Experiment and Study of Garlic Root Cutting Based on Continuous Force Feedback
Abstract
:1. Introduction
2. Materials and Methods
2.1. Garlic Root-Cutting Test Bench
2.2. Cutter Module
2.3. Determination of Main Parameters
2.4. Analysis of the Effective Cutting Speed of Round Blades
2.5. Round Blade Speed and Thickness
2.6. Analysis of Root-Cutting Force
3. Results
3.1. Double Round Blade Root-Cutting Test
3.1.1. Analysis of the Root-Cutting Process
3.1.2. Round Blade Root-Cutting Test Results
3.2. Round Blade for Edge Grooving
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tao, Y.; Zhang, J.; Jiang, S.; Xu, Y.; Show, P.; Han, Y.; Ye, X.; Ye, M. Contacting ultrasound enhanced hot-air convective drying of garlic slices: Mass transfer modeling and quality evaluation. J. Food Eng. 2018, 235, 79–88. [Google Scholar] [CrossRef]
- Furdak, P.; Pieńkowska, N.; Bartosz, G.; Sadowska-Bartosz, I. Extracts of Common Vegetables Inhibit the Growth of Ovary Cancer Cells. Foods 2022, 11, 2518. [Google Scholar] [CrossRef] [PubMed]
- Recinella, L.; Gorica, E.; Chiavaroli, A.; Fraschetti, C.; Filippi, A.; Cesa, S.; Cairone, F.; Martelli, A.; Calderone, V.; Veschi, S.; et al. Anti-Inflammatory and Antioxidant Effects Induced by Allium sativum L. Extracts on an Ex Vivo Experimental Model of Ulcerative Colitis. Foods 2022, 11, 3559. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Boobyer, C.; Borgonha, Z.; van den Heuvel, E.; Appleton, K.M. Adding Flavours: Use of and Attitudes towards Sauces and Seasonings in a Sample of Community-Dwelling UK Older Adults. Foods 2021, 10, 2828. [Google Scholar] [CrossRef]
- Han, C.; Liu, J.; Chen, K.; Lin, Y.; Chen, C.; Fan, C.; Lee, H.; Liu, D.; Hou, W. Antihypertensive activities of processed garlic on spontaneously hypertensive rats and hypertensive humans. Bot. Stud. 2011, 52, 277–283. [Google Scholar]
- Wang, J.; Zhang, X.; Lan, H.; Wang, W. Effect of garlic supplement in the management of type 2 diabetes mellitus (T2DM): A meta-analysis of randomized controlled trials. Food Nutr. Res. 2017, 61, 1377571. [Google Scholar] [CrossRef] [Green Version]
- Phan, A.D.T.; Netzel, G.; Chhim, P.; Netzel, M.E.; Sultanbawa, Y. Phytochemical Characteristics and Antimicrobial Activity of Australian Grown Garlic (Allium sativum L.) Cultivars. Foods 2019, 8, 358. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, D.K.; Sapkota, H.; Baidya, P.; Basnet, S. Antioxidant and Antibacterial Activities of Allium sativum and Allium cepa. Bull. Pharm. Res. 2016, 6, 50–55. [Google Scholar]
- Ghani, M.I.; Ali, A.; Atif, M.J.; Ali, M.; Amin, B.; Anees, M.; Cheng, Z. Soil Amendment with Raw Garlic Stalk: A Novel Strategy to Stimulate Growth and the Antioxidative Defense System in Monocropped Eggplant in the North of China. Agronomy 2019, 9, 89. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, V.F.; Auad, A.M.; de Resende, T.T.; Visconde, A.J.M.; Dias, M.L. Insecticidal Activity of Aqueous Extracts of Plant Origin on Mahanarva spectabilis (Distant, 1909) (Hemiptera: Cercopidae). Agronomy 2022, 12, 947. [Google Scholar] [CrossRef]
- Netzel, M.E. Garlic: Much More Than a Common Spice. Foods 2020, 9, 1544. [Google Scholar] [CrossRef]
- Pocketbook, F.S. World Food and Agriculture; Food and Agriculture Organization: Rome, Italy, 2016. [Google Scholar]
