar] [CrossRef]
- Mannan, M.A.; Tithi, M.A.; Islam, M.R.; Al Mamun, M.A.; Mia, S.; Rahman, M.Z.; Awad, M.F.; ElSayed, A.I.; Mansour, E.; Hossain, M.S. Soil and foliar applications of zinc sulfate and iron sulfate alleviate the destructive impacts of drought stress in wheat. Cereal Res. Commun. 2022, 50, 1279–1289. [Google Scholar] [CrossRef]
- Gibon, Y.; Sulpice, R.; Larher, F. Proline accumulation in canola leaf discs subjected to osmotic stress is related to the loss of chlorophylls and to the decrease of mitochondrial activity. Physiol. Plant. 2000, 110, 469–476. [Google Scholar] [CrossRef]
- Desoky, E.-S.M.; Mansour, E.; Ali, M.M.A.; Yasin, M.A.T.; Abdul-Hamid, M.I.E.; Rady, M.M.; Ali, E.F. Exogenously used 24-epibrassinolide promotes drought tolerance in maize hybrids by improving plant and water productivity in an arid environment. Plants 2021, 10, 354. [Google Scholar] [CrossRef] [PubMed]
- Omidi, H. Changes of Proline Content and Activity of Antioxidative Enzymes in Two Canola Genotype under Drought Stress. Am. J. Plant Physiol. 2010, 5, 338–349. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Monroe, J.G.; Suhail, Y.; Villiers, F.; Mullen, J.; Pater, D.; Hauser, F.; Jeon, B.W.; Bader, J.S.; Kwak, J.M.; et al. Molecular and systems approaches towards drought-tolerant canola crops. New Phytol. 2016, 210, 1169–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ElSayed, A.I.; Mohamed, A.H.; Rafudeen, M.S.; Omar, A.A.; Awad, M.F.; Mansour, E. Polyamines mitigate the destructive impacts of salinity stress by enhancing photosynthetic capacity, antioxidant defense system and upregulation of calvin cycle-related genes in rapeseed (Brassica napus L.). Saudi J. Biol. Sci. 2022, 29, 3675–3686. [Google Scholar] [CrossRef]
- Gunasekera, C.; Martin, L.; Siddique, K.; Walton, G. Genotype by environment interactions of Indian mustard (Brassica juncea L.) and canola (B. napus L.) in Mediterranean-type environments: 1. Crop growth and seed yield. Eur. J. Agron. 2006, 25, 1–12. [Google Scholar] [CrossRef]
- Abdrabou, R.; Fergani, M.A.H.; Azzam, C.R.; Morsi, N. Devolopment of Some Canola Genotypes to Salinity Tolerance Using Tissue Culture Technique. Egypt. J. Agron. 2017, 39, 431–448. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, W.; Latimer, G. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2012; Volume 222. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; Fao: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Schonfeld, M.A.; Johnson, R.C.; Carver, B.F.; Mornhinweg, D.W. Water Relations in Winter Wheat as Drought Resistance Indicators. Crops Sci. 1988, 28, 526–531. [Google Scholar] [CrossRef]
- Moran, R. Formulae for determination of chlorophyllous pigments extracted with N, N-dimethylformamide. Plant Physiol. 1982, 69, 1376–1381. [Google Scholar] [CrossRef] [Green Version]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Jindal, K.K.; Singh, R.N. Phenolic Content in Male and Female Carica papaya: A Possible Physiological Marker for Sex Identification of Vegetative Seedlings. Physiol. Plant. 1975, 33, 104–107. [Google Scholar] [CrossRef]
