Identification of the Spectral Patterns of Cultivated Plants and Weeds: Hyperspectral Vegetation Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Arrangement of Test Plots
2.2. Ground Spectrometric Measurements
2.3. Data Analysis and Processing
3. Results
- Indices for assessing xanthophylls and changes in chlorophyll content (NDVI705, mSR705, mNDVI705, VOG1, VOG2, VOG3, REPI);
- Indices for assessing the content of carotenoids and anthocyanins in plants (CRI1, CRI2, ARI1, ARI2);
- Light Efficiency Indices (PRI, SIPI);
- Narrow-band indices of plant stress assessment (REP, RVSI).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO (Food and Agriculture Organization of the United Nations). Available online: https://www.fao.org/home/en/ (accessed on 12 June 2022).
- Martinez, B.; Reaser, J.K.; Dehgan, A.; Zamft, B.D.; McCormick, C.; Giordano, A.J.; Aicher, R.; Selbe, S. Technology innovation: Advancing capacities for the early detection of and rapid response to invasive species. Biol. Invasions 2020, 22, 75–100. [Google Scholar] [CrossRef] [Green Version]
- Enders, M.; Hűtt, M.-T.; Jeschke, J.M. Drawing a map of invasion biology based on a networkof hypotheses. Ecosphere 2018, 9, e02146. [Google Scholar] [CrossRef]
- Nie, S.; Li, W. How spatial structure of species and disturbance influence the ecological invasion. Ecol. Model. 2020, 431, 109199. [Google Scholar] [CrossRef]
- Chung, H.I.; Choi, Y.; Ryu, J.; Jeon, S.W. Validating management strategies for invasive species from a spatial perspective: Common ragweed in the Republic of Korea. Environ. Sci. Policy 2020, 114, 52–63. [Google Scholar] [CrossRef]
- Reaser, J.K.; Burgiel, S.W.; Kirkey, J.; Brantley, K.A.; Veatch, S.D.; Burgos-Rodríguez, J. The early detection of and rapid response (EDRR) to invasive species: A conceptual framework and federal capacities assessment. Biol. Invasions 2020, 22, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Tataridas, A.; Kanatas, P.; Chatzigeorgiou, A.; Zannopoulos, S.; Travlos, I. Sustainable Crop and Weed Management in the Era of the EU Green Deal: A Survival Guide. Agronomy 2022, 12, 5897. [Google Scholar] [CrossRef]
- Allmendinger, A.; Spaeth, M.; Saile, M.; Peteinatos, G.; Gerhards, R. Precision Chemical Weed Management Strategies: A Review and a Design of a New CNN-Based Modular Spot Sprayer. Agronomy 2022, 12, 1620. [Google Scholar] [CrossRef]
- Ngom, R.; Gosselin, P. Development of a Remote Sensing-Based Method to Map Likelihood of Common Ragweed (Ambrosia artemisiifolia) Presence in Urban Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 126–139. [Google Scholar] [CrossRef]
- Danilov, R.Y.; Ismailov, V.Y.; Tret’yakov, V.A.; Kremneva, O.Y.; Shumilov, Y.V.; Rizvanov, A.A.; Krivoshein, V.V.; Kostenko, I.A. Development of precision technologies of agroecosystems phytosanitary monitoring based on the use of data of remote hyperspecral sensing of the Earth. Dostizheniya Nauk. Tekhniki APK 2018, 10, 82–86. [Google Scholar] [CrossRef]
- Danilov, R.Y.; Kremneva, O.Y.; Ismailov, V.Y.; Tretyakov, V.A.; Rizvanov, A.A.; Krivoshein, V.; Pachkin, A.A. General methods and results of ground hyperspectral studies of seasonal changes in the reflective properties of crops and certain types of weeds. Curr. Probl. Remote Sens. Earth Space 2020, 1, 113–127. [Google Scholar] [CrossRef]
