Photoreceptors Modulate the Flowering and Morphogenesis Responses of Pelargonium × hortorum to Night-Interruption Light Quality Shifting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Photoperiodic Light Treatments
2.3. Data Collection and Analysis
2.4. Isolation of Total RNA Isolation and Semi-Quantitative RT-PCR (Reverse Transcriptase–Polymerase Chain Reaction) Analysis of Selected Genes
3. Results
3.1. Morphogenesis
3.2. Flowering
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devlin, P.F.; Robson, P.R.; Patel, S.R.; Goosey, L.; Sharrock, R.A.; Whitelam, G.C. Phytochrome D acts in the shade avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Plant Physiol. 1999, 119, 909–915. [Google Scholar] [CrossRef] [Green Version]
- Weller, J.L.; Beauchamp, N.; Kerckhoffs, L.H.J.; Platten, J.D.; Reid, J.B. Interaction of phytochromes A and B in the control of de-etiolation and flowering in pea. Plant J. 2001, 26, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Demotes-Mainard, S.; Péron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleschi-Travier, S.; Crespel, L.; Morel, P.; Huché-Thélier, L.; Boumaza, R.; et al. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Haliapas, S.; Yupsanis, T.A.; Syros, T.D.; Kofidis, G.; Economou, A.S. Petunia x hybrida during transition to flowering as affected by light intensity and quality treatments. Acta Physiol. Plant. 2008, 30, 807–815. [Google Scholar] [CrossRef]
- Fan, X.X.; Xu, Z.G.; Liu, X.Y.; Tang, C.M.; Wang, L.W.; Han, X.L. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci. Hortic. 2013, 153, 50–55. [Google Scholar] [CrossRef]
- Kami, C.; Lorrain, S.; Hornitschek, P.; Fankhauser, C. Light-regulated plant growth and development. Curr. Top. Devel. Biol. 2010, 91, 29–66. [Google Scholar]
- Cashmore, A.R.; Jarillo, J.A.; Wu, Y.-J.; Liu, D. Cryptochromes: Blue light receptors for plants and animals. Science 1999, 284, 760–765. [Google Scholar] [CrossRef]
- Clack, T.; Mathews, S.; Sharrock, R.A. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: The sequences and expression of PHYD and PHYE. Plant Mol. Biol. 1994, 25, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Sharrock, R.A.; Quail, P.H. Novel phytochrome sequences in Arabidopsis thaliana: Structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev. 1989, 3, 1745–1757. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, Y.; Narumi, T.; Oda, A.; Nakano, Y.; Sumitomo, K.; Fukai, S.; Hisamatsu, T. The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums. Proc. Natl. Acad. Sci. USA 2013, 110, 17137–17142. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Weigel, D. Move on up, it’s time for change: Mobile signals controlling photoperiod-dependent flowering. Genes Devel. 2007, 21, 2371–2384. [Google Scholar] [CrossRef] [Green Version]
- Runkle, E.; Heins, R. Manipulating the light environment to control flowering and morphogenesis of herbaceous plants. Acta Hortic. 2006, 711, 51–60. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Huang, L.; Wang, K.; Deng, J.; Jiang, R.; Ye, Z.; Gan, M. A new source of multi-spectral high spatial resolution night-time light imagery—JL1-3B. Remote Sens. Environ. 2018, 215, 300–312. [Google Scholar] [CrossRef]
- Hamamoto, H.; Hideo, S.; Tadahisa, H. Budding response of horticultural crops to night break with red light on alternate days. Environ. Control Biol. 2005, 43, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Oh, W.; Kang, K.J.; Cho, K.J.; Shin, J.H.; Kim, K.S. Temperature and long-day lighting strategy affect flowering time and crop characteristics in Cyclamen persicum. Hortic. Environ. Biotechnol. 2013, 54, 484–491. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, H.J.; Kim, K.S. Night interruption promotes vegetative growth and flowering of Cymbidium. Sci. Hortic. 2011, 130, 887–893. [Google Scholar] [CrossRef]
