Ammonia Volatilization and Marandu Grass Production in Response to Enhanced-Efficiency Nitrogen Fertilizers
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Area
2.2. Experimental Design
2.3. Soil Management, Sowing and Cultural Treatments
2.4. Ammonia Volatilization
2.5. Grass Production
2.6. Morphological Composition of Forage
2.7. Data Analysis
3. Results
3.1. NH3-N Volatilization Losses
3.2. Nitrogen Use Efficiency for Dry Matter Production
3.3. Correlation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cezário, A.S.; Ribeiro, K.G.; Santos, S.A.; de Campos Valadares Filho, S.; Pereira, O.G. Silages of Brachiaria Brizantha Cv. Marandu Harvested at Two Regrowth Ages: Microbial Inoculant Responses in Silage Fermentation, Ruminant Digestion and Beef Cattle Performance. Anim. Feed. Sci. Technol. 2015, 208, 33–43. [Google Scholar] [CrossRef]
- Nunes, S.G.; Boock, A.; Penteado, M.D.O.; Gomes, D.T. Brachiaria Brizantha Cv. Marandu; Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária): Campo Grande, Brazil, 1984. [Google Scholar]
- Macedo, M.C.M.; Araujo, A.R. de Sistemas de Produção em Integração: Alternativa para Recuperação de Pastagens Degradadas; Empresa Brasileira de Pesquisa Agropecuária—Embrapa: Brasília, Brasil, 2019. [Google Scholar]
- Bezerra, J.D.D.V.; Neto, J.V.E.; Alves, D.J.D.S.; Neta, I.E.B.; Neto, L.C.G.; Santos, R.D.S.; Difante, G.D.S. Características produtivas, morfogênicas e estruturais de cultivares de Brachiaria brizantha cultivadas em dois tipos de solo. Res. Soc. Dev. 2020, 9, e129972947. [Google Scholar] [CrossRef]
- Leite, R.D.C.; dos Santos, J.G.D.; Silva, E.L.; Alves, C.R.C.R.; Hungria, M.; Leite, R.D.C.; dos Santos, A.C. Productivity Increase, Reduction of Nitrogen Fertiliser Use and Drought-Stress Mitigation by Inoculation of Marandu Grass (Urochloa Brizantha) with Azospirillum Brasilense. Crop Pasture Sci. 2019, 70, 61. [Google Scholar] [CrossRef]
- Francisco, E.A.B.; Bonfim-Silva, E.M.; Teixeira, R.A. Aumento da produtividade de carne via adubação de pastagens. Inf. Agron. 2017, 257, 6–12. [Google Scholar]
- Delevatti, L.M.; Cardoso, A.S.; Barbero, R.P.; Leite, R.G.; Romanzini, E.P.; Ruggieri, A.C.; Reis, R.A. Effect of Nitrogen Application Rate on Yield, Forage Quality, and Animal Performance in a Tropical Pasture. Sci. Rep. 2019, 9, 7596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Termonen, M.; Korhonen, P.; Kykkänen, S.; Kärkönen, A.; Toivakka, M.; Kauppila, R.; Virkajärvi, P. Effects of Nitrogen Application Rate on Productivity, Nutritive Value and Winter Tolerance of Timothy and Meadow Fescue Cultivars. Grass Forage Sci. 2020, 75, 111–126. [Google Scholar] [CrossRef]
- Faria, L.D.A.; Karp, F.H.S.; Machado, M.C.; Abdalla, A.L. Ammonia Volatilization Losses from Urea Coated with Copper, Boron, and Selenium. Semin. Ciênc. Agrár. 2020, 41, 1415–1420. [Google Scholar] [CrossRef]
- Guelfi, D. Fertilizantes Nitrogenados Estabilizados, de Liberação Lenta Ou Controlada. Inf. Agron. 2017, 157, 1–14. [Google Scholar]
- Timilsena, Y.P.; Adhikari, R.; Casey, P.; Muster, T.; Gill, H.; Adhikari, B. Enhanced Efficiency Fertilisers: A Review of Formulation and Nutrient Release Patterns. J. Sci. Food Agric. 2015, 95, 1131–1142. [Google Scholar] [CrossRef]
- Koch The Duromide Advantage. Available online: https://kochagronomicservices.com/solutions/agricultural-nitrogen-efficiency/duromide/ (accessed on 3 February 2022).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.D.M.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Santos, H.G.D.; Jacomine, P.K.T.; Anjos, L.H.C.D.; Oliveira, V.A.D.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.D.; Araujo Filho, J.C.D.; Oliveira, J.B.D.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; Embrapa: Brasília, Brazil, 2018; ISBN 978-85-7035-817-2. [Google Scholar]
- Soil Survey Dvision. Keys to Soil Taxonomy, 12th ed.; United States Department of Agriculture, Natural Resources Conservation Service: Washinton, DC, USA, 2014.