- Mirecki, R.M.; Teramura, A.H. Effects of ultraviolet-B irradiance on soybean: V. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiol. 1984, 74, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Grieve, C.M.; Grattan, S.R. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 1983, 70, 303–307. [Google Scholar] [CrossRef]
- Rosielle, A.; Hamblin, J. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Sci. 1981, 21, 943–946. [Google Scholar] [CrossRef]
- Fischer, R.A.; Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 1978, 29, 897–912. [Google Scholar] [CrossRef]
- Fernandez, G.C. Effective selection criteria for assessing plant stress tolerance. In Proceedings of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Shanhua, Taiwan, 13–16 August 1992; pp. 257–270. [Google Scholar]
- Farshadfar, E.; Sutka, J. Screening drought tolerance criteria in maize. Acta Agron. Hung. 2002, 50, 411–416. [Google Scholar] [CrossRef]
- Bouslama, M.; Schapaugh, W., Jr. Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance. Crop Sci. 1984, 24, 933–937. [Google Scholar] [CrossRef]
- Gavuzzi, P.; Rizza, F.; Palumbo, M.; Campanile, R.G.; Ricciardi, G.L.; Borghi, B. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Can. J. Plant Sci. 1997, 77, 523–531. [Google Scholar] [CrossRef]
- Dietz, K.; Zörb, C.; Geilfus, C. Drought and crop yield. Plant Biol. 2021, 23, 881–893. [Google Scholar] [CrossRef]
- Mansour, E.; Abdul-Hamid, M.I.; Yasin, M.T.; Qabil, N.; Attia, A. Identifying drought-tolerant genotypes of barley and their responses to various irrigation levels in a Mediterranean environment. Agric. Water Manag. 2017, 194, 58–67. [Google Scholar] [CrossRef]
- Secchi, M.A.; Fernandez, J.A.; Stamm, M.J.; Durrett, T.; Prasad, P.V.; Messina, C.D.; Ciampitti, I.A. Effects of heat and drought on canola (Brassica napus L.) yield, oil, and protein: A meta-analysis. Field Crops Res. 2023, 293, 108848. [Google Scholar] [CrossRef]
- da Silva, E.C.; Nogueira, R.; da Silva, M.A.; de Albuquerque, M.B. Drought stress and plant nutrition. Plant Stress 2011, 5, 32–41. [Google Scholar]
- Ashraf, M.; Shahbaz, M.; Ali, Q. Drought-induced modulation in growth and mineral nutrients in canola (Brassica napus L.). Pak. J. Bot. 2013, 45, 93–98. [Google Scholar]
- Eyni Nargeseh, H.; Aghaalikhani, M.; Shirani Rad, A.; Mokhtassi-Bidgoli, A.; Modarres-Sanevi, A. Comparison of 17 rapeseed cultivars under terminal water deficit conditions using drought tolerance indices. J. Agric. Sci. Technol. 2020, 22, 489–503. [Google Scholar]
- Fard, N.S.; Abad, H.H.S.; Rad, A.S.; Heravan, E.M.; Daneshian, J. Effect of drought stress on qualitative characteristics of canola cultivars in winter cultivation. Ind. Crops Prod. 2018, 114, 87–92. [Google Scholar] [CrossRef]
- Ozturk, M.; Turkyilmaz Unal, B.; García-Caparrós, P.; Khursheed, A.; Gul, A.; Hasanuzzaman, M. Osmoregulation and its actions during the drought stress in plants. Physiol. Plant. 2021, 172, 1321–1335. [Google Scholar] [CrossRef]
- Yasmin, H.; Bano, A.; Wilson, N.L.; Nosheen, A.; Naz, R.; Hassan, M.N.; Ilyas, N.; Saleem, M.H.; Noureldeen, A.; Ahmad, P. Drought-tolerant Pseudomonas sp. showed differential expression of stress-responsive genes and induced drought tolerance in Arabidopsis thaliana. Physiol. Plant. 2022, 174, e13497. [Google Scholar] [CrossRef]