- Kawamura, K.; Asai, H.; Yasuda, T.; Soisouvanh, P.; Phongchanmixay, S. Discriminating crops/weeds in an upland rice field from UAV images with the SLIC-RF algorithm. Plant Prod. Sci. 2020, 24, 73–82. [Google Scholar] [CrossRef]
- Rakhmatulin, I.; Kamilaris, A.; Andreasen, C. Deep Neural Networks to Detect Weeds from Crops in Agricultural Environments in Real-Time: A Review. Remote Sens. 2021, 13, 4486. [Google Scholar] [CrossRef]
- Mishra, P.; Asaari, M.S.M.; Herrero-Langreo, A.; Lohumi, S.; Diezma, B.; Scheunders, P. Close range hyperspectral imaging of plants: A review. Biosyst. Eng. 2017, 164, 4–9. [Google Scholar] [CrossRef]
- Francisco-Fernández, M.; Jurado-Expósito, M.; Opsomer, J.D.; López-Granados, F. A nonparametric analysis of the spatial distribution of Convolvulus arvensis in wheat-sunflower rotations. Environmetrics 2006, 17, 849–860. [Google Scholar] [CrossRef]
- Sørensen, R.A.; Rasmussen, J.; Nielsen, J.; Jørgensen, R.N. Thistle detection using convolutional neural networks. In Proceedings of the EFITA WCCA 2017 Conference, Montpellier Supagro, Montpellier, France, 2–6 July 2017; p. 75. [Google Scholar]
- Piron, A.; Heijden, F.; Destain, M.F. Weed detection in 3D images. Precis. Agric. 2011, 12, 607–622. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Nuyttens, D.; Lootens, P.; He, Y.; Pieters, J.G. Recognising weeds in a maize crop using a random forest machine-learning algorithm and near-infrared snapshot mosaic hyperspectral imagery. Biosyst. Eng. 2018, 170, 39–50. [Google Scholar] [CrossRef]
- Herrmann, I.; Shapira, U.; Kinast, S.; Karnieli, A.; Bonfil, D.J. Ground-level hyperspectral imagery for detecting weeds in wheat fields. Precis. Agric. 2013, 14, 637–659. [Google Scholar] [CrossRef]
- Mao, W.; Hu, X.; Zhang, X. Weed detection based on the optimized segmentation line of crop and weed. Comput. Comput. Technol. Agric. 2008, 2, 959–967. [Google Scholar] [CrossRef] [Green Version]
- Terekhin, E.A. Assessment the spatial-temporal changes in green phytomass of agricultural vegetation using spectral response. Curr. Probl. Remote Sens. Earth Space 2021, 1, 138–148. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Application. J. Sens. 2017, 1, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Gewali, U.B.; Monteiro, S.T.; Saber, E. Gaussian Processes for Vegetation Parameter Estimation from Hyperspectral Data with Limited Ground Truth. Remote Sens. 2019, 11, 1614. [Google Scholar] [CrossRef] [Green Version]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance acr oss a wide range of species. leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Sims, J.; James, C.; Harrison, D.A. Monitoring the contribution of general practice to population health activities. Health. Promot. J. Aust. 2002, 13, 189–192. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N.; Moss, D.M. Red edge spectral measurements from sugar maple leaves. Remote Sens. Environ. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Tretyakova, A.S.; Baranova, O.G.; Luneva, N.N.; Terekhina, T.A.; Yamalov, S.M.; Lebedeva, M.V.; Khasanova, G.R.; Grudanov, N.Y. Segetal flora of some regions of Russia: Characteristics of the taxonomic structure. Proc. Appl. Botany. Genet. Breed. 2020, 181, 123–133. [Google Scholar] [CrossRef]
