Effects of Artificial Light Spectra and Sucrose on the Leaf Pigments, Growth, and Rooting of Blackberry (Rubus fruticosus) Microshoots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. LED and Sucrose Treatments
2.3. Measurement of the Root System
2.4. Measurements of Vegetative Parameters and Chlorophyll and Carotenoid Contents
2.5. Microscopic Observations of Stomata
2.6. Experimental Design and Statistical Analysis
3. Results
3.1. Effects of Light Spectra and Sucrose Treatments and Their Interactions on In Vitro Rooting of Blackberry Microshoots
3.2. Effects of Light Spectra and Sucrose Treatments and Their Interactions on Shoot Growth, Leaf Area, Pigments and Stomata of Blackberry Microshoots
4. Discussion
4.1. Effects of Light Spectra and Sucrose Treatments and Their Interactions on In Vitro Rooting of Blackberry Microshoots
4.2. Effects of Light Spectra and Sucrose Treatments and Their Interactions on Shoot Growth, Leaf Area, Pigments and Stomata of Blackberry Microshoots
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeh, N.; Chung, J.-P. High-brightness LEDs energy efficient lighting sources and their potential in indoor plant cultivation. Renew. Sustain. Energy Rev. 2009, 13, 2175–2180. [Google Scholar] [CrossRef]
- Cavallaro, V.; Pellegrino, A.; Muleo, R.; Forgione, I. Light and Plant Growth Regulators on In Vitro Proliferation. Plants 2022, 11, 844. [Google Scholar] [CrossRef] [PubMed]
- Rihan, H.Z.; Aljafer, N.; Jbara, M.; McCallum, L.; Lengger, S.; Fuller, M.P. The Impact of LED Lighting Spectra in a Plant Factory on the Growth, Physiological Traits and Essential Oil Content of Lemon Balm (Melissa officinalis). Plants 2022, 11, 342. [Google Scholar] [CrossRef] [PubMed]
- Rihan, H.Z.; Aldarkazali, M.; Mohamed, S.J.; McMulkin, N.B.; Jbara, M.H.; Fuller, M.P. A Novel New Light Recipe Significantly Increases the Growth and Yield of Sweet Basil (Ocimum basilicum) Grown in Plant Factory System. Agronomy 2020, 10, 934. [Google Scholar] [CrossRef]
- Mohamed, S.J.; Rihan, H.Z.; Aljafer, N.; Fuller, M.P. The Impact of Light Spectrum and Intensity on the Growth, Physiology, and Antioxidant Activity of Lettuce (Lactuca sativa L.). Plants 2021, 10, 2162. [Google Scholar] [CrossRef]
- Chen, M.; Blankenship, R.E. Expanding the solar spectrum used by photosynthesis. Trends Plant Sci. 2011, 16, 427–431. [Google Scholar] [CrossRef]
- Doina, C.; Orsolya, B.; Monica, H.; Cristian, S.R.; Doru, P. Molecular analysis of genetic stability of micropropagated blackberry and blueberry plants using RAPD and SRAP markers. Fruit Grow. Res. 2019, 35, 79–85. [Google Scholar] [CrossRef]
- Dziedzic, E.; Jagła, J. Micropropagation of Rubus and Ribes spp. In Protocols for Micropropagation of Selected Economically-Important Horticultural Plants; Humana Press: Totowa, NJ, USA, 2012; pp. 149–160. [Google Scholar]
- Fira, A.; Clapa, D.; Rakosy-Tican, E. In vitro propagation of the thornless blackberry cultivar ‘Loch Ness’. Bull. UASVM Hortic. 2011, 68, 39–46. [Google Scholar]