- Ahmad, Z.; Anjum, S.; Skalicky, M.; Waraich, E.A.; Tariq, R.M.S.; Ayub, M.A.; Hossain, A.; Hassan, M.M.; Brestic, M.; Islam, M.S. Selenium alleviates the adverse effect of drought in oilseed crops camelina (Camelina sativa L.) and canola (Brassica napus L.). Molecules 2021, 26, 1699. [Google Scholar] [CrossRef]
- Khan, Z.; Khan, M.N.; Zhang, K.; Luo, T.; Zhu, K.; Hu, L. The application of biochar alleviated the adverse effects of drought on the growth, physiology, yield and quality of rapeseed through regulation of soil status and nutrients availability. Ind. Crops Prod. 2021, 171, 113878. [Google Scholar] [CrossRef]
- Khan, M.N.; Zhang, J.; Luo, T.; Liu, J.; Ni, F.; Rizwan, M.; Fahad, S.; Hu, L. Morpho-physiological and biochemical responses of tolerant and sensitive rapeseed cultivars to drought stress during early seedling growth stage. Acta Physiol. Plant. 2019, 41, 25. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Osman, H.S. Enhancing antioxidant–yield relationship of pea plant under drought at different growth stages by exogenously applied glycine betaine and proline. Ann. Agric. Sci. 2015, 60, 389–402. [Google Scholar] [CrossRef] [Green Version]
- Sakhanokho, H.F.; Kelley, R.Y. Influence of salicylic acid on in vitro propagation and salt tolerance in Hibiscus acetosella and Hibiscus moscheutos (cv ‘Luna Red’). Afr. J. Biotechnol. 2009, 8, 1474–1481. [Google Scholar]
- Orbović, V.; Ćalović, M.; Viloria, Z.; Nielsen, B.; Gmitter, F.; Castle, W.; Grosser, J. Analysis of genetic variability in various tissue culture-derived lemon plant populations using RAPD and flow cytometry. Euphytica 2008, 161, 329–335. [Google Scholar] [CrossRef]
- Purushotham, M.; Patil, V.; Raddey, P.; Prasad, T.; Vajranabhaiah, S. Development of in vitro PEG stress tolerant cell lines in two groundnut (Arachis hypogaea L.) genotypes. Indian J. Plant Physiol. 1998, 3, 49–51. [Google Scholar]
- Gangopadhyay, G.; Basu, S.; Gupta, S. In vitro selection and physiological characterization of NaCl- and mannitol-adapted callus lines in Brassica juncea. Plant Cell Tissue Organ Cult. (PCTOC) 1997, 50, 161–169. [Google Scholar] [CrossRef]
- Ochatt, S.; Marconi, P.L.; Radice, S.; Arnozis, P.; Caso, O. In vitro recurrent selection of potato: Production and characterization of salt tolerant cell lines and plants. Plant Cell Tissue Organ Cult. (PCTOC) 1998, 55, 1–8. [Google Scholar] [CrossRef]
- Errabii, T.; Gandonou, C.B.; Essalmani, H.; Abrini, J.; Idaomar, M.; Skali-Senhaji, N. Growth, proline and ion accumulation in sugarcane callus cultures under drought-induced osmotic stress and its subsequent relief. Afr. J. Biotechnol. 2006, 5, 1488–1493. [Google Scholar]
- Kandil, A.; Sharief, A.; El-Mohandes, S.I.; Keshta, M. Performance of canola (Brassica napus l.) genotypes under drought stress. Int. J. Environ. Agric. Biotechnol. 2017, 2, 653–661. [Google Scholar]
