Relationship between Phosphorus and Nitrogen Concentrations of Flax
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description, Experimental Design and Treatments
2.2. Preplant Soil Sampling and Analysis
2.3. Plant Sampling and Analysis
2.4. Data Analysis
3. Results
3.1. Shoot Biomass at Different P Levels
3.2. Shoot P Concentration at Different P Levels
3.3. Shoot N Concentration at Different P Levels
3.4. Phosphorus and N Concentration Relationships in Shoot
3.5. Implications for P Diagnostic in Flax
4. Discussion
4.1. Shoot Dry Matter, Phosphorus and Nitrogen Concentrations
4.2. Diagnosis of Phosphorus Nutrition Status
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elser, J.; Bennett, E. Phosphorus cycle: A broken biogeochemical cycle. Nature 2011, 478, 29–31. [Google Scholar] [CrossRef]
- MacDonald, G.K.; Bennett, E.M.; Potter, P.A.; Ramankutty, N. Agronomic phosphorus imbalances across the world’s croplands. Proc. Natl. Acad. Sci. USA 2011, 108, 3086–3091. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Boiarkina, I.; Yu, W.; Ming, H.; Munir, T.; Qian, G.; Young, B.R. Phosphorous recovery through struvite crystallization: Challenges for future design. Sci. Total Environ. 2019, 648, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Mueed, A.; Shibli, S.; Jahangir, M.; Jabbar, S.; Deng, Z.Y. A comprehensive review of flaxseed (Linum usitatissimum L.): Health-affecting compounds, mechanism of toxicity, detoxification, anticancer and potential risk. Crit. Rev. Food Sci. Nutr. 2022, 1–24. [Google Scholar] [CrossRef]
- Parikh, M.; Maddaford, T.G.; Austria, J.A.; Aliani, M.; Netticadan, T.; Pierce, G.N. Dietary flaxseed as a strategy for improving human health. Nutrients 2019, 11, 1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixit, S.; Kanakraj, S.; Rehman, A. Linseed oil as a potential resource for bio-diesel: A review. Renew. Sust. Energy Rev. 2012, 16, 4415–4421. [Google Scholar] [CrossRef]
- Bacenetti, J.; Restuccia, A.; Schillaci, G.; Failla, S. Biodiesel production from unconventional oilseed crops (Linum usitatissimum L. and Camelina sativa L.) in Mediterranean conditions: Environmental sustainability assessment. Renew. Energy 2017, 112, 444–456. [Google Scholar] [CrossRef]
- Ahmad, T.; Danish, M.; Kale, P.; Geremew, B.; Adeloju, S.B.; Nizami, M.; Ayoub, M. Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations. Renew. Energy 2019, 139, 1272–1280. [Google Scholar] [CrossRef]
- Danish, M.; Kale, P.; Ahmad, T.; Ayoub, M.; Geremew, B.; Adeloju, S. Conversion of flaxseed oil into biodiesel using KOH catalyst: Optimization and characterization dataset. Data Brief 2020, 29, 105225. [Google Scholar] [CrossRef]