- Fira, A.; Clapa, D.; Simu, M. Studies regarding the micropropagation of some blackberry cultivars. Bull. UASVM Hortic. 2014, 71, 22–37. [Google Scholar]
- Bobrowski, V.L.; Mello-Farias, P.C.; Peters, J.A. Micropropagation of blackberries (Rubus sp.) cultivars. Rev. Bras. Agrocienc. 1996, 2, 17–20. [Google Scholar]
- Erig, A.C.; De Rossi, A.; De Luces Fortes, G.R. 6-benzilaminopurina e ácido indolbutírico na multiplicação in vitroda amoreira-preta (Rubus idaeus L.), cv. Tupy. Ciênc. Rural 2002, 32, 765–770. [Google Scholar] [CrossRef] [Green Version]
- Najaf-Abadi, A.J.; Hamidoghli, Y. Micropropagation of Thornless trailing blackberry (Rubus sp.) by axillary bud explants. Aust. J. Crop Sci. 2009, 3, 191–194. [Google Scholar]
- Vujović, T.; Ružić, D.; Cerović, R.; Momirović, G.S. Adventitious regeneration in blackberry (Rubus fruticosus L.) and assessment of genetic stability in regenerants. Plant Growth Regul. 2010, 61, 265–275. [Google Scholar] [CrossRef]
- Lee, K.S.; Kim, H.J.; Park, D.H.; Oh, S.C.; Cho, H.J.; Kim, E.Y. Establishment of optimal conditions for micropropagation by node culture and multiple shoots formation from sucker explants of thornless blackberry (Rubus fruticosus L. cv. BB21). J. Plant Biotechnol. 2018, 45, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Fathy, H.M.; Abou El-Leel, O.F.; Amin, M.A. Micropropagation and Biomass Production of Rubus fruticosus L. (Blackberry) plant. Middle East J. Appl. Sci. 2018, 8, 1215–1228. [Google Scholar]
- Fira, A.; Clapa, D. Ex-vitro acclimation of some horticultural species in hydroculture. Bull. UASVM Hortic. 2009, 66, 44–50. [Google Scholar]
- AbdAlla, M.M.; Mostafa, R.A.A. In Vitro Propagation of Blackberry (Rubus fruticosus L.). Assiut J. Agric. Sci. 2015, 46. [Google Scholar] [CrossRef] [Green Version]
- Hunková, J.; Libiaková, G.; Gajdošová, A. Shoot proliferation ability of selected cultivars of Rubus spp. as influenced by genotype and cytokinin concentration. J. Cent. Eur. Agric. 2016, 17, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Hunková, J.; Libiaková, G.; Fejér, J.; Vujović, T.; Gajdošová, A. Testing of different iron sources and concentrations on shoot multiplication of blackberry (Rubus fruticosus L.). Genetika 2018, 50, 351–356. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophyll and carotenoides: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Cotton, R. Cytotaxonomy of the Genus Vulpia; The University of Manchester: Manchester, UK, 1974. [Google Scholar]
- Vinterhalter, D.; Grubišić, D.; Vinterhalter, B.; Konjević, R. Light controlled root elongation in in vitro cultures of Dracaena fragrans Ker-Gawl. Plant Cell Tissue Organ Cult. 1990, 22, 1–6. [Google Scholar] [CrossRef]
- Wu, H.C.; Lin, C.C. Red light-emitting diode light irradiation improves root and leaf formation in difficult-to-propagate Protea cynaroides L. plantlets in vitro. HortScience 2012, 47, 1490–1494. [Google Scholar] [CrossRef] [Green Version]