- Ochiai, M.; Liao, Y.; Shimazu, T.; Takai, Y.; Suzuki, K.; Yano, S.; Fukui, H. Varietal differences in flowering and plant growth under night-break treatment with LEDs in 12 chrysanthemum cultivars. Environ. Control Biol. 2015, 53, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.G.; Muneer, S.; Jeong, B.R. Morphogenesis, flowering, and gene expression of Dendranthema grandiflorum in response to shift in light quality of night interruption. Int. J. Mol. Sci. 2015, 16, 16497–16513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.G.; Jeong, B.R. How supplementary or night-interrupting low-intensity blue light affects the flower induction in chrysanthemum, a qualitative short-day plant. Plants 2020, 9, 1694. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Song, J.; Jeong, B.R. Blue light supplemented at intervals in long-day conditions intervenes in photoperiodic flowering, photosynthesis, and antioxidant properties in chrysanthemums. Antioxidants 2022, 11, 2310. [Google Scholar] [CrossRef]
- Damann, M.P.; Lyons, R.E. Natural chilling and limited inductive photoperiod affect flowering in two Asteraceae genera. J. Am. Soc. Hortic. Sci. 1996, 121, 694–698. [Google Scholar] [CrossRef] [Green Version]
- Runkle, E.S.; Heins, R.D.; Cameron, A.C.; Carlson, W.H. Flowering of herbaceous perennials under various night interruption and cyclic lighting treatments. HortScience 1998, 33, 277–672. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.J.; Oh, W.; Shin, J.H.; Kim, K.S. Night interruption and cyclic lighting promote flowering of Cyclamen persicum under low temperature regime. Hortic. Environ. Biotechnol. 2008, 49, 72–77. [Google Scholar]
- Park, I.S.; Cho, K.J.; Kim, J.; Cho, J.Y.; Lim, T.J.; Oh, W. Growth and flowering responses of petunia to various artificial light sources with different light qualities. Korean J. Hortic. Sci. Technol. 2016, 34, 55–66. [Google Scholar]
- Park, Y.G.; Muneer, S.; Soundararajan, P.; Manivannan, A.; Jeong, B.R. Light quality during night interruption affects morphogenesis and flowering in Petunia hybrida, a qualitative long-day plant. Hortic. Env. Biotechnol. 2016, 57, 371–377. [Google Scholar] [CrossRef]
- Park, Y.G.; Muneer, S.; Soundararajan, P.; Manivannan, A.; Jeong, B.R. Light quality during night interruption affects morphogenesis and flowering in geranium. Hortic. Env. Biotechnol. 2017, 58, 212–217. [Google Scholar] [CrossRef]
- Goto, N.; Kumagai, T.; Koornneef, M. Flowering responses to light-breaks in photomorphogenic mutants of Arabidopsis thaliana,a long-day plant. Physiol. Plant 1991, 83, 209–215. [Google Scholar] [CrossRef]
- Shin, J.H.; Jung, H.H.; Kim, K.S. Night interruption using light emitting diodes (LEDs) promotes flowering of Cyclamen persicum in winter cultivation. Hortic. Env. Biotechnol. 2010, 51, 391–395. [Google Scholar]
- Blanchard, M.G.; Runkle, E.S. Use of a cyclic high-pressure sodium lamp to inhibit flowering of chrysanthemum and velvet sage. Sci. Hortic. 2009, 122, 448–454. [Google Scholar] [CrossRef]
- Vince-Prue, D. Photoperiodism in Plants, 1st ed.; MaGraw-Hill: London, UK, 1975. [Google Scholar]
- Ho, C.H.; Yang, C.M.; Hsiao, C.L. Effects of nighttime lighting with specific wavebands on flowering and flower quality of chrysanthemum. Crop Env. Bioinform. 2012, 9, 265–277. [Google Scholar]