- Cantarella, H.; Quaggio, J.A.; Mattos, D., Jr.; Boaretto, R.M.; van Raij, B. Boletim 100: Recomendações de Adubação e Calagem Para o Estado de São Paulo, 1st ed.; Instituto Agronômico de Campinas: Campinas, Brazil, 2022. [Google Scholar]
- Araújo, E.D.S.; Marsola, T.; Miyazawa, M.; Soares, L.H.D.B.; Urquiaga, S.; Boddey, R.M.; Alves, B.J.R. Calibração de câmara semiaberta estática para quantificação de amônia volatilizada do solo. Pesqui. Agropecu. Bras. 2009, 44, 769–776. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, C.A.C.D.; Vitti, G.C.; Faria, L.D.A.; Luz, P.H.C.; Mendes, F.L. Ammonia Volatilization from Coated Urea Forms. Rev. Bras. Ciênc. Solo 2013, 37, 1057–1063. [Google Scholar] [CrossRef] [Green Version]
- Otto, R.; Zavaschi, E.; Souza Netto, G.M.D.; Machado, B.D.A.; Mira, A.B.D. Ammonia Volatilization from Nitrogen Fertilizers Applied to Sugarcane Straw. Rev. Ciênc. Agron. 2017, 48, 413–418. [Google Scholar] [CrossRef]
- Meirelles, G.C.; Heinrichs, R.; Lira, M.; Ribeiro Virgílio, I.; Felipe Melo dos Santos, L.; Bonfim Cassimiro, J.; Luis Ruffo, M.; Viega Soares Filho, C.; Moreira, A. Ammonia Volatilization and Pasture Yield of Urochloa Decumbens Fertilized with Nitrogen Sources. Arch. Agron. Soil Sci. 2022, 1–9. [Google Scholar] [CrossRef]
- Araujo, R.S.; Hungira, M.D.C. Manual de Métodos Empregados em Estudos de Microbiologia Agrícola; Embrapa: Brasília, Brazil, 1994; pp. 149–177. [Google Scholar]
- Corrêa, L.A. Simpósio de Forragicultura e Pastagens; Temas em Evidência—Lavras: UFLA: Lavras, Brazil, 2000; pp. 149–177. [Google Scholar]
- Silva, D.J.; Queiroz, A.C. Análises de Alimentos—Métodos Químicos e Biológicos, 3rd ed.; UFV: Viçosa, Brazil, 2002; ISBN 85-7269-105-7. [Google Scholar]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Seber, G.A.; Wild, C.J. Nonlinear Regression; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 62, p. 1238. [Google Scholar]
- Silva, T.R.D.; Cazetta, J.O.; Carlin, S.D.; Telles, B.R. Drought-induced alterations in the uptake of nitrogen, phosphorus and potassium, and the relation with drought tolerance in sugar cane Drought-induced alterations in the uptake of nitrogen, phosphorus and potassium, and the relation with drought tolerance in sugar cane. Ciênc. Agrotecnol. 2017, 41, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Cantarella, H.; Otto, R.; Soares, J.R.; Silva, A.G. de B. Agronomic Efficiency of NBPT as a Urease Inhibitor: A Review. J. Adv. Res. 2018, 13, 19–27. [Google Scholar] [CrossRef]