- Budiarto, K. Spectral quality affects morphogenesis on Anthurium plantlet during in vitro culture. Agrivita 2010, 32, 234–240. [Google Scholar]
- Kurilčik, A.; Miklušytė-Čanova, R.; Dapkūnienė, S.; Žilinskaitė, S.; Kurilčik, G.; Tamulaitis, G.; Duchovskis, P.; Žukauskas, A. In vitro culture of Chrysanthemum plantlets using light-emitting diodes. Cent. Eur. J. Biol. 2008, 3, 161–167. [Google Scholar] [CrossRef]
- Ren, G.P.; Wang, X.J.; Zhu, G.F. Effect of LED in different light qualities on growth of Phalaenopsis plantlets. Chin. Bull. Bot. 2016, 51, 81–88. [Google Scholar]
- Xu, Y.; Liang, Y.; Yang, M. Effects of composite LED light on root growth and antioxidant capacity of Cunninghamia lanceolata tissue culture seedlings. Sci. Rep. 2019, 9, 9766. [Google Scholar] [CrossRef] [Green Version]
- Hung, C.D.; Hong, C.H.; Kim, S.K.; Lee, K.H.; Park, J.Y.; Nam, M.W.; Choi, D.H.; Lee, H.I. LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.). Acta Physiol. Plant 2016, 38, 152. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Murthy, H.N.; Ammar, M.H.; Alghamdi, S.S.; Al-Suhaibani, N.A.; Alsadon, A.A.; Paek, K.Y. In vitro rooting of leguminous plants: Difficulties, alternatives, and strategies for improvement. Hortic. Environ. Biotechnol. 2016, 57, 311–322. [Google Scholar] [CrossRef]
- Pawlicki, N.; Welander, M. Influence of carbohydrate source, auxin concentration and time of exposure on adventitious rooting of the apple rootstock Jork 9. Plant Sci. 1995, 106, 167–176. [Google Scholar] [CrossRef]
- Balla, I.; Vértesy, J.; Végváry, G.; Szűcs, E.; Kállay, T.; Vörös, I.; Biró, B. Nutrition of the micropropagated fruit trees in vitro and ex vitro. Int. J. Hortic. Sci. 2003, 9, 43–46. [Google Scholar] [CrossRef]
- Al-Khateeb, A. Influence of different carbon sources and concentrations on in vitro root formation of date palm, Phoenix dactylifera L. cv Khanezi. Zagazig. J. Agric. Res 2002, 28, 597–608. [Google Scholar]
- Hasançebi, S.; Turgut Kara, N.; Çakir, Ö.; Ari, S. Micropropagation and root culture of Turkish endemic Astragalus chrysochlorus (Leguminosae). Turk. J. Bot. 2011, 35, 203–210. [Google Scholar] [CrossRef]
- Franklin, K.A.; Whitelam, G.; Halliday, K.J. Red:far-red ratio perception and shade avoidance. In Light and Plant Development; Whitelam, G.C., Halliday, K.J., Eds.; Blackwell: Oxford, UK, 2007; pp. 211–234. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology; Benjamin/Cummings: Menlo Park, CA, USA, 1991. [Google Scholar]
- Kraepiel, Y.; Mipiniac, E. Photomorphogenesis and phytohormones. Plant Cell Environ. 1997, 20, 807–812. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Hahn, E.J.; Heo, J.W.; Paek, K.Y. Effect of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci. Hortic. 2004, 101, 143–151. [Google Scholar] [CrossRef]
- Terfa, M.T.; Solhaug, K.A.; Gislerød, H.R.; Olsen, J.E.; Torre, S. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa × hybrida but does not affect time to flower opening. Physiol. Plant. 2013, 148, 146–159. [Google Scholar] [CrossRef]