- Dey, P.; Mahapatra, B.S.; Juyal, V.K.; Pramanick, B.; Negi, M.S.; Paul, J.; Singh, S.P. Flax processing waste -A low-cost, potential biosorbent for treatment of heavy metal, dye and organic matter contaminated industrial wastewater. Ind. Crop. Prod. 2021, 174, 114195. [Google Scholar] [CrossRef]
- Khiari, B.; Amel, I.; Azzaz, A.; Jellali, S.; Limousy, L.; Jeguirim, M. Thermal conversion of flax shives through slow pyrolysis process: In-depth biochar characterization and future potential use. Biomass Convers. Bior. 2021, 11, 325–337. [Google Scholar] [CrossRef]
- Xie, Y.P.; Li, Y.; Wang, L.M.; Nizamani, M.M.; Lv, Z.C.; Dang, Z.; Li, W.J.; Qi, Y.N.; Zhao, W.; Zhang, J.P.; et al. Determination of Critical Phosphorus Dilution Curve Based on Capsule Dry Matter for Flax in Northwest China. Agronomy 2022, 12, 2819. [Google Scholar] [CrossRef]
- Bélanger, G.; Richards, J.E. Relationships between P and N concentrations in timothy. Can. J. Plant Sci. 1999, 79, 65–70. [Google Scholar] [CrossRef]
- Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Bélanger, G.; Ziadi, N.; Lajeunesse, J.; Jouany, C.; Virkajarvi, P.; Sinaj, S.; Nyiraneza, J. Shoot growth and phosphorus-nitrogen relationship of grassland swards in response to mineral phosphorus fertilization. Field Crop. Res. 2017, 204, 31–41. [Google Scholar] [CrossRef]
- Lemaire, G.; Sinclair, T.; Sadras, V.; Bélanger, G. Allometric approach to crop nutrition and implications for crops diagnosis and phenotyping. A review. Agron. Sust. Dev. 2019, 39, 27. [Google Scholar] [CrossRef] [Green Version]
- Duru, M.; Ducrocq, H. A nitrogen and phosphorus herbage index as a tool for assessing the effect of N and P supply on the dry matter yield of permanent pastures. Nutr. Cycl. Agroecosyt. 1997, 47, 56–69. [Google Scholar] [CrossRef]
- Kamprath, E.J. Enhanced Phosphorus Status of Maize Resulting from Nitrogen Fertilization of High Phosphorus Soils. Soil Sci. Soc. Am. J. 1987, 51, 1522–1526. [Google Scholar] [CrossRef]
- Ziadi, N.; Belanger, G.; Cambouris, A.N.; Tremblay, N.; Nolin, M.C.; Claessens, A. Relationship between phosphorus and nitrogen concentrations in spring wheat. Agron. J. 2008, 100, 80–86. [Google Scholar] [CrossRef]
- Bélanger, G.; Ziadi, N.; Pageau, D.; Grant, C.; Högnäsbacka, M.; Virkajärvi, P.; Hu, Z.; Lu, J.; Lafond, J.; Nyiraneza, J. A model of critical phosphorus concentration in the shoot biomass of wheat. Agron. J. 2015, 107, 963–970. [Google Scholar] [CrossRef]
- Fontana, M.; Bélanger, G.; Hirte, J.; Ziadi, N.; Elfouki, S.; Bragazza, L.; Liebisch, F.; Sinaj, S. Critical plant phosphorus for winter wheat assessed from long-term field experiments. Eur. J. Agron. 2021, 126, 126263. [Google Scholar] [CrossRef]