- Minato, E.A.; Besen, M.R.; Cassim, B.M.A.R.; Mazzi, F.L.; Inoue, T.T.; Batista, M.A. Modeling of Nitrogen Losses Through Ammonia Volatilization in Second-Season Corn. Commun. Soil Sci. Plant Anal. 2019, 50, 2733–2741. [Google Scholar] [CrossRef]
- Soares, J.R.; Cantarella, H.; Menegale, M.L.D.C. Ammonia Volatilization Losses from Surface-Applied Urea with Urease and Nitrification Inhibitors. Soil Biol. Biochem. 2012, 52, 82–89. [Google Scholar] [CrossRef]
- Afshar, R.; Lin, R.; Mohammed, Y.A.; Chen, C. Agronomic Effects of Urease and Nitrification Inhibitors on Ammonia Volatilization and Nitrogen Utilization in a Dryland Farming System: Field and Laboratory Investigation. J. Clean. Prod. 2018, 172, 4130–4139. [Google Scholar] [CrossRef]
- Dominghetti, A.W.; Guelfi, D.R.; Guimarães, R.J.; Caputo, A.L.C.; Spehar, C.R.; Faquin, V. Nitrogen Loss by Volatilization of Nitrogen Fertilizers Applied to Coffee Orchard. Ciênc. Agrotecnol. 2016, 40, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Caires, E.F.; Milla, R. Adubação nitrogenada em cobertura para o cultivo de milho com alto potencial produtivo em sistema de plantio direto de longa duração. Bragantia 2015, 75, 87–95. [Google Scholar]
- Cassim, B.M.A.R.; Kachinski, W.D.; Besen, M.R.; Coneglian, C.F.; Macon, C.R.; Paschoeto, G.F.; Inoue, T.T.; Batista, M.A. Duromide Increase NBPT Efficiency in Reducing Ammonia Volatilization Loss from Urea. Rev. Bras. Ciênc. Solo 2021, 45, e0210017. [Google Scholar] [CrossRef]
- Souza, J.R.D.; Lemos, L.B.; Leal, F.T.; Magalhães, R.S.; Ribeiro, B.N.; Cabral, W.F.; Gissi, L.D. Volatilization of Ammonia from Conventional Sources of Nitrogen and Compacted Urea under Controlled Conditions. Rev. Bras. Ciênc. Agrár. 2020, 15, 1–6. [Google Scholar] [CrossRef]
- Rowlings, D.W.; Scheer, C.; Liu, S.; Grace, P.R. Annual Nitrogen Dynamics and Urea Fertilizer Recoveries from a Dairy Pasture Using 15N.; Effect of Nitrification Inhibitor DMPP and Reduced Application Rates. Agric. Ecosyst. Environ. 2016, 216, 216–225. [Google Scholar] [CrossRef]
- Cassimiro, J.B.; Rochetti, A.C.A.; Heinrichs, R.; Castillo, E.O.F. Volatilização da amônia e avaliação do capim-marandu sob doses e fontes de fertilizantes nitrogenados. RSD 2020, 9, e526985823. [Google Scholar] [CrossRef]
- Cecagno, D.; Costa, S.E.V.G.D.A.; Anghinoni, I.; Brambilla, D.M.; Nabinger, C. Acidificação do solo sob fertilização nitrogenada de longo prazo em campo nativo com introdução de azevém. Rev. Ciênc. Agrovet. 2019, 18, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Galindo, F.S.; Buzetti, S.; Filho, M.C.M.T.; Dupas, E.; Ludkiewicz, M.G.Z. Acúmulo de matéria seca e nutrientes no capim-mombaça em função do manejo da adubação nitrogenada. Rev. Agric. Neotrop. 2018, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