- Zeiger, E. Blue light and stomatal function. In Blue Light Effects in Biological Systems; Senger, H., Ed.; Springer: Berlin, Germany, 1984; pp. 484–494. [Google Scholar]
- Folta, K.M.; Carvalho, S.D. Photoreceptors and control of horticultural plant traits. HortScience 2015, 50, 1274–1280. [Google Scholar] [CrossRef] [Green Version]
- Smith, H. Phytochromes and light signal perception by plants—An emerging synthesis. Nature 2000, 407, 585–591. [Google Scholar] [CrossRef]
- Huché-Thélier, L.; Crespel, L.; Le Gourrierec, J.; Morel, P.; Sakr, S.; Leduc, N. Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture. Environ. Exp. Bot. 2016, 121, 22–38. [Google Scholar] [CrossRef]
- Young, A.J. The photoprotective role of carotenoids in higher plants. Physiol. Plant. 1991, 83, 702–708. [Google Scholar] [CrossRef]
- Zhu, M.; Geng, S.; Chakravorty, D.; Guan, Q.; Chen, S.; Assmann, S.M. Metabolomics of red-light-induced stomatal opening in Arabidopsis thaliana: Coupling with abscisic acid and jasmonic acid metabolism. Plant J. 2020, 101, 1331–1348. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, W.; Tong, Y.; Yang, Q. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant Sci. 2016, 7, 250. [Google Scholar] [CrossRef] [Green Version]
- Dewir, Y.H.; Chakrabarty, D.; Kim, S.J.; Hahn, E.J.; Paek, K.Y. Effect of light-emitting diode on growth and shoot proliferation of Euphorbia millii and Spathiphyllum cannifolium. Hortic. Environ. Biotechnol. 2005, 46, 375–379. [Google Scholar]
- Poudel, P.R.; Kataoka, I.; Mochioka, R. Effect of red-and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tissue Organ Cult. 2008, 92, 147–153. [Google Scholar] [CrossRef]
- Pinho, P.; Lukkala, R.; Sarkka, L.; Tetri, E.; Tahvonen, R.; Halonen, L. Evaluation of lettuce growth under multi-spectral-component supplemental solid state lighting in greenhouse environment. Int. Rev. Electr. Eng. 2007, 2, 22–29. [Google Scholar]
- Shin, Y.S.; Lee, M.J.; Lee, E.S.; Ahn, J.H.; Lim, J.H.; Kim, H.J.; Park, H.W.; Um, Y.G.; Park, S.D.; Chai, J.H. Effect of LEDs (light emitting diodes) irradiation on growth and mineral absorption of lettuce (Lactuca sativa L.’Lollo Rosa’). J. Bio-Environ. Control 2012, 21, 180–185. [Google Scholar]
- Shin, K.S.; Murthy, H.; Heo, J.; Hahn, E.; Paek, K. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol. Plant 2008, 30, 339–343. [Google Scholar] [CrossRef]
- Nhut, D.T.; Takamura, T.; Watanabe, H.; Okamoto, K.; Tanaka, M. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell Tissue Organ Cult. 2003, 73, 43–52. [Google Scholar] [CrossRef]
- Nanya, K.; Ishigami, Y.; Hikosaka, S.; Goto, E. Effects of blue and red light on stem elongation and flowering of tomato seedlings. Acta Hortic. 2012, 956, 261–266. [Google Scholar] [CrossRef]
- Miao, Y.; Chen, Q.; Qu, M.; Gao, L.; Hou, L. Blue light alleviates ‘red light syndrome’ by regulating chloroplast ultrastructure, photosynthetic traits and nutrient accumulation in cucumber plants. Scientia Hortic. 2019, 257, 108680. [Google Scholar] [CrossRef]