- Ziadi, N.; Bélanger, G.; Cambouris, A.N.; Tremblay, N.; Nolin, M.C.; Claessens, A. Relationship between P and N concentrations in corn. Agron. J. 2007, 99, 833–841. [Google Scholar] [CrossRef]
- Bélanger, G.; Ziadi, N.; Pageau, D.; Grant, C.; Lafond, J.; Nyiraneza, J. Shoot growth, phosphorus–nitrogen relationships, and yield of canola in response to mineral phosphorus fertilization. Agron. J. 2015, 107, 1458–1464. [Google Scholar] [CrossRef]
- Bélanger, G.; Ziadi, N. Phosphorus and Nitrogen Relationships during Spring Growth of an Aging Timothy Sward. Agron. J. 2008, 100, 1757–1762. [Google Scholar] [CrossRef] [Green Version]
- Marklein, A.R.; Houlton, B.Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystem. New Phytol. 2012, 193, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Rufty, T.W., Jr.; MacKown, C.T.; Israel, D.W. Phosphorus stress effects on assimilation of nitrate. Plant Physiol. 1990, 94, 328–333. Available online: https://www.jstor.org/stable/4273089 (accessed on 24 May 2016). [CrossRef]
- Rufty, T.W., Jr.; Israel, D.W.; Volk, R.J.; Qiu, J.; Sa, T. Phosphate regulation of nitrate assimilation in soybean. J. Exp. Bot. 1993, 44, 879–891. [Google Scholar] [CrossRef]
- Crews, T.E. Phosphorus regulation of nitrogen fixation in a traditional Mexican agroecosystems. Biogeochem 1993, 21, 141–166. [Google Scholar] [CrossRef]
- Güsewell, S.; Bollens, V.; Ryser, P.; Klötzli, F. Contrasting effects of nitrogen, phosphorus and water regime on first year and second year growth of 16 wetland plant species. Funct. Ecol. 2003, 11, 754–765. [Google Scholar] [CrossRef]
- Briat, J.F.; Gojon, A.; Plassard, C.; Rouached, H. Reappraisal of the central of soil nutrient availability in nutrient management in light of recent advances in plant nutrition at crop and molecular levels. Eur. J. Agron. 2020, 116, 126069. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F.M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Sinclair, A.G.; Morrison, J.D.; Smith, L.C.; Dodds, K.G. Effects and interactions of phosphorus and sulphur on a mown white clover/ryegrass sward. New Zeal. J. Agr. Res. 1997, 39, 421–433. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, D.J.; Karpinets, T.V.; Zhang, K.; Bosh-Serra, A.; Boldrini, A.; Karawulova, L. A unifying concept for the dependence of whole-crop N:P ratio on biomass: Theory and experiment. Ann. Bot. 2008, 102, 967–977. [Google Scholar] [CrossRef]