- Olsen, J.; Kristensen, L.; Weiner, J. Influence of sowing density and spatial pattern of spring wheat (Triticum aestivum) on the suppression of different weed species. Weed Biol. Manag. 2006, 6, 165–173. [Google Scholar] [CrossRef]
- José-María, L.; Blanco-Moreno, J.M.; Armengot, L.A.; Sans, F.X. How does agricultural intensification modulate changes in plant community composition? Agric. Ecosyst. Environ. 2011, 145, 77–84. [Google Scholar] [CrossRef]
- Pyšek, P.; Jarošík, V.; Chytrý, M.; Kropác, Z.; Tichý, L.; Wild, J. Alien plants in temperate weed communities: Prehistoric and recent invaders occupy different habitats. Ecology 2005, 86, 772–785. [Google Scholar] [CrossRef] [Green Version]
- Rauber, R.B.; Demaría, M.R.; Jobbágy, E.G.; Arroyo, D.N.; Poggio, S.L. Weed communities in semiarid rainfed croplands of Central Argentina: Comparison between corn (Zea mays) and soybean (Glycine max) crops. Weed Sci. 2018, 66, 368–378. [Google Scholar] [CrossRef]
No. Test Plot | Plant Species | Number of Plants, pcs/m2 | Development Stages |
---|---|---|---|
1 | Sunflower (H. annuus L.) | 5–6 | BBCH 65–78 «budding» |
2 | Corn (Z. mais L.) | 5–6 | BBCH 71–73 «milky-wax ripeness» |
3 | Soybean (G. max (L.)) | 7–10 | BBCH 51–53 «budding» |
4 | Ragweed (A. artemisiifolia L.) | 450–480 | Stage 2-Shooting «lengthening of 4–5 internodes» |
5 | Californian cocklebur (X. strumarium L.) | 250–300 | Stage 2-Shooting «lengthening of 4–5 internodes» |
6 | Pigweed (A. retroflexus L.) | 250–300 | Stage 2-Shooting «lengthening of 4–5 internodes» |
7 | Muchweed (C. album L.) | 250–300 | Stage 2-Shooting «lengthening of 4–5 internodes» |
8 | Field sow thistle (S. arvensis L.) | 100–150 | Stage 4-Flowering |
9 | Ragweed (A. artemisiifolia L.) | 448–482 | Stage 2-Shooting «lengthening of 4–5 internodes» |
Field sow thistle (S. arvensis L.) | 6–8 | Stage 4-Flowering | |
Californian cocklebur (X. strumarium L.) | 2–3 | Stage 2-Shooting «lengthening of 4–5 internodes» | |
10 | Ragweed (A. artemisiifolia L.) | 435–448 | Stage 2-Shooting «lengthening of 4–5 internodes» |
Californian cocklebur (X. strumarium L.) | 35–42 | Stage 2-Shooting «lengthening of 4–5 internodes» | |
Muchweed (C. album L.) | 1–2 | Stage 2-Shooting «lengthening of 4–5 internodes» | |
11 | Ragweed (A. artemisiifolia L.) | 431–450 | Stage 2-Shooting «lengthening of 4–5 internodes» |
Californian cocklebur (X. strumarium L.) | 2–3 | Stage 2-Shooting «lengthening of 4–5 internodes» |
Spectral Index | Calculation Formula | Authors |
---|---|---|
Indices for assessing the state of xanthophylls and changes in chlorophyll content | ||
NDVI705 | P750 * − P705/P750 + P705 | Gitelson A.A. et al., 1994 Sims D.A. et al., 2002 |
mSR705 | P750 − P445/P750 + P445 | Datt B., 1999 Sims D.A. et al., 2002 |
mNDVI705 | P750 − P705/P750 + P705 − 2P445 | Datt B., 1999 Sims D.A. et al., 2002 |
VOG1 | P740/P720 | Vogelmann J.E. et al., 1993 |
VOG2 | P734 − P747/P715 + P726 | |