- Yu, Z.; Yang, K.; Hu, Z.; Peng, B.; Gu, F.; Yang, L.; Yang, M. Parameter optimization and simulation analysis of floating root cutting mechanism for garlic harvester. Comput. Electron. Agric. 2023, 204, 107521. [Google Scholar] [CrossRef]
- Yang, K.; Yu, Z.; Gu, F.; Zhang, Y.; Wang, S.; Peng, B.; Hu, Z. Experimental Study of Garlic Root Cutting Based on Deep Learning Application in Food Primary Processing. Foods 2022, 11, 3268. [Google Scholar] [CrossRef]
- Yang, K.; Peng, B.; Gu, F.; Zhang, Y.; Wang, S.; Yu, Z.; Hu, Z. Convolutional Neural Network for Object Detection in Garlic Root Cutting Equipment. Foods 2022, 11, 2197. [Google Scholar] [CrossRef]
- Yang, K.; Hu, Z.; Yu, Z.; Peng, B.; Zhang, Y.; Gu, F. Design and Experiment of Garlic Harvesting and Root Cutting Device Based on Deep Learning Object Determination. Trans. Chin. Soc. Agric. Mach. 2022, 53, 123–132. [Google Scholar]
- Ren, D.; Yu, H.; Zhang, R.; Li, J.; Zhao, Y.; Liu, F.; Zhang, J.; Wang, W. Research and Experiments of Hazelnut Harvesting Machine Based on CFD-DEM Analysis. Agriculture 2022, 12, 2115. [Google Scholar] [CrossRef]
- Luo, W.; Wu, F.; Gu, F.; Xu, H.; Wang, G.; Wang, B.; Yang, H.; Hu, Z. Optimization and Experiment of Fertilizer-Spreading Device for Wheat Wide-Boundary Sowing Planter under Full Rice Straw Retention. Agronomy 2022, 12, 2251. [Google Scholar] [CrossRef]
- Li, Y.; Fan, J.; Hu, Z.; Luo, W.; Yang, H.; Shi, L.; Wu, F. Calibration of Discrete Element Model Parameters of Soil around Tubers during Potato Harvesting Period. Agriculture 2022, 12, 1475. [Google Scholar] [CrossRef]
- Li, Z.; Wu, J.; Du, J.; Duan, D.; Zhang, T.; Chen, Y. Experimenting and Optimizing Design Parameters for a Pneumatic Hill-Drop Rapeseed Metering Device. Agronomy 2023, 13, 141. [Google Scholar] [CrossRef]
- Zou, L.; Yuan, J.; Liu, X.; Li, J.; Zhang, P.; Niu, Z. Burgers viscoelastic model-based variable stiffness design of compliant clamping mechanism for leafy greens harvesting. Biosyst. Eng. 2021, 208, 1–5. [Google Scholar] [CrossRef]
- Hwang, S.; Nam, J. DEM simulation model to optimise shutter hole position of a centrifugal fertiliser distributor for precise application. Biosyst. Eng. 2021, 204, 326–345. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, B.; Wang, M.; Zhang, H. Damping behaviour of a prestressed composite beam designed for the thresher of a combine harvester. Biosyst. Eng. 2021, 204, 130–146. [Google Scholar] [CrossRef]
- Zargar, O.; Pharr, M.; Muliana, A. Modeling and simulation of creep response of sorghum stems: Towards an un-derstanding of stem geometrical and material variations. Biosyst. Eng. 2022, 217, 1–17. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, M.; Xie, J.; Cao, S.; Wu, A.; Wang, Z. Discrete element modeling and physical experiment research on the biomechanical properties of cotton stalk. Comput. Electron. Agric. 2023, 204, 107502. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Y.; Liang, Z.; Chen, Y. Optimum design of grain impact sensor utilising polyvinylidene fluoride films and a floating raft damping structure. Biosyst. Eng. 2012, 112, 227–235. [Google Scholar] [CrossRef]
- Mu, L.; Liu, Y.; Cui, Y.; Liu, H.; Chen, L.; Fu, L.; Gejima, Y. Design of End-effector for Kiwifruit Harvesting Robot Experiment. In Proceedings of the ASABE Annual International Meeting, Spokane, WA, USA, 16–19 July 2017; p. 1700666. [Google Scholar] [CrossRef]