- Hendershot, W.H.; Lalande, H.; Duquette, M. Soil reaction and exchangeable acidity. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Ed.; Taylor and Francis: Boca Raton, FL, USA, 2008; pp. 173–178. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.B.; Dean, L.A. Estimation of Soil Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture, Circular: Washington, DC, USA, 1954; p. 939.
- Lithourgidis, A.S.; Matsi, T.; Barbayiannis, N.; Dordas, C.A. Effect of liquid cattle manure on corn yield, composition, and soil properties. Agron. J. 2007, 99, 1041–1047. [Google Scholar] [CrossRef]
- Ozturk, L.; Eker, S.; Torun, B.; Cakmak, I. Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus-deficient calcareous soil. Plant Soil 2005, 269, 69–80. [Google Scholar] [CrossRef]
- Flénet, F.; Gúerif, M.; Boiffin, J.; Dorvillez, D.; Champolivier, L. The critical N dilution curve for linseed (Linum usitatissimum L.) is different from other C3 species. Eur. J. Agron. 2006, 24, 367–373. [Google Scholar] [CrossRef]
- Cadot, S.; Bélanger, G.; Ziadi, N.; Morel, C.; Sinaj, S. Critical plant and soil phosphorus for wheat, maize, and rapeseed after 44 years of P fertilization. Nutr. Cycl. Agroecosyst. 2018, 112, 417–433. [Google Scholar] [CrossRef] [Green Version]
- Sadras, V.O. The N: P stoichiometry of cereal, grain legume and oilseed crops. Field Crop. Res. 2006, 95, 13–29. [Google Scholar] [CrossRef]
- Taliman, N.A.; Dong, Q.; Echigo, K.; Raboy, V.; Saneoka, H. Effect of Phosphorus Fertilization on the Growth, Photosynthesis, Nitrogen Fixation, Mineral Accumulation, Seed Yield, and Seed Quality of a Soybean Low-Phytate Line. Plants 2019, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Yu, J.; Feng, N.; Weng, J.; Rehman, A.; Huang, J.; Tu, S.; Niu, Q.L. Physiological and Transcriptomic Analyses Uncover the Reason for the Inhibition of Photosynthesis by Phosphate Deficiency in Cucumis melo L. Int. J. Mol. Sci. 2022, 23, 12073. [Google Scholar] [CrossRef]
Year | Treatment | DAE 47 | DAE 65 | DAE 74 | DAE 98 | DAE 115 |
---|---|---|---|---|---|---|
Cultivar | ||||||
2017 | Lunxuan 2 | 1.22 | 2.03 | 3.56 | 4.68 b | 6.19 |
Dingya 22 | 1.30 | 2.46 | 3.62 | 4.94 a | 6.33 | |
2018 | Lunxuan 2 | 1.13 | 2.00 b | 3.50 | 4.66 | 6.15 |
Dingya 22 | 1.23 | 2.31 a | 3.59 | 4.74 | 6.21 | |
P rate | ||||||
P0 | 0.89 | 1.30 c | 2.33 c | 3.41 c | 4.51 c | |
P40 | 1.20 | 1.82 b | 3.11 b | 4.43 b | 5.51 b | |
2017 | P80 | 1.34 | 2.57 ab | 4.21 a | 5.40 a | 6.94 a |
P120 | 1.43 | 2.72 a | 4.08 a | 5.42 a | 7.09 a | |
P160 | 1.47 | 2.83 a | 4.25 a | 5.40 a | 7.26 a | |
P0 | 0.85 | 1.30 c | 2.39 c | 3.21 | 4.49 c | |
P40 | 1.17 | 1.70 b | 2.96 b | 3.96 | 5.47 b | |
2018 | P80 | 1.28 | 2.52 a | 4.15 a | 5.44 | 6.79 a |
P120 | 1.31 | 2.61 a | 4.12 a | 5.46 | 7.01 a | |
P160 | 1.29 | 2.65 a | 4.12 a | 5.44 | 7.14 a | |