VOG3 | P734 − P747/P715 + P720 | |
REPI | REPI = NDVI705 + mSR705 + VOG1 + VOG2 + VOG3 | |
Indices for assessing the content of carotenoids and anthocyanins in plants | ||
CRI1 | (1/P510) + (1/P550) | Gamon J.A, 1997 Sims D.A., 2002 |
CRI2 | (1/P510) + (1/P700) | |
ARI1 | (1/P550) + (1/P700) | |
ARI2 | P800 × ((1/P550) + (1/P700)) | |
Light efficiency indices | ||
PRI | P531 − P570/P531 + P570 | Gamon J.A, et al., 1990 |
SIPI | P800 − P845/P800 + P680 | |
Plant stress assessment narrowband indices | ||
REP | 700 + 40 × Predegre-P700/P740 + P700 | Merton J.P. and Hunnington S.V., 1999 |
RVSI | P714 + P752/2 − P733 |
Variable | Factor 1 | Factor 2 | Factor 3 |
---|---|---|---|
NDVI705 | −0.177411 | 0.574509 | 0.748737 * |
mSR705 | −0.235497 | −0.806815 * | 0.406489 |
mNDVI705 | −0.177411 | 0.574509 | 0.748737 * |
PRI | −0.123305 | −0.819804 * | 0.546125 |
SIPI | 0.587770 | 0.663273 | 0.098082 |
CRI1 | −0.797328 * | −0.461330 | 0.276217 |
CRI2 | −0.990745 * | −0.022931 | 0.003545 |
ARI1 | −0.961214 * | 0.225332 | −0.149379 |
ARI2 | −0.957798 * | 0.233990 | −0.158228 |
REP | 0.861582 * | −0.444344 | 0.231426 |
RVSI | 0.814935 * | 0.376121 | 0.220696 |
VOG1 | 0.424311 | 0.859234 * | −0.060536 |
VOG2 | −0.934131 * | 0.299670 | −0.176047 |
VOG3 | −0.937214 * | 0.293074 | −0.173965 |
REPI | −0.522780 | 0.307182 | 0.729474 * |
Expl.Var | 7.548457 | 4.089205 | 2.417299 |
Prp.Totl | 0.503230 | 0.272614 | 0.161153 |
NDVI705 | MSR705 | mNDVI705 | PRI | SIPI | CRI1 | CRI2 | ARI1 | ARI2 | REP | RVSI | VOG1 | VOG2 | VOG3 | REPI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDVI705 | 1.00 | −0.21 | 1.00 * | −0.05 | 0.27 | 0.05 | 0.15 | 0.18 | 0.18 | −0.23 | 0.16 | 0.30 | 0.19 | 0.19 | 0.74 * |
MSR705 | −0.21 | 1.00 | −0.21 | 0.91 * | −0.55 | 0.68 | 0.26 | −0.01 | −0.02 | 0.23 | −0.33 | −0.73 * | −0.07 | −0.07 | 0.28 |
MNPVI | 1.00 * | −0.21 | 1.00 | −0.05 | 0.27 | 0.05 | 0.15 | 0.18 | 0.18 | −0.23 | 0.16 | 0.30 | 0.19 | 0.19 | 0.74 * |
PRI | −0.05 | 0.91 * | −0.05 | 1.00 | −0.54 | 0.63 | 0.15 | −0.14 | −0.16 | 0.39 | −0.29 | −0.79 * | −0.22 | −0.22 | 0.21 |
SIPI | 0.27 | −0.55 | 0.27 | −0.54 | 1.00 | −0.69 | −0.56 | −0.41 | −0.40 | 0.25 | 0.78 * | 0.85 * | −0.36 | −0.36 | 0.01 |
CRI1 | 0.05 | 0.68 | 0.05 | 0.63 | −0.69 | 1.00 | 0.84 * | 0.63 | 0.62 | −0.41 | −0.70 * | −0.73 * | 0.56 | 0.56 | 0.48 |
CRI2 | 0.15 | 0.26 | 0.15 | 0.15 | −0.56 | 0.84 * | 1.00 | 0.95 * | 0.95 * | −0.84 * | −0.79 * | −0.43 | 0.92 * | 0.92 * | 0.52 |
ARI1 | 0.18 | −0.01 | 0.18 | −0.14 | −0.41 | 0.63 | 0.95 * | 1.00 | 1.00 * | −0.96 * | −0.72 * | −0.20 | 0.99 * | 0.99 * | 0.47 |
ARI2 | 0.18 | −0.02 | 0.18 | −0.16 | −0.40 | 0.62 | 0.95 * | 1.00 * | 1.00 | −0.97 * | −0.72 * | −0.19 | 0.99 * | 1.00 * | 0.46 |
REP | −0.23 | 0.23 | −0.23 | 0.39 | 0.25 | −0.41 | −0.84 * | −0.96 * | −0.97 * | 1.00 | 0.57 | −0.04 | −0.98 * | −0.98 * | −0.43 |
RVSI | 0.16 | −0.33 | 0.16 | −0.29 | 0.78 * | −0.70 * | −0.79 * | −0.72 * | −0.72 * | 0.57 | 1.00 | 0.73 * | −0.67 | −0.67 | −0.08 |
VOG1 | 0.30 | −0.73 | 0.30 | −0.79 | 0.85 | −0.73 | −0.43 | −0.20 | −0.19 | −0.04 | 0.73 | 1.00 | −0.11 | −0.12 | 0.08 |
VOG2 | 0.19 | −0.07 | 0.19 | −0.22 | −0.36 | 0.56 | 0.92 * | 0.99 * | 0.99 * | −0.98 * | −0.67 | −0.11 | 1.00 | 1.00 * | 0.47 |