- Higuchi, Y.K.; Sumitomo, K.; Oda, A.; Shimizu, H.; Hisamatsu, T. Days light quality affects the night-break response in the shortday plant chrysanthemum, suggesting differential phytochromemediated regulation of flowering. J. Plant Physiol. 2012, 169, 1789–1796. [Google Scholar] [CrossRef] [PubMed]
- Dere, S.; Gunes, T.; Sivaci, R. Spectrophotometric determination of chlorophyll—A, B and total carotenoid contents of some algae species using different solvents. Turk. J. Bot. 1998, 22, 13–17. [Google Scholar]
- Devlin, P.F.; Patel, S.R.; Whitelam, G.C. Phytochrome E influences internode elongation and flowering time in Arabidopsis. Plant Cell 1998, 10, 1479–1488. [Google Scholar] [CrossRef] [Green Version]
- Molmann, J.A.; Junttila, O.; Johnsen, O.; Olsen, J.E. Effects of red, far-red and blue light in maintaining growth in latitudinal populations of norway spruce (Picea abies). Plant Cell Environ. 2006, 29, 166–172. [Google Scholar] [CrossRef]
- Appelgren, M. Effects of light quality on stem elongation of Pelargonium in vitro. Sci. Hort. 1991, 45, 345–351. [Google Scholar] [CrossRef]
- Folta, K.M.; Spalding, E.P. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant J. 2001, 26, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Volomaro, G.; Pontin, M.; Luna, V.; Baraldi, R.; Bottini, R. Blue light control of hypocotyl elongation in etiolated seedlings of Latuca sativa (L.) cv. Grand Rapids related to exogenous growth regulators and endogenous IAA, GA3 and abscisic acid. Plant Growth Regul. 1998, 26, 165–173. [Google Scholar] [CrossRef]
- Weining, C. Phytochrome photoreceptors mediate plasticity to light quality in flowers of the Brassicaceae. Amer. J. Bot. 2002, 89, 230–235. [Google Scholar] [CrossRef]
- Possart, A.; Fleck, C.; Hiltbrunner, A. Shedding (far-red) light on phytochrome mechanisms and responses in land plants. Plant Sci. 2014, 217–218, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Franklin, K.A. Shade avoidance. New Phytol. 2008, 179, 930–944. [Google Scholar] [CrossRef]
- Giliberto, L.; Perrotta, G.; Pallara, P.; Weller, J.L.; Fraser, P.D.; Bramley, P.M.; Fiore, A.; Tavazza, M.; Giuliano, G. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 2014, 137, 199–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettai, H.; Oja, V.; Freiberga, A.; Laisk, A. Photosynthetic activity of far-red light in green plants. Bioch. Biophy. Acta 2005, 1708, 311–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearcy, R.W. Radiation and Light Measurements. Plant Physiological Ecology: Field Methods and Instrumentation; Springer Science & Business Media: Berlin, Germany, 2000; pp. 97–116. [Google Scholar]
- Yang, J.; Song, J.; Jeong, B.R. The flowering of SDP chrysanthemum in response to intensity of supplemental or night-interruptional blue light is modulated by both photosynthetic carbon assimilation and photoreceptormediated regulation. Front. Plant Sci. 2022, 13, 981143. [Google Scholar] [CrossRef]
- Park, Y.J.; Kim, Y.J.; Kim, K.S. Vegetative growth and flowering of Dianthus, Zinnia, and Pelargonium as affected by night interruption at different timings. Hortic. Environ. Biotechnol. 2013, 54, 236–242. [Google Scholar] [CrossRef]
- Lin, C. Photoreceptors and regulation of flowering time. Plant Physiol. 2000, 123, 39–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suarez-Lopez, P.; Wheatley, K.; Robson, F.; Onouchi, H.; Valverde, F.; Coupland, G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 2001, 410, 1116–1120. [Google Scholar] [CrossRef]
- Mockler, T.; Yang, H.; Yu, W.; Parikh, D.; Cheng, Y.; Dolan, S.; Lin, C. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc. Natl. Acad. Sci. USA 2003, 100, 2140–2145. [Google Scholar] [CrossRef] [Green Version]