Source of variance (SOV) | ||||||
C | 0.3142 | 0.5276 | 0.5441 | 0.0032 | 0.2183 | |
2017 | P | 0.5051 | 0.0042 | 0.0313 | 0.0113 | 0.0372 |
C × P | 0.9011 | 0.0192 | 0.7465 | 0.7698 | 0.3521 | |
C | 0.8326 | 0.0120 | 0.4798 | 0.5266 | 0.7145 | |
2018 | P | 0.1425 | <0.0001 | 0.0244 | 0.0158 | 0.0116 |
C × P | 0.3764 | 0.0197 | 0.5218 | 0.2671 | 0.6899 |
Year | Treatment | DAE 47 | DAE 65 | DAE 74 | DAE 98 | DAE 115 |
---|---|---|---|---|---|---|
Cultivar | ||||||
Longyaza 1 | 1.22 | 2.46 | 3.55 | 4.68 | 6.48 | |
2018 | Zhangya 2 | 1.14 | 2.46 | 3.38 | 4.68 | 6.35 |
Longya 14 | 1.27 | 2.60 | 3.57 | 4.63 | 6.55 | |
Longyaza 1 | 1.18 | 2.44 | 3.51 | 4.48 c | 6.38 | |
2019 | Zhangya 2 | 1.22 | 2.51 | 3.49 | 4.66 b | 6.38 |
Longya 14 | 1.17 | 2.49 | 3.74 | 4.83 a | 6.41 | |
P rate | ||||||
P0 | 0.87 | 1.48 c | 2.38 c | 3.08 c | 4.87 c | |
P40 | 1.09 | 1.97 b | 2.75 b | 4.06 b | 5.78 b | |
2018 | P80 | 1.35 | 2.95 ab | 4.09 a | 5.34 a | 7.10 ab |
P120 | 1.35 | 3.05 a | 4.12 a | 5.41 a | 7.24 a | |
P160 | 1.40 | 3.07 a | 4.16 a | 5.44 a | 7.31 a | |
P0 | 0.85 | 1.41 c | 2.43 b | 3.35 c | 4.79 c | |
P40 | 1.08 | 2.02 b | 2.95 b | 4.01 b | 5.62 b | |
2019 | P80 | 1.29 | 2.93 ab | 4.17 a | 5.29 a | 7.12 a |
P120 | 1.34 | 3.01 a | 4.12 a | 5.35 a | 7.17 a | |
P160 | 1.39 | 3.03 a | 4.23 a | 5.28 a | 7.26 a | |
Source of variance (SOV) | ||||||
C | 0.3481 | 0.5664 | 0.0602 | 0.0722 | 0.1233 | |
2018 | P | 0.527 | <0.0001 | 0.0247 | 0.0196 | 0.0416 |
C × P | 0.644 | 0.4152 | 0.0809 | 0.1009 | 0.0208 | |
C | 0.241 | 0.0815 | 0.0941 | 0.0247 | 0.2258 | |
2019 | P | 0.089 | <0.0001 | 0.0125 | <0.0001 | 0.0200 |
C × P | 0.529 | 0.0864 | 0.2145 | 0.0992 | 0.7431 |
Year | Treatment | DAE 47 | DAE 65 | DAE 74 | DAE 98 | DAE 115 |
---|---|---|---|---|---|---|
Cultivar | ||||||
2017 | Lunxuan 2 | 5.11 | 3.47 | 2.58 b | 2.49 | 2.14 |
Dingya 22 | 5.06 | 3.45 | 2.89 a | 2.29 | 2.06 | |
2018 | Lunxuan 2 | 5.02 | 3.31 b | 3.01 | 2.70 | 2.40 |
Dingya 22 | 5.07 | 3.52 a | 3.14 | 2.59 | 2.16 | |
P rate | ||||||
P0 | 4.79 | 3.01 b | 2.31 | 1.88 c | 1.78 b | |
P40 | 4.97 | 3.15 b | 2.58 | 2.03 bc | 1.86 b | |
2017 | P80 | 5.18 | 3.46 a | 2.68 | 2.39 b | 1.98 ab |
P120 | 5.20 | 3.78 a | 2.89 | 2.75 a | 2.35 a | |
P160 | 5.31 | 3.92 a | 3.22 | 2.91 a | 2.55 a | |
P0 | 4.80 | 3.08 b | 2.58 c | 2.11 c | 1.86 b | |
P40 | 4.98 | 3.22 b | 2.83 b | 2.35 bc | 1.98 b | |
2018 | P80 | 5.03 | 3.41 ab | 3.03 b | 2.67 b | 2.25 ab |
P120 | 5.17 | 3.49 a | 3.43 a | 2.98 a | 2.59 a | |
P160 | 5.25 | 3.88 a | 3.51 a | 3.13 a | 2.73 a | |
Source of variance (SOV) | ||||||
C | 0.5277 | 0.06431 | 0.0128 | 0.3440 | 0.0812 | |
2017 | P | 0.0976 | 0.0129 | 0.0906 | <0.0001 | 0.0215 |