VOG3 | 0.19 | −0.07 | 0.19 | −0.22 | −0.36 | 0.56 | 0.92 * | 0.99 * | 1.00 * | −0.98 * | −0.67 | −0.12 | 1.00 * | 1.00 | 0.47 |
REPI | 0.74 * | 0.28 | 0.74 * | 0.21 | 0.01 | 0.48 | 0.52 | 0.47 | 0.46 | −0.43 | −0.08 | 0.08 | 0.47 | 0.47 | 1.00 |
CRI1 | CRI2 | ARI1 | ARI2 | REP | RVSI | Factor 1 | MSR705 | PRI | VOG1 | Factor 2 | NDVI705 | mNDVI705 | REPI | Factor 3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.3 a | 0.9 a | 0.4 a | −1.1127 a | 714.24 g | −0.079 f | 2.9731 i | 0.6878 d | 0.0777 f | −0.0061 a | −0.769 b | 0.5343 g | 0.2039 c | 1.31 b | 0.49 g |
2 | 1.7. b | 1.6 b | 1.3 b | −0.0063 b | 695.47 a | −0.106 e | 0.2917 h | 0.5482 a | 0.0019 a | −0.0011 h | 2.538 h | 0.6107 i | 0.2948 h | 1.46 h | −0.08 e |
3 | 8.0 d | 8.4 c | 4.2 c | 0.0099 c | 697.68 b | −0.161 cd | −0.1623 f | 0.7151 e | 0.0526 c | 0.0002 g | −0.033 e | 0.5277 f | 0.1792 b | 1.43 f | −0.84 c |
4 | 18.2 h | 19.2 g | 9.8 f | 0.0123 c | 699.73 f | −0.156 d | −0.6255 a | 0.7619 f | 0.0972 g | −0.0026 de | −0.456 c | 0.4889 c | 0.2612 f | 1.51 i | 1.36 h |
5 | 11.4 e | 11.9 d | 5.2 cd | 0.0103 c | 698.68 d | −0.172 bc | −0.4219 c | 0.6933 d | 0.0764 f | −0.0019 f | 0.017 ef | 0.4985 d | 0.2631 fg | 1.45 gh | 0.59 g |
6 | 11.3 e | 11.8 d | 5.3 cd | 0.0104 c | 698.69 d | −0.198 a | −0.5046 b | 0.6596 c | 0.0720 ef | −0.0028 cd | −0.251 d | 0.4684 b | 0.2644 g | 1.38 d | 0.13 f |
7 | 15.0 g | 15.8 f | 7.9 e | 0.0129 c | 699.20 e | −0.193 a | −0.4637 bc | 0.7132 e | 0.0692 de | −0.0023 ef | −1.550 a | 0.4585 a | 0.1295 a | 1.29 a | −1.84 a |
8 | 6.7 c | 7.2 c | 4.3 c | 0.0117 c | 697.99 c | −0.149 d | 0.1857 g | 0.6005 b | 0.0332 b | −0.0021 f | 0.795 g | 0.5391 h | 0.2018 c | 1.33 c | −1.30 b |
9 | 13.0 f | 13.7 e | 7.5 e | 0.0130 c | 699.19 e | −0.173 bc | −0.2533 e | 0.6722 c | 0.0576 c | −0.0031 c | 0.035 ef | 0.5072 e | 0.2223 d | 1.39 e | −0.33 d |
10 | 12.4 ef | 13.0 de | 6.3 de | 0.0121 c | 699.13 e | −0.176 b | −0.2533 d | 0.6890 d | 0.0650 d | −0.0036 b | 0.161 f | 0.5071 e | 0.2576 e | 1.44 g | 0.43 g |
11 | 19.9 i | 20.9 h | 9.8 f | 0.0122 c | 699.73 f | −0.157 d | −0.6683 a | 0.7619 f | 0.0972 g | −0.0026 de | −0.487 c | 0.4889 c | 0.2612 f | 1.51 i | 1.39 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danilov, R.; Kremneva, O.; Pachkin, A. Identification of the Spectral Patterns of Cultivated Plants and Weeds: Hyperspectral Vegetation Indices. Agronomy 2023, 13, 859. https://doi.org/10.3390/agronomy13030859
Danilov R, Kremneva O, Pachkin A. Identification of the Spectral Patterns of Cultivated Plants and Weeds: Hyperspectral Vegetation Indices. Agronomy. 2023; 13(3):859. https://doi.org/10.3390/agronomy13030859
Chicago/Turabian StyleDanilov, Roman, Oksana Kremneva, and Alexey Pachkin. 2023. "Identification of the Spectral Patterns of Cultivated Plants and Weeds: Hyperspectral Vegetation Indices" Agronomy 13, no. 3: 859. https://doi.org/10.3390/agronomy13030859
APA StyleDanilov, R., Kremneva, O., & Pachkin, A. (2023). Identification of the Spectral Patterns of Cultivated Plants and Weeds: Hyperspectral Vegetation Indices. Agronomy, 13(3), 859. https://doi.org/10.3390/agronomy13030859