- Szpunar-Krok, E.; Szostek, M.; Pawlak, R.; Gorzelany, J.; Migut, D. Effect of Fertilisation with Ash from Biomass Combustion on the Mechanical Properties of Potato Tubers (Solanum tuberosum L.) Grown in Two Types of Soil. Agronomy 2022, 12, 379. [Google Scholar] [CrossRef]
- Stubbs, C.J.; Sun, W.; Cook, D.D. Measuring the transverse Young’s modulus of maize rind and pith tissues. J. Biomech. 2019, 84, 113–120. [Google Scholar] [CrossRef]
- Catania, P.; Comparetti, A.; De Pasquale, C.; Morello, G.; Vallone, M. Effects of the Extraction Technology on Pome-granate Juice Quality. Agronomy 2020, 10, 1483. [Google Scholar] [CrossRef]
- Lee, S.; Zargar, O.; Reiser, C.; Li, Q.; Muliana, A.; Finlayson, S.A.; Gomez, F.E.; Pharr, M. Time-dependent mechanical behavior of sweet sorghum stems. J. Mech. Behav. Biomed. Mater. 2020, 106, 103731. [Google Scholar] [CrossRef]
- Lu, W.; Li, X.; Zhang, G.; Tang, J.; Ni, S.; Zhang, H.; Zhang, Q.; Zhai, Y.; Mu, G. Research on Biomechanical Properties of Laver (Porphyra yezoensis Ueda) for Mechanical Harvesting and Postharvest Transporta-tion. AgriEngineering 2022, 4, 48–66. [Google Scholar] [CrossRef]
- Chattopadhyay, P.S.; Pandey, K.P. Mechanical Properties of Sorghum Stalk in relation to Quasi-static Deformation. J. Agric. Eng. Res. 1999, 73, 199–206. [Google Scholar] [CrossRef]
- Goonewardena, J.; Ashraf, M.; Reiner, J.; Kafle, B.; Subhani, M. Constitutive Material Model for the Compressive Behaviour of Engineered Bamboo. Buildings 2022, 12, 1490. [Google Scholar] [CrossRef]
- Moya, M.; Sánchez, D.; Villar-García, J.R. Values for the Mechanical Properties of Wheat, Maize and Wood Pellets for Use in Silo Load Calculations Involving Numerical Methods. Agronomy 2022, 12, 1261. [Google Scholar] [CrossRef]
- Szpunar-Krok, E.; Kuźniar, P.; Pawlak, R.; Migut, D. The Effect of Foliar Fertilization on the Resistance of Pea (Pisum sativum L.) Seeds to Mechanical Damage. Agronomy 2021, 11, 189. [Google Scholar] [CrossRef]
- Gagliardi, L.; Fontanelli, M.; Frasconi, C.; Sportelli, M.; Antichi, D.; Tramacere, L.G.; Rallo, G.; Peruzzi, A.; Raffaelli, M. Assessment of a Chain Mower Performance for Weed Control under Tree Rows in an Alley Cropping Farming System. Agronomy 2022, 12, 2785. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, J.; Yi, B.; Zhang, B.; Wang, K. A flexible swallowing gripper for harvesting apples and its grasping force sensing model. Comput. Electron. Agric. 2023, 204, 107489. [Google Scholar] [CrossRef]
- Ding, A.; Peng, B.; Yang, K.; Zhang, Y.; Yang, X.; Zou, X.; Zhu, Z. Design of a Machine Vision-Based Automatic Digging Depth Control System for Garlic Combine Harvester. Agriculture 2022, 12, 2119. [Google Scholar] [CrossRef]
- Erukainure, F.E.; Parque, V.; Hassan, M.A.; FathEI-Bab, A.M.R. Estimating the stiffness of kiwifruit based on the fusion of instantaneous tactile sensor data and machine learning schemes. Comput. Electron. Agric. 2022, 201, 107289. [Google Scholar] [CrossRef]
- Huang, M.; He, L.; Choi, D.; Pecchia, J.; Li, Y. Picking dynamic analysis for robotic harvesting of Agaricus bisporus mushrooms. Comput. Electron. Agric. 2021, 185, 106145. [Google Scholar] [CrossRef]
- Wang, C.; Zang, X.; Zhang, X.; Liu, Y.; Zhao, J. Parameter estimation and object gripping based on fingertip force/torque sensors. Measurement 2021, 179, 109479. [Google Scholar] [CrossRef]