- Zali, H.; Hasanloo, T.; Sofalian, O.; Asgharii, A.; Shariatpanahi, M.E. Identifying drought Tolerant Canola Genotypes using Selection Index of Ideal Genotype. J. Crops Breed. 2019, 11, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Riffkin, P.; Potter, T.; Kearney, G. Yield performance of late-maturing winter canola (Brassica napus L.) types in the High Rainfall Zone of southern Australia. Crops Pasture Sci. 2012, 63, 17–32. [Google Scholar] [CrossRef]
- Desoky, E.-S.M.; Mansour, E.; El-Sobky, E.-S.E.A.; Abdul-Hamid, M.I.; Taha, T.F.; Elakkad, H.A.; Arnaout, S.M.A.I.; Eid, R.S.M.; El-Tarabily, K.A.; Yasin, M.A.T. Physio-biochemical and agronomic responses of faba beans to exogenously applied nano-silicon under drought stress conditions. Front. Plant Sci. 2021, 12, 637783. [Google Scholar] [CrossRef] [PubMed]
- Mansour, E.; Mahgoub, H.A.; Mahgoub, S.A.; El-Sobky, E.-S.E.; Abdul-Hamid, M.I.; Kamara, M.M.; AbuQamar, S.F.; El-Tarabily, K.A.; Desoky, E.-S.M. Enhancement of drought tolerance in diverse Vicia faba cultivars by inoculation with plant growth-promoting rhizobacteria under newly reclaimed soil conditions. Sci. Rep. 2021, 11, 24142. [Google Scholar] [CrossRef] [PubMed]
- Mansour, E.; Desoky, E.-S.M.; Ali, M.M.A.; Abdul-Hamid, M.I.; Ullah, H.; Attia, A.; Datta, A. Identifying drought-tolerant genotypes of faba bean and their agro-physiological responses to different water regimes in an arid Mediterranean environment. Agric. Water Manag. 2021, 247, 106754. [Google Scholar] [CrossRef]
- Blum, A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2017, 40, 4–10. [Google Scholar] [CrossRef]
- Huang, G.-T.; Ma, S.-L.; Bai, L.-P.; Zhang, L.; Ma, H.; Jia, P.; Liu, J.; Zhong, M.; Guo, Z.-F. Signal transduction during cold, salt, and drought stresses in plants. Mol. Biol. Rep. 2012, 39, 969–987. [Google Scholar] [CrossRef]
- Golldack, D.; Li, C.; Mohan, H.; Probst, N. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Front. Plant Sci. 2014, 5, 151. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Dias, M.C.; Freitas, H. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front. Plant Sci. 2020, 11, 591911. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Shukla, P.S.; Gupta, K.; Jha, B. Bioengineering for Salinity Tolerance in Plants: State of the Art. Mol. Biotechnol. 2013, 54, 102–123. [Google Scholar] [CrossRef]
- El-Sanatawy, A.; El-Kholy, A.; Ali, M.; Awad, M.; Mansour, E. Maize Seedling Establishment, Grain Yield and Crop Water Productivity Response to Seed Priming and Irrigation Management in a Mediterranean Arid Environment. Agronomy 2021, 11, 756. [Google Scholar] [CrossRef]
- ElShamey, E.A.Z.; Hamad, H.S.; Alshallash, K.S.; Alghuthaymi, M.A.; Ghazy, M.I.; Sakran, R.M.; Selim, M.E.; ElSayed, M.A.A.; Abdelmegeed, T.M.; Okasha, S.A.; et al. Growth Regulators Improve Outcrossing Rate of Diverse Rice Cytoplasmic Male Sterile Lines through Affecting Floral Traits. Plants 2022, 11, 1291. [Google Scholar] [CrossRef]
- Habibullah, M.; Sarkar, S.; Islam, M.M.; Ahmed, K.U.; Rahman, Z.; Awad, M.F.; ElSayed, A.I.; Mansour, E.; Hossain, S. Assessing the Response of Diverse Sesame Genotypes to Waterlogging Durations at Different Plant Growth Stages. Plants 2021, 10, 2294. [Google Scholar] [CrossRef] [PubMed]
