Intensification of Pasture-Based Animal Production System Has Little Short-Term Effect on Soil Carbon Stock in the Southern Brazilian Highland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Treatments
2.2. Soil Assessment
2.3. Pasture Assessments
2.4. Statistical Analysis
3. Results
3.1. Soil
3.2. Pasture
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lemaire, G.; Hodgson, J.; Chabbi, A. Grassland Productivity and Ecosystem Services; CABI: Wallingford, UK; Oxfordshire, UK, 2011; ISBN 978-1-84593-900-7. [Google Scholar]
- Zhao, Y.; Liu, Z.; Wu, J. Grassland Ecosystem Services: A Systematic Review of Research Advances and Future Directions. Landsc. Ecol. 2020, 35, 793–814. [Google Scholar] [CrossRef]
- Bellarby, J.; Tirado, R.; Leip, A.; Weiss, F.; Lesschen, J.P.; Smith, P. Livestock Greenhouse Gas Emissions and Mitigation Potential in Europe. Glob. Chang. Biol. 2013, 19, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Soussana, J.-F.; Lemaire, G. Coupling Carbon and Nitrogen Cycles for Environmentally Sustainable Intensification of Grasslands and Crop-Livestock Systems. Agric. Ecosyst. Environ. 2014, 190, 9–17. [Google Scholar] [CrossRef]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands—More Important for Ecosystem Services than You Might Think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Conant, R.T.; Cerri, C.E.P.; Osborne, B.B.; Paustian, K. Grassland Management Impacts on Soil Carbon Stocks: A New Synthesis. Ecol. Appl. 2017, 27, 662–668. [Google Scholar] [CrossRef] [Green Version]
- Viglizzo, E.F.; Ricard, M.F.; Taboada, M.A.; Vázquez-Amábile, G. Reassessing the Role of Grazing Lands in Carbon-Balance Estimations: Meta-Analysis and Review. Sci. Total Environ. 2019, 661, 531–542. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Chabbi, A.; Rumpel, C.; Hagedorn, F.; Schrumpf, M.; Baveye, P.C. Editorial: Carbon Storage in Agricultural and Forest Soils. Front. Environ. Sci. 2022, 10, 848572. [Google Scholar] [CrossRef]
- Conant, R.T.; Paustian, K.; Elliott, E.T. Grassland Management and Conversion into Grassland: Effects on Soil Carbon. Ecol. Appl. 2001, 11, 343–355. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Bork, E.W.; Richter, G.M.; Chen, C.; Hussain Shah, S.H.; Mezbahuddin, S. Effects of Grazing Management on Spatio-Temporal Heterogeneity of Soil Carbon and Greenhouse Gas Emissions of Grasslands and Rangelands: Monitoring, Assessment and Scaling-Up. J. Clean. Prod. 2021, 288, 125737. [Google Scholar] [CrossRef]
- Lin, D.; McCulley, R.L.; Nelson, J.A.; Jacobsen, K.L.; Zhang, D. Time in Pasture Rotation Alters Soil Microbial Community Composition and Function and Increases Carbon Sequestration Potential in a Temperate Agroecosystem. Sci. Total Environ. 2020, 698, 134233. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Eisenhauer, N.; Sierra, C.A.; Bessler, H.; Engels, C.; Griffiths, R.I.; Mellado-Vázquez, P.G.; Malik, A.A.; Roy, J.; Scheu, S.; et al. Plant Diversity Increases Soil Microbial Activity and Soil Carbon Storage. Nat. Commun. 2015, 6, 6707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neal, A.L.; Bacq-Labreuil, A.; Zhang, X.; Clark, I.M.; Coleman, K.; Mooney, S.J.; Ritz, K.; Crawford, J.W. Soil as an Extended Composite Phenotype of the Microbial Metagenome. Sci. Rep. 2020, 10, 10649. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.G. Dos Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasilia, Brazil, 2018; ISBN 978-85-7035-800-4. [Google Scholar]
- Zanella, P.G.; Junior, L.H.P.D.G.; Pinto, C.E.; Baldissera, T.C.; Werner, S.S.; Garagorry, F.C.; Jaurena, M.; Lattanzi, F.A.; Sbrissia, A.F. Grazing Intensity Drives Plant Diversity but Does Not Affect Forage Production in a Natural Grassland Dominated by the Tussock-Forming Grass Andropogon Lateralis Nees. Sci. Rep. 2021, 11, 16744. [Google Scholar] [CrossRef]
- Giustina Junior, L.H.P.D.; Zanella, P.G.; Baldissera, T.C.; Pinto, C.E.; Garagorry, F.C.; Sbrissia, A.F. Grazing Height Management Does Not Change the Persistence Pathway of Andropogon Lateralis in a Natural Pasture. Pesqui. Agropecu. Bras. 2019, 54, e00405. [Google Scholar] [CrossRef] [Green Version]
- Gee, G.W.; Bauder, J.W. Particle-Size Analysis. In Methods of Soil Analysis Part 1, 5th ed.; Klute, A., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Almeida, B.G.; Viana, J.H.M.; Teixeira, W.G.; Donagemma, G.K. Densidade do Solo. In Manual de Métodos de Análise de Solo; Teixeira, P.C., Donagemma, G.K., Fontana, A., Teixeira, W.G., Eds.; EMBRAPA: Brasilia, Brazil, 2017; pp. 65–75. [Google Scholar]
- Yeomans, J.C.; Bremner, J.M. A Rapid and Precise Method for Routine Determination of Organic Carbon in Soil. Commun. Soil Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- Ellert, B.H.; Bettany, J.R. Calculation of Organic Matter and Nutrients Stored in Soils under Contrasting Management Regimes. Can. J. Soil Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Haydock, K.; Shaw, N. The Comparative Yield Method for Estimating