- Coupe, S.A.; Palmer, B.; Lake, J.; Overy, S.; Oxborough, K.; Woodward, F.; Gray, J.; Quick, W.P. Systemic signalling of environmental cues in Arabidopsis leaves. J. Exp. Bot. 2006, 57, 329–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fila, G.; Badeck, F.; Meyer, S.; Cerovic, Z.; Ghashghaie, J. Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants, before and after ex vitro acclimatization. J. Exp. Bot. 2006, 57, 2687–2695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baena-Gonzalez, E.; Rolland, F.; Thevelein, J.M.; Sheen, J. A central integrator of transcription networks in plant stress and energy signaling. Nature 2007, 448, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Jo, E.A.; Tewari, R.K.; Hahn, E.J.; Paek, K.Y. In vitro sucrose concentration affects growth and acclimatization of Alocasia amazonica plantlets. Plant Cell Tissue Organ Cult. 2009, 96, 307–315. [Google Scholar] [CrossRef]
- Hazarika, B.N. Morpho-physiological disorders in in vitro culture of plants. Sci. Hortic. 2006, 108, 105–120. [Google Scholar] [CrossRef]
Treatments | Root Length/Plantlet (cm) | Root Diameter/Plantlet (mm) | Root Surface Area/Plantlet (cm2) | Root Fresh Weight/Plantlet (g) | ||
---|---|---|---|---|---|---|
Light treatments | ||||||
Fluorescent (control) | 21.03 a | 1.49 ab | 12.15 a | 0.415 b | ||
Cool white + Warm white (1:1) | 15.13 b | 1.07 b | 6.50 b | 0.490 b | ||
Blue + Red (2:1) | 14.53 b | 1.58 ab | 10.05 ab | 0.549 b | ||
Blue + Red (1:2) | 20.71 a | 1.87 a | 12.10 a | 0.8741 a | ||
F-value | 90.15 *** | 11.76 *** | 45.42 *** | 90.15 *** | ||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | ||
Sucrose concentrations (g L−1) | ||||||
0 | 0.00 d | 0.00 d | 0.00 d | 0.000 e | ||
15 | 15.63 c | 1.55 b | 8.534 c | 0.556 c | ||
30 | 16.55 c | 2.16 a | 14.27 b | 0.745 b | ||
45 | 35.65 a | 2.49 a | 18.76 a | 1.214 a | ||
60 | 21.41 b | 1.30 b | 9.44 c | 0.376 d | ||
F-value | 290.92 *** | 79.83 *** | 254.79 *** | 290.92 *** | ||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | ||
Light treatments × Sucrose concentrations (g L−1) | ||||||
Fluorescent (control) | 0 | 0.00 i | 0.00 j | 0.00 k | 0.000 g | |
15 | 22.37 d | 1.44 e–h | 10.43 g | 0.473 ef | ||
30 | 16.14 f | 2.65 bc | 13.99 def | 0.435 f | ||
45 | 36.36 b | 1.84 def | 21.21 b | 1.040 c | ||
60 | 30.26 c | 1.53 e–h | 15.11 cde | 0.126 g | ||
Cool white + Warm white (1:1) | 0 | 0.00 i | 0.00 j | 0.00 k | 0.000 g | |
15 | 9.59 h | 0.75 i | 2.33 jk | 0.503 ef | ||
30 | 16.87 ef | 2.33 cd | 12.54 efg | 0.611 e | ||
45 | 35.26 b | 1.15 f–i | 13.15 ef | 1.187 b | ||
60 | 13.90 fg | 1.10 ghi | 4.49 ij | 0.147 g | ||
Blue + Red(2:1) | 0 | 0.00 i | 0.00 j | 0.00 k | 0.000 g | |
15 | 10.64 h | 2.03 cde | 7.59 h | 0.391 f | ||
30 | 12.30 gh | 1.84def | 14.05 def | 0.772 d | ||
45 | 27.78 c | 3.12 b | 16.92 c | 1.159 bc | ||
60 | 21.91 d | 0.91 hi | 11.71 fg | 0.425 f | ||