- Fankhauser, C. The phytochromes, a family of red/far-red absorbing photoreceptors. J. Biol. Chem. 2001, 276, 11453–11456. [Google Scholar] [CrossRef] [Green Version]
- Sager, J.C.; Smith, W.O.; Edwards, J.L.; Cyr, K.L. Photosynthetic efficiency and phytochrome photoequilibria determination using spectral data. Trans. ASAE 1988, 31, 1882–1889. [Google Scholar] [CrossRef]
Gene | Accession No. | Forward Primer | Reverse Primer |
---|---|---|---|
phyA | EU915082 | 5′-GACAGTGTCAGGCTTCAACAAG-3′ | 5′-ACCACCAGTGTGTGTTATCCTG-3′ |
phyB | NM_127435 | 5′-GTGCTAGGGAGATTACGCTTTC-3′ | 5′-CCAGCTTCTGAGACTGAACAGA-3′ |
cry1 | NM_116961 | 5′-CGTAAGGGATCACCGAGTAAAG-3′ | 5′-CTTTTAGGTGGGAGTTGTGGAG-3′ |
AFT | AB839766 | 5′-AGAACACCTCCATTGGATCG-3′ | 5′-CTGGAACTAGGTGGCCTCAC-3′ |
FTL | AB839767 | 5′-ACAACGGACTCCTCATTTGG-3′ | 5′-CGCGAAACTACGAGTGTTGA-3′ |
Actin | AB205087 | 5′-CGTTTGGATCTTGCTGGTCG-3′ | 5′-CAGGACATCTGAAACGCTCA-3′ |
Treatment z | Fresh Weight (g) | Dry Weight (g) | ||||
---|---|---|---|---|---|---|
Shoot | Root | Total | Shoot | Root | Total | |
LD | 40.4 ab y | 3.06 a | 43.4 ab | 4.61 a | 0.51 a | 5.13 a |
NI-BR | 36.0 a–c | 2.94 ab | 38.9 a–c | 3.35 bc | 0.38 bc | 3.74 b–d |
NI-RB | 36.9 a–c | 2.70 a–c | 39.6 a-c | 3.77 a–c | 0.39 b | 4.17 a–c |
NI-RFr | 23.2 d | 1.19 g | 24.4 d | 3.02 c | 0.22 e | 3.24 d |
NI-FrR | 29.5 cd | 1.56 d–f | 31.1 cd | 3.07 bc | 0.24 de | 3.31 cd |
NI-BFr | 29.6 cd | 1.43 fg | 31.1 cd | 2.99 c | 0.26 c–e | 3.25 d |
NI-FrB | 35.7 a–c | 1.39 fg | 37.1 bc | 3.38 bc | 0.25 c–e | 3.64 b–d |
NI-WB | 36.6 a–c | 2.99 a | 39.6 a–c | 3.67 a–c | 0.45 ab | 4.13 a–d |
NI-BW | 44.3 a | 2.37 b–d | 46.6 a | 4.09 ab | 0.36 b–d | 4.45 ab |
NI-FrW | 34.4 bc | 2.07 de | 36.5 bc | 3.53 bc | 0.34 b–e | 3.88 b–d |
NI-WFr | 32.9 bc | 1.42 fg | 34.4 bc | 3.21 bc | 0.24 de | 3.46 b–d |
NI-RW | 39.9 ab | 1.97 d–f | 41.8 ab | 4.07 ab | 0.33 b–e | 4.40 a–c |
NI-WR | 36.4 a–c | 2.08 de | 38.5 a–c | 3.18 bc | 0.37 b–d | 3.55 b–d |
SD | 32.5 bc | 2.15 d–e | 34.6 bc | 3.22 bc | 0.36 b–d | 3.58 b–d |
F-test | ** | *** | *** | * | *** | * |
Treatment z | Flowering (%) | DVB y (Day) | No. of Flowers/Plant | Flower Stalk Length (cm) |
---|---|---|---|---|
LD | 100 | 23.8 | 1.0 | 0.7 b x |
NI-BR | 100 | 29.8 | 1.0 | 0.6 b |
NI-RB | 100 | 29.0 | 1.0 | 0.7 b |
NI-RFr | 100 | 20.0 | 1.3 | 5.1 ab |
NI-FrR | 100 | 18.4 | 1.0 | 14.4 a |
NI-BFr | 100 | 21.8 | 1.3 | 5.5 ab |
NI-FrB | 100 | 21.8 | 1.3 | 8.5 ab |
NI-WB | 100 | 29.0 | 1.0 | 0.7 b |
NI-BW | 100 | 29.4 | 1.0 | 1.0 b |
NI-FrW | 100 | 28.6 | 1.0 | 2.0 b |
NI-WFr | 100 | 22.2 | 1.3 | 6.3 ab |
NI-RW | 100 | 28.0 | 1.0 | 1.3 b |
NI-WR | 100 | 29.0 | 1.0 | 1.0 b |
SD | 100 | 29.8 | 1.3 | 1.7 b |
F-test | NS | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.G.; Jeong, B.R. Photoreceptors Modulate the Flowering and Morphogenesis Responses of Pelargonium × hortorum to Night-Interruption Light Quality Shifting. Agronomy 2023, 13, 857. https://doi.org/10.3390/agronomy13030857
Park YG, Jeong BR. Photoreceptors Modulate the Flowering and Morphogenesis Responses of Pelargonium × hortorum to Night-Interruption Light Quality Shifting. Agronomy. 2023; 13(3):857. https://doi.org/10.3390/agronomy13030857
Chicago/Turabian StylePark, Yoo Gyeong, and Byoung Ryong Jeong. 2023. "Photoreceptors Modulate the Flowering and Morphogenesis Responses of Pelargonium × hortorum to Night-Interruption Light Quality Shifting" Agronomy 13, no. 3: 857. https://doi.org/10.3390/agronomy13030857
APA StylePark, Y. G., & Jeong, B. R. (2023). Photoreceptors Modulate the Flowering and Morphogenesis Responses of Pelargonium × hortorum to Night-Interruption Light Quality Shifting. Agronomy, 13(3), 857. https://doi.org/10.3390/agronomy13030857