- Khodabin, G.; Tahmasebi-Sarvestani, Z.; Rad, A.H.S.; Modarres-Sanavy, S.A.M. Effect of Drought Stress on Certain Morphological and Physiological Characteristics of a Resistant and a Sensitive Canola Cultivar. Chem. Biodivers. 2020, 17, e1900399. [Google Scholar] [CrossRef] [PubMed]
- Germchi, S.; Shekari, F.; Hassanpooraghdam, M.B.; Benam, M.; Shekari, F. Water deficit stress affects growth and some biochemical characteristics of rapeseed (Brassica napus L.). J. Food Agric. Environ. 2010, 8, 1126–1129. [Google Scholar]
- Diepenbrock, W. Yield analysis of winter oilseed rape (Brassica napus L.): A review. Field Crops Res. 2000, 67, 35–49. [Google Scholar] [CrossRef]
Accession | Origin |
---|---|
Serw-4 | Local variety obtained from Field Crops Research Institute, Agricultural Research Centre, Giza, Egypt |
Pactol | Adopted French cultivar in Egypt |
Siberian | Accessions from the gene bank of the Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany |
S1 | Regenerated genotypes developed from Siberian genotype |
S2 | |
S3 | |
Torpe | Accessions from the gene bank of the Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany |
T1 | Regenerated genotypes developed from Torpe genotype |
T2 | |
T3 |
Index | Formula |
---|---|
Drought tolerance index [38] | (Yp − Ys) |
Harmonic mean [39] | (Yp × Ys)/(Yp + Ys) |
Mean productivity [38] | (Ys + Yp)/2 |
Stress susceptibility index [39] | 1 − (Ys/Yp)/SI, SI = 1 − (Ȳs/Ȳp) |
Geometric mean productivity [40] | √(Yp × Ys) |
Stress tolerance index [40] | (Yp × Ys)/(Ȳp)2 |
Modified stress tolerance index [41] | (YI)2 × [(Yp × Ys)/(Ȳp)2] |
Yield stability index [42] | Ys/Yp |
Yield index [43] | Ys/Ȳs |
Studied Factor | Total Chlorophyll (mg/g DW) | Relative Water Content (%) | Proline Content (mg/g DW) | Anthocyanin Content (mg/g DW) | Glycine Betaine (mg/g DW) | Total Phenolic Content (mg/g DW) | |
---|---|---|---|---|---|---|---|
Irrigation (I) | |||||||
Well-watered | 12.46 a | 75.74 a | 0.368 d | 0.091 d | 0.131 d | 34.38 d | |
Mild drought | 10.66 b | 69.51 b | 0.506 c | 0.158 c | 0.291 c | 64.77 c | |
Moderate drought | 8.91 c | 62.71 c | 0.621 b | 0.205 b | 0.398 b | 91.25 b | |
Severe drought | 6.12 d | 54.85 d | 0.744 a | 0.752 a | 0.622 a | 134.74 a | |
Genotype (G) | |||||||
Serw-4 | 9.66 e | 70.12 a | 0.706 a | 0.263 e | 0.231 e | 103.34 a | |
Pactol | 8.02 i | 65.30 c | 0.517 c | 0.354 b | 0.225 e | 99.16 b | |
Siberian | 9.90 d | 61.66 e | 0.219 d | 0.337 c | 0.472 b | 101.15 c | |
S1 | 8.76 h | 68.75 ab | 0.597 b | 0.313 d | 0.347 cd | 67.62 h | |
S2 | 10.19 b | 64.31 cd | 0.501 c | 0.253 e | 0.524 a | 57.16 i | |
S3 | 8.99 g | 69.14 ab | 0.587 b | 0.262 e | 0.307 d | 68.60 g | |
Torpe | 9.20 f | 62.79 de | 0.607 b | 0.264 e | 0.477 b | 75.85 e | |
T1 | 10.33 a | 63.13 d | 0.590 b | 0.360 b | 0.354 c | 96.62 d | |
T2 | 10.17 bc | 67.83 b | 0.706 a | 0.196 f | 0.349 cd | 68.93 g | |
T3 | 10.10 c | 64.03 cd | 0.569 b | 0.413 a | 0.319 cd | 74.48 f | |
ANOVA | df | ||||||
Irrigation (I) | 3 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Genotype (G) | 9 | <0.001 | 0.041 | <0.001 | <0.001 | <0.001 | <0.001 |
I × G | 27 | <0.001 | 0.705 | <0.001 | <0.001 | <0.001 | <0.001 |