- Wang, C.; Zang, X.; Zhang, H.; Chen, H.; Chen, H.; Lin, Z.; Zhao, J. Status Identification and Object In-Hand Reorientation Using Force/Torque Sensors. IEEE Sens. J. 2021, 21, 20694–20703. [Google Scholar] [CrossRef]
- Payo, I.; Adánez, J.M.; Rosa, D.R.; Fernández, R.; Vázquez, A.S. Six-Axis Column-Type Force and Moment Sensor for Robotic Applications. IEEE Sens. J. 2018, 18, 6996–7004. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Zhao, H.; Liu, B.; Ma, J.; He, Y.; Zhang, Y.; Xu, H. Effects of cutting parameters on cutting of citrus fruit stems. Biosyst. Eng. 2020, 193, 1–11. [Google Scholar] [CrossRef]
- Jin, X.; Du, X.; Wang, S.; Ji, J.; Dong, X.; Wang, D. Design and Experiment of Stems Cutting Device for Carrot Harvester. Trans. Chin. Soc. Agric. Mach. 2016, 47, 82–89. [Google Scholar] [CrossRef]
- Yu, Z.; Hu, Z.; Yang, K.; Peng, B.; Wu, F.; Xie, H. Design and experiment of root cutting device in garlic combine harvesting. Trans. CSAE 2016, 32, 77–85. [Google Scholar] [CrossRef]
- Yu, Z.; Hu, Z.; Yang, K.; Peng, B.; Zhang, Y.; Yang, M. Operation Mechanism Analysis and Parameter Optimization of Garlic Root Floating Cutting Device. Trans. Chin. Soc. Agric. Mach. 2021, 52, 111–119. [Google Scholar] [CrossRef]
- Du, Z.; Li, D.; Ji, J.; Zhang, L.; Li, X.; Wang, H. Bionic Optimization Design and Experiment of Reciprocating Cutting System on Single-Row Tea Harvester. Agronomy 2022, 12, 1309. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, B.; Jia, J.; Chen, Z.; Yu, C.; Cai, S. Design and parameters optimization of root cutting tool based on garlic numerical simulation model. Food Process Eng. 2021, 44, e13753. [Google Scholar] [CrossRef]
- Barman, C.; Bhatt, Y.C.; Jain, H.K.; Vyas, S.S. Performance Evaluation of Power Operated Garlic Stem and Root cutter. Agric. Eng. Today 2015, 39, 57–61. [Google Scholar]
- Tang, H.; Jiang, Y.; Wang, J.; Guan, R.; Zhou, W. Bionic Design and Parameter Optimization of Rotating and Fixed Stem- and Leaf-Cutting Devices for Carrot Combine Harvesters. Math. Probl. Eng. 2021, 2021, 1–4. [Google Scholar] [CrossRef]
- Levshin, A.; Gasparyan, I.; Shchigolev, S.; Mekhedov, M. Design of cutting device for decapitation of potato shoots. Eng. Rural. Dev. 2021, 5, 26–28. [Google Scholar] [CrossRef]
- Momin, M.A.; Wempe, P.A.; Grift, T.E.; Hansen, A.C. Effects of Four Base Cutter Blade Designs on Sugarcane Stem Cut Quality. Trans. ASABE 2017, 60, 1551–1560. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Yu, Z.; Luo, W.; Fan, J.; Li, Y.; Gu, F.; Zhang, Y.; Wang, S.; Peng, B.; Hu, Z. Experiment and Study of Garlic Root Cutting Based on Continuous Force Feedback. Agronomy 2023, 13, 835. https://doi.org/10.3390/agronomy13030835
Yang K, Yu Z, Luo W, Fan J, Li Y, Gu F, Zhang Y, Wang S, Peng B, Hu Z. Experiment and Study of Garlic Root Cutting Based on Continuous Force Feedback. Agronomy. 2023; 13(3):835. https://doi.org/10.3390/agronomy13030835
Chicago/Turabian StyleYang, Ke, Zhaoyang Yu, Weiwen Luo, Jiali Fan, Yuyao Li, Fengwei Gu, Yanhua Zhang, Shenying Wang, Baoliang Peng, and Zhichao Hu. 2023. "Experiment and Study of Garlic Root Cutting Based on Continuous Force Feedback" Agronomy 13, no. 3: 835. https://doi.org/10.3390/agronomy13030835
APA StyleYang, K., Yu, Z., Luo, W., Fan, J., Li, Y., Gu, F., Zhang, Y., Wang, S., Peng, B., & Hu, Z. (2023). Experiment and Study of Garlic Root Cutting Based on Continuous Force Feedback. Agronomy, 13(3), 835. https://doi.org/10.3390/agronomy13030835