Blue + Red(1:2) | 0 | 0.00 i | 0.00 j | 0.00 k | 0.000 g | |
15 | 19.91 d | 1.97 de | 13.80 def | 0.856 d | ||
30 | 20.90 d | 1.84 def | 16.52 cd | 1.240 b | ||
45 | 43.17 a | 3.85 a | 23.75 a | 1.469 a | ||
60 | 19.56 de | 1.67 d–g | 6.45 hi | 0.806 d | ||
F-value | 30.58 *** | 8.46 *** | 11.81 *** | 30.58 *** | ||
p-value | <0.001 | <0.001 | <0.001 | <0.001 |
Treatments | Shoot Length (cm) | Shoot Fresh Weight (g) | Number of Leaves | ||
---|---|---|---|---|---|
Light treatments | |||||
Fluorescent (control) | 5.0 b | 0.558 b | 8.3 b | ||
Cool white + Warm white (1:1) | 6.3 a | 0.474 b | 8.6 b | ||
Blue + Red(2:1) | 6.7 a | 0.710 a | 10.5 a | ||
Blue + Red(1:2) | 5.2 b | 0.713 a | 8.4 b | ||
F-value | 26.76 *** | 22.73 *** | 26.91 *** | ||
p-value | < 0.001 | < 0.001 | < 0.001 | ||
Sucrose concentrations (g L−1) | |||||
0 | 4.9 bc | 0.379 c | 7.5 b | ||
15 | 6.7 ab | 0.566 ab | 9.0 a | ||
30 | 7.2 a | 0.623 a | 9.3 a | ||
45 | 5.6 c | 0.677 ab | 7.4 c | ||
60 | 4.5 d | 0.430 bc | 5.4 d | ||
F-value | 63.36 *** | 14.75 *** | 88.17 *** | ||
p-value | <0.001 | <0.001 | <0.001 | ||
Light treatments × Sucrose concentrations (g L−1) | |||||
Fluorescent (control) | 0 | 5.3 efg | 0.454 ef | 8.5 fgh | |
15 | 6.4 cde | 0.503 ef | 10.0 cde | ||
30 | 6.2 cde | 0.605 de | 11.0 abc | ||
45 | 4.3 gh | 0.740 bcd | 7.3 hi | ||
60 | 3.0 i | 0.487 ef | 4.7 k | ||
Cool white + Warm white (1:1) | 0 | 6.3 cde | 0.240 g | 9.0 efg | |
15 | 7.0 bc | 0.394 fg | 9.8 c–f | ||
30 | 7.7 ab | 0.623 cde | 11.0 abc | ||
45 | 6.3 cde | 0.739 fg | 7.7 ghi | ||
60 | 4.2 h | 0.372 abc | 5.3 k | ||
Blue + Red(2:1) | 0 | 6.8 bc | 0.495 ef | 10.7 bcd | |
15 | 7.3 bc | 0.854 ab | 12.3 a | ||
30 | 8.4 a | 0.918 ab | 12.0 a | ||
45 | 6.8 bc | 0.863 a | 10.5 cd | ||
60 | 4.3 gh | 0.419 f | 7.0 ij | ||
Blue + Red(1:2) | 0 | 6.3 cde | 0.706 bcd | 9.5 def | |
15 | 6.6 bcd | 0.832 ab | 10.7 bcd | ||
30 | 5.5 def | 0.788 abc | 9.0 efg | ||
45 | 4.8 fgh | 0.741 bcd | 7.0 ij | ||
60 | 3.0 i | 0.499 ef | 5.7 jk | ||
F-value | 2.31 * | 10.49 *** | 2.15 * | ||
p-value | 0.0167 | <0.001 | 0.0260 |
Treatments | Leaf Area/Plantlet (cm2) | Chlorophyll a (mg g−1 FW) | Chlorophyll b (mg g−1 FW) | Chlorophyll a + b (mg g−1 FW) | Total Carotenoids (mg g−1 FW) | ||
---|---|---|---|---|---|---|---|
Light treatments | |||||||
Fluorescent (control) | 14.53 b | 1.67 b | 0.57 b | 2.25 b | 0.55 b | ||
Cool white + Warm white (1:1) | 12.56 b | 2.37 ab | 0.78 ab | 3.15 ab | 0.80 ab | ||
Blue + Red(2:1) | 21.42 a | 2.74 a | 0.84 a | 3.57 a | 0.86 a | ||
Blue + Red(1:2) | 12.86 b | 2.36 ab | 0.72 ab | 3.08 ab | 0.74 ab | ||
F-value | 49.75 *** | 117.31 *** | 73.23 *** | 74.67 *** | 112.79 *** | ||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Sucrose concentrations (g L−1) | |||||||
0 | 10.87 c | 1.78 b | 0.54 b | 2.32 c | 0.59 b | ||
15 | 14.38 ab | 2.40 a | 0.74 a | 3.14 a | 0.81 a | ||
30 | 16.38 a | 2.21 ab | 0.72 a | 2.94 ab | 0.70 ab | ||
45 | 12.18 bc | 1.99 b | 0.62 ab | 2.61 bc | 0.62 b | ||