Studied Factor | Days to Flowering | Days to Maturity | Number of Branches /Plant | Number of Pods/Plant | Plant Height (cm) | Seed Yield (t/ha) | Oil Content (%) | |
---|---|---|---|---|---|---|---|---|
Irrigation (I) | ||||||||
Well-watered | 96.90 a | 173.47 a | 7.45 a | 290.8 a | 150.67 a | 2.25 a | 42.49 a | |
Mild drought | 94.90 a | 171.33 a | 6.70 b | 243.0 b | 144.33 ab | 2.03 b | 41.59 b | |
Moderate drought | 87.53 b | 164.27 b | 6.02 c | 185.5 c | 139.00 b | 1.54 c | 41.05 c | |
Severe drought | 80.97 c | 157.63 c | 4.82 d | 135.9 d | 131.17 c | 1.06 d | 40.26 d | |
Genotype (G) | ||||||||
Serw-4 | 87.67 b | 167.42 abc | 6.12 ab | 211.1 bcde | 136.12 bc | 1.77 bc | 41.84 d | |
Pactol | 95.08 a | 167.58 abc | 6.00 ab | 223.0 abcd | 139.62 abc | 1.79 b | 38.61 i | |
Siberian | 83.75 b | 165.50 bc | 6.04 ab | 206.3 def | 145.79 ab | 1.63 d | 40.60 f | |
S1 | 87.08 b | 164.75 bc | 5.71 b | 208.7 cdef | 141.33 abc | 1.50 e | 39.47 h | |
S2 | 85.50 b | 162.58 c | 6.08 ab | 190.6 f | 141.92 abc | 1.44 e | 39.50 h | |
S3 | 84.25 b | 167.83 ab | 6.04 ab | 201.6 ef | 137.71 abc | 1.68 cd | 41.39 e | |
Torpe | 84.83 b | 164.75 bc | 6.04 ab | 209.2 bcdef | 129.58 c | 1.78 bc | 40.41 g | |
T1 | 94.50 a | 167.92 ab | 6.58 ab | 228.4 ab | 143.25 abc | 1.82 ab | 42.50 c | |
T2 | 98.92 a | 171.17 a | 7.08 a | 232.1 a | 150.42 a | 1.93 a | 46.24 a | |
T3 | 99.17 a | 167.25 abc | 6.75 ab | 227.1 abc | 147.17 ab | 1.87 ab | 42.92 b | |
ANOVA | df | |||||||
Irrigation (I) | 3 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Genotype (G) | 9 | <0.001 | <0.001 | 0.006 | <0.001 | <0.001 | <0.001 | <0.001 |
I × G | 27 | 0.041 | 0.450 | 0.990 | 0.122 | 0.520 | 0.125 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morsi, N.A.A.; Hashem, O.S.M.; El-Hady, M.A.A.; Abd-Elkrem, Y.M.; El-temsah, M.E.; Galal, E.G.; Gad, K.I.; Boudiar, R.; Silvar, C.; El-Hendawy, S.; et al. Assessing Drought Tolerance of Newly Developed Tissue-Cultured Canola Genotypes under Varying Irrigation Regimes. Agronomy 2023, 13, 836. https://doi.org/10.3390/agronomy13030836
Morsi NAA, Hashem OSM, El-Hady MAA, Abd-Elkrem YM, El-temsah ME, Galal EG, Gad KI, Boudiar R, Silvar C, El-Hendawy S, et al. Assessing Drought Tolerance of Newly Developed Tissue-Cultured Canola Genotypes under Varying Irrigation Regimes. Agronomy. 2023; 13(3):836. https://doi.org/10.3390/agronomy13030836
Chicago/Turabian StyleMorsi, Nahid A. A., Omnia S. M. Hashem, Mohamed A. Abd El-Hady, Yasser M. Abd-Elkrem, Mohamed E. El-temsah, Elhussin G. Galal, Khaled I. Gad, Ridha Boudiar, Cristina Silvar, Salah El-Hendawy, and et al. 2023. "Assessing Drought Tolerance of Newly Developed Tissue-Cultured Canola Genotypes under Varying Irrigation Regimes" Agronomy 13, no. 3: 836. https://doi.org/10.3390/agronomy13030836
APA StyleMorsi, N. A. A., Hashem, O. S. M., El-Hady, M. A. A., Abd-Elkrem, Y. M., El-temsah, M. E., Galal, E. G., Gad, K. I., Boudiar, R., Silvar, C., El-Hendawy, S., Mansour, E., & Abdelkader, M. A. (2023). Assessing Drought Tolerance of Newly Developed Tissue-Cultured Canola Genotypes under Varying Irrigation Regimes. Agronomy, 13(3), 836. https://doi.org/10.3390/agronomy13030836