C × P | 0.1254 | 0.4685 | 0.0342 | 0.7411 | 0.4125 | |
C | 0.0708 | 0.0366 | 0.7164 | 0.4962 | 0.3588 | |
2018 | P | 0.0924 | 0.0218 | 0.0324 | <0.0001 | 0.0400 |
C × P | 0.1457 | 0.2586 | 0.3457 | 0.2568 | 0.6215 |
Year | Treatment | DAE 47 | DAE 65 | DAE 74 | DAE 98 | DAE 115 |
---|---|---|---|---|---|---|
Cultivar | ||||||
Longyaza 1 | 4.84 | 3.68 a | 3.10 | 2.54 | 2.16 | |
2018 | Zhangya 2 | 4.92 | 3.39 b | 3.18 | 2.71 | 2.14 |
Longya 14 | 4.71 | 3.66 a | 3.29 | 2.78 | 2.37 | |
Longyaza 1 | 4.83 | 3.51 | 3.21 a | 2.74 | 2.33 | |
2019 | Zhangya 2 | 4.79 | 3.76 | 2.69 b | 2.52 | 2.35 |
Longya 14 | 4.86 | 3.50 | 3.19 a | 2.69 | 2.51 | |
P rate | ||||||
P0 | 4.44 | 3.14 c | 2.79 c | 2.24 c | 1.90 b | |
P40 | 4.60 | 3.41 b | 2.96 b | 2.37 bc | 2.14 b | |
2018 | P80 | 4.85 | 3.55 ab | 3.18 a | 2.60 ab | 2.18 ab |
P120 | 5.08 | 3.72 a | 3.35 a | 3.02 a | 2.40 a | |
P160 | 5.13 | 4.05 a | 3.65 a | 3.13 a | 2.51 a | |
P0 | 4.53 | 3.37 b | 2.73 c | 2.16 b | 1.94 b | |
P40 | 4.70 | 3.42 b | 2.91 b | 2.36 b | 2.20 b | |
2019 | P80 | 4.73 | 3.51 ab | 2.96 ab | 2.70 ab | 2.45 a |
P120 | 5.04 | 3.70 a | 3.13 ab | 2.93 a | 2.62 a | |
P160 | 5.12 | 3.95 a | 3.42 a | 3.11 a | 2.76 a | |
Source of variance (SOV) | ||||||
C | 0.4188 | 0.0259 | 0.0912 | 0.2438 | 0.6257 | |
2018 | P | 0.0954 | 0.0329 | <0.0001 | 0.0241 | 0.0115 |
C × P | 0.0325 | 0.2549 | 0.4752 | 0.3892 | 0.2567 | |
C | 0.1230 | 0.4258 | 0.0344 | 0.0615 | 0.1281 | |
2019 | P | 0.4785 | 0.0329 | <0.0001 | 0.0274 | 0.0315 |
C × P | 0.6352 | 0.0174 | 0.7548 | 0.6351 | 0.5322 |
Year | Treatment | DAE 47 | DAE 65 | DAE 74 | DAE 98 | DAE 115 |
---|---|---|---|---|---|---|
Cultivar | ||||||
2017 | Lunxuan 2 | 53.83 | 35.71 | 25.40 b | 21.73 | 18.22 |
Dingya 22 | 53.42 | 34.65 | 27.59 a | 21.83 | 18.51 | |
2018 | Lunxuan 2 | 54.93 | 36.51 | 30.43 | 23.39 | 19.97 |
Dingya 22 | 53.31 | 35.76 | 31.03 | 24.83 | 20.16 | |
P rate | ||||||
P0 | 53.40 | 32.93 b | 24.61 c | 19.10 c | 16.77 b | |
P40 | 53.55 | 33.83 b | 25.93 b | 20.30 b | 17.66 b | |
2017 | P80 | 53.68 | 34.82 ab | 26.21 ab | 22.60 ab | 17.88 ab |
P120 | 53.77 | 36.99 a | 26.90 a | 23.18 a | 19.48 a | |
P160 | 53.74 | 37.36 a | 28.83 a | 23.73 a | 20.06 a | |
P0 | 52.96 | 33.93 c | 27.50 c | 21.92 c | 18.86 b | |
P40 | 54.16 | 34.81 b | 29.90 b | 23.40 b | 18.99 b | |
2018 | P80 | 54.30 | 36.44 ab | 30.55 ab | 24.60 a | 20.44 a |
P120 | 54.43 | 37.50 a | 32.69 a | 25.34 a | 20.50 a | |
P160 | 54.78 | 38.00 a | 33.02 a | 25.31 a | 21.53 a | |
Source of variance (SOV) | ||||||
C | 0.0942 | 0.7415 | 0.0195 | 0.4578 | 0.6942 | |
2017 | P | 0.2043 | 0.0125 | <0.0001 | 0.0005 | 0.0200 |
C × P | 0.4108 | 0.4256 | 0.3289 | 0.3452 | 0.0981 | |