60 | 9.19 c | 0.94 c | 0.32 c | 1.26 d | 0.31 c | ||
F-value | 27.34 *** | 344.90 *** | 323.22 *** | 294.17 *** | 362.96 *** | ||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Light treatments × Sucrose concentrations (g L−1) | |||||||
Fluorescent (control) | 0 | 10.25 i–k | 1.98 gh | 0.60 j | 2.59 fg | 0.66 g–i | |
15 | 15.44 e–h | 2.39 f | 0.81 fg | 3.20 e | 0.81 ef | ||
30 | 19.46 b–e | 2.18 f | 0.88 e–g | 3.06 e | 0.75 f | ||
45 | 16.30 d–g | 1.28 i | 0.39 k | 1.67 h | 0.37 j | ||
60 | 11.23 j–i | 0.55 j | 0.17 l | 0.72 i | 0.16 kl | ||
Cool white + Warm white (1:1) | 0 | 11.42 j–i | 2.81 de | 0.87 d–f | 3.69 cd | 0.89 de | |
15 | 13.99 f–i | 3.08 b–d | 0.96 b–d | 4.04 b | 1.06 ab | ||
30 | 20.61 bc | 2.18 fg | 0.70 hi | 2.88 ef | 0.72 f–h | ||
45 | 10.19 i–k | 2.23 fg | 0.75 gh | 2.98 e | 0.74 fg | ||
60 | 6.60 k | 1.57 k | 0.62 m | 2.19 j | 0.59 l | ||
Blue + Red(2:1) | 0 | 19.80 b–d | 1.87 h | 0.58 j | 2.45 g | 0.63 hi | |
15 | 23.46 ab | 3.49 a | 1.09 a | 4.58 a | 1.13 a | ||
30 | 25.37 a | 3.26 ab | 0.98 bc | 4.24 b | 1.02 bc | ||
45 | 19.36 b–e | 3.17 bc | 0.93 c–e | 4.10 b | 0.94 cd | ||
60 | 19.12 c–e | 1.90 h | 0.60 j | 2.50 g | 0.58 i | ||
Blue + Red(1:2) | 0 | 12.88 g–i | 2.24 fg | 0.65 ij | 2.89 ef | 0.75 fg | |
15 | 17.21 c–f | 2.78 e | 0.80 fg | 3.57 d | 0.94 cd | ||
30 | 14.22 f–i | 3.20 bc | 1.03 ab | 4.23 b | 0.93 cd | ||
45 | 12.45 g–i | 2.96 c–e | 0.97 bc | 3.93 bc | 0.92 cd | ||
60 | 7.56 jk | 0.59 j | 0.18 l | 0.78 i | 0.19 k | ||
F-value | 2.87 ** | 33.17 *** | 34.33 *** | 22.21 *** | 35.35 *** | ||
p-value | 0.0035 | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dewir, Y.H.; Al-Ali, A.M.; Rihan, H.Z.; Alshahrani, T.; Alwahibi, M.S.; Almutairi, K.F.; Naidoo, Y.; Fuller, M.P. Effects of Artificial Light Spectra and Sucrose on the Leaf Pigments, Growth, and Rooting of Blackberry (Rubus fruticosus) Microshoots. Agronomy 2023, 13, 89. https://doi.org/10.3390/agronomy13010089
Dewir YH, Al-Ali AM, Rihan HZ, Alshahrani T, Alwahibi MS, Almutairi KF, Naidoo Y, Fuller MP. Effects of Artificial Light Spectra and Sucrose on the Leaf Pigments, Growth, and Rooting of Blackberry (Rubus fruticosus) Microshoots. Agronomy. 2023; 13(1):89. https://doi.org/10.3390/agronomy13010089
Chicago/Turabian StyleDewir, Yaser Hassan, Ali Mohsen Al-Ali, Hail Z. Rihan, Thobayet Alshahrani, Mona S. Alwahibi, Khalid F. Almutairi, Yougasphree Naidoo, and Michael P. Fuller. 2023. "Effects of Artificial Light Spectra and Sucrose on the Leaf Pigments, Growth, and Rooting of Blackberry (Rubus fruticosus) Microshoots" Agronomy 13, no. 1: 89. https://doi.org/10.3390/agronomy13010089
APA StyleDewir, Y. H., Al-Ali, A. M., Rihan, H. Z., Alshahrani, T., Alwahibi, M. S., Almutairi, K. F., Naidoo, Y., & Fuller, M. P. (2023). Effects of Artificial Light Spectra and Sucrose on the Leaf Pigments, Growth, and Rooting of Blackberry (Rubus fruticosus) Microshoots. Agronomy, 13(1), 89. https://doi.org/10.3390/agronomy13010089