Treatments | Growing Season 2018/2019 | Parameters | MDL | Reduction of NH3-N Losses in Comparison with Urea (%) | |||
---|---|---|---|---|---|---|---|
α | Γ | β | R2 | kg ha−1 day−1 NH3-N | |||
Cycle | kg NH3-N ha−1 | Day | |||||
UrConv100 | 1 | 4.9 | 0.31 | 1.9 | 0.96 | 3.86 | - |
2 | 4.26 | 0.1 | 1.77 | 0.97 | 10.65 | - | |
3 | 3.9 | 1.81 | 10.79 | 0.96 | 0.53 | - | |
4 | 8.88 | 2.49 | 5.48 | 0.97 | 0.89 | - | |
AN100 | 1 | 0.27 | 3.1 | 8.83 | 0.99 | 0.02 | 94.4 |
2 | 0.16 | 5.23 | 11.87 | 0.95 | 0.00 | 96.2 | |
3 | 0.95 | 3.69 | 7.39 | 0.93 | 0.06 | 75.6 | |
4 | 3.5 | 2.99 | 4.77 | 0.89 | 0.29 | 60.6 | |
UrNBPT100 | 1 | 3.18 | 1.48 | 5.38 | 0.97 | 0.53 | 35.1 |
2 | 1.15 | 6.25 | 11.74 | 0.89 | 0.04 | 73.0 | |
3 | 0.53 | 2.01 | 4.76 | 0.85 | 0.06 | 86.4 | |
4 | 5.1 | 2.48 | 5.16 | 0.92 | 0.51 | 42.6 | |
UrDuromide100 | 1 | 2.33 | 1.32 | 5.02 | 0.96 | 0.44 | 52.4 |
2 | 0.77 | 3.43 | 5.47 | 0.88 | 0.05 | 81.9 | |
3 | 0.36 | 0.93 | 4.13 | 0.89 | 0.09 | 90.8 | |
4 | 4.25 | 2.26 | 4.47 | 0.93 | 0.47 | 52.1 | |
UrConv200 | 1 | 13.42 | 0.29 | 1.93 | 0.99 | 11.41 | - |
2 | 8.17 | 0.09 | 1.77 | 0.99 | 22.69 | - | |
3 | 9.93 | 1.48 | 11.4 | 0.96 | 1.67 | - | |
4 | 11.13 | 2.52 | 5.5 | 0.97 | 1.10 | - | |
AN200 | 1 | 0.31 | 2.99 | 9.62 | 0.99 | 0.02 | 97.7 |
2 | 0.16 | 5.23 | 11.9 | 0.95 | 0.00 | 98.0 | |
3 | 1.28 | 8.08 | 16.92 | 0.89 | 0.03 | 87.1 | |
4 | 3.99 | 1.66 | 3.3 | 0.92 | 0.60 | 64.2 | |
UrNBPT200 | 1 | 6.14 | 1.54 | 5.72 | 0.98 | 0.99 | 54.2 |
2 | 1.52 | 3.6 | 5.7 | 0.91 | 0.10 | 81.4 | |
3 | 0.98 | 2.8 | 10.5 | 0.98 | 0.08 | 90.1 | |
4 | 6.42 | 2.74 | 5.83 | 0.96 | 0.58 | 42.3 | |
UrDuromide200 | 1 | 3.39 | 1.14 | 4.7 | 0.96 | 0.74 | 74.7 |
2 | 1.06 | 3.3 | 5.71 | 0.84 | 0.08 | 87.0 | |
3 | 1.15 | 4.28 | 9.26 | 0.96 | 0.06 | 88.4 | |
4 | 4.77 | 4.37 | 7.47 | 0.9 | 0.27 | 42.9 |
Treatments | Growing Season 2019/2020 | Parameters | MDL | Reduction of NH3-N Losses in Comparison with Urea (%) | |||
---|---|---|---|---|---|---|---|
α | γ | β | R2 | kg ha−1 day−1 NH3-N | |||
Cycle | kg NH3-N ha−1 | Day | |||||
UrConv100 | 2 | 1.79 | 0.53 | 1.15 | 0.93 | 0.23 | - |
4 | 3.26 | 2.65 | 3.6 | 0.9 | 2.15 | - | |
An100 | 2 | 0.13 | 4.37 | 5.34 | 0.83 | 0.14 | 92.74 |
4 | 0.37 | 2.15 | 2.83 | 0.88 | 0.19 | 88.65 | |
Ur NBPT100 | 2 | 0.53 | 3.03 | 7.23 | 0.98 | 0.40 | 70.39 |
4 | 1.38 | 2.13 | 3.34 | 0.91 | 0.73 | 57.67 | |