C | 0.0922 | 0.6500 | 0.0672 | 0.1280 | 0.3211 | |
2018 | P | 0.1288 | 0.0248 | 0.0324 | 0.0288 | 0.0109 |
C × P | 0.3145 | 0.0904 | 0.2584 | 0.0127 | 0.0992 |
Year | Treatment | DAE 47 | DAE 65 | DAE 74 | DAE 98 | DAE 115 |
---|---|---|---|---|---|---|
Cultivar | ||||||
Longyaza 1 | 54.66 | 39.97 | 32.99 | 24.84 | 20.15 | |
2018 | Zhangya 2 | 52.36 | 35.80 | 32.71 | 26.89 | 20.96 |
Longya 14 | 54.88 | 38.32 | 33.23 | 26.76 | 21.90 | |
Longyaza 1 | 53.74 | 39.16 | 33.94 a | 26.22 | 21.87 | |
2019 | Zhangya 2 | 51.97 | 35.74 | 24.64 c | 23.11 | 20.26 |
Longya 14 | 54.10 | 37.48 | 29.62 b | 23.81 | 22.47 | |
P rate | ||||||
P0 | 54.16 | 37.18 b | 31.43 b | 24.38 b | 19.79 b | |
P40 | 53.86 | 37.53 b | 32.15 b | 24.73 b | 20.27 b | |
2018 | P80 | 53.59 | 38.34 ab | 33.15 a | 25.69 ab | 20.82 ab |
P120 | 54.32 | 38.41 a | 33.74 a | 27.81 a | 21.42 a | |
P160 | 53.91 | 39.89 a | 34.42 a | 28.20 a | 22.03 a | |
P0 | 52.84 | 36.60 | 28.30 b | 21.73 c | 18.95 c | |
P40 | 52.95 | 36.74 | 28.51 b | 22.38 c | 20.02 b | |
2019 | P80 | 52.97 | 37.25 | 29.04 ab | 24.97 b | 21.94 b |
P120 | 53.76 | 38.03 | 29.38 ab | 25.83 a | 23.06 a | |
P160 | 53.82 | 38.69 | 31.78 a | 26.99 a | 23.67 a | |
Source of variance (SOV) | ||||||
C | 0.0815 | 0.2708 | 0.0815 | 0.0679 | 0.4352 | |
2018 | P | 0.2431 | 0.0142 | 0.0403 | 0.0279 | 0.0183 |
C×P | 0.1688 | 0.4215 | 0.0855 | 0.2144 | 0.3216 | |
C | 0.0621 | 0.2789 | <0.0001 | 0.0740 | 0.1259 | |
2019 | P | 0.3219 | 0.1528 | 0.0224 | 0.0165 | 0.0411 |
C×P | 0.1452 | 0.0578 | 0.0298 | 0.0911 | 0.2016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Li, L.; Wang, L.; Zhang, J.; Dang, Z.; Li, W.; Qi, Y.; Zhao, W.; Dong, K.; Wang, X.; et al. Relationship between Phosphorus and Nitrogen Concentrations of Flax. Agronomy 2023, 13, 856. https://doi.org/10.3390/agronomy13030856
Xie Y, Li L, Wang L, Zhang J, Dang Z, Li W, Qi Y, Zhao W, Dong K, Wang X, et al. Relationship between Phosphorus and Nitrogen Concentrations of Flax. Agronomy. 2023; 13(3):856. https://doi.org/10.3390/agronomy13030856
Chicago/Turabian StyleXie, Yaping, Lingling Li, Limin Wang, Jianping Zhang, Zhao Dang, Wenjuan Li, Yanni Qi, Wei Zhao, Kongjun Dong, Xingrong Wang, and et al. 2023. "Relationship between Phosphorus and Nitrogen Concentrations of Flax" Agronomy 13, no. 3: 856. https://doi.org/10.3390/agronomy13030856
APA StyleXie, Y., Li, L., Wang, L., Zhang, J., Dang, Z., Li, W., Qi, Y., Zhao, W., Dong, K., Wang, X., Zhang, Y., Zeng, X., Zhou, Y., Wang, X., Shi, L., & Wu, G. (2023). Relationship between Phosphorus and Nitrogen Concentrations of Flax. Agronomy, 13(3), 856. https://doi.org/10.3390/agronomy13030856