UrDuromide100 | 2 | 0.4 | 2.74 | 6.99 | 0.98 | 0.27 | 77.65 |
4 | 0.57 | 0.01 | 1.53 | 0.96 | 0.00 | 82.52 | |
UrConv200 | 2 | 3.12 | 0.54 | 1.07 | 0.89 | 0.42 | - |
4 | 6.31 | 2.76 | 3.71 | 0.89 | 4.35 | - | |
An200 | 2 | 0.19 | 4.56 | 4.86 | 0.79 | 0.21 | 93.91 |
4 | 0.85 | 2.53 | 4.2 | 0.94 | 0.53 | 86.53 | |
UrNBPT200 | 2 | 1.15 | 2.79 | 6.29 | 0.96 | 0.80 | 63.14 |
4 | 1.08 | 1.96 | 3.5 | 0.95 | 0.52 | 82.88 | |
UrDuromide200 | 2 | 0.8 | 2.75 | 6.6 | 0.96 | 0.55 | 74.36 |
4 | 0.94 | 2.1 | 3.92 | 0.95 | 0.48 | 85.10 |
Parameters | 2018/2019 | 2019/2020 | ||
---|---|---|---|---|
100 (kg ha−1) | 200 (kg ha−1) | 100 (kg ha−1) | 200 (kg ha−1) | |
Total dry matter/% leaves | 0.87 | 0.88 | 0.98 | 0.99 |
Total dry matter/leaf dry matter | 0.97 | 0.99 | 0.99 | 0.99 |
Total dry matter/N loss reduction | 0.73 | 0.38 | 0.43 | 0.24 |
Total dry matter/N use efficiency | 1.00 | 1.00 | 0.97 | 0.99 |
Total dry matter/% N loss | −0.75 | −0.35 | −0.44 | −0.26 |
% leaves/N loss reduction | 0.85 | 0.54 | 0.40 | 0.31 |
% leaves/N use efficiency | 0.77 | 0.83 | 0.97 | 0.99 |
% leaves/% N loss | −0.86 | −0.52 | −0.40 | −0.33 |
N use efficiency/% N loss | −0.73 | −0.35 | −0.44 | −0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cassimiro, J.B.; de Oliveira, C.L.B.; Boni, A.d.S.; Donato, N.d.L.; Meirelles, G.C.; da Silva, J.F.; Ribeiro, I.V.; Heinrichs, R. Ammonia Volatilization and Marandu Grass Production in Response to Enhanced-Efficiency Nitrogen Fertilizers. Agronomy 2023, 13, 837. https://doi.org/10.3390/agronomy13030837
Cassimiro JB, de Oliveira CLB, Boni AdS, Donato NdL, Meirelles GC, da Silva JF, Ribeiro IV, Heinrichs R. Ammonia Volatilization and Marandu Grass Production in Response to Enhanced-Efficiency Nitrogen Fertilizers. Agronomy. 2023; 13(3):837. https://doi.org/10.3390/agronomy13030837
Chicago/Turabian StyleCassimiro, Juliana Bonfim, Clayton Luís Baravelli de Oliveira, Ariele da Silva Boni, Natália de Lima Donato, Guilherme Constantino Meirelles, Juliana Françoso da Silva, Igor Virgilio Ribeiro, and Reges Heinrichs. 2023. "Ammonia Volatilization and Marandu Grass Production in Response to Enhanced-Efficiency Nitrogen Fertilizers" Agronomy 13, no. 3: 837. https://doi.org/10.3390/agronomy13030837
APA StyleCassimiro, J. B., de Oliveira, C. L. B., Boni, A. d. S., Donato, N. d. L., Meirelles, G. C., da Silva, J. F., Ribeiro, I. V., & Heinrichs, R. (2023). Ammonia Volatilization and Marandu Grass Production in Response to Enhanced-Efficiency Nitrogen Fertilizers. Agronomy, 13(3), 837. https://doi.org/10.3390/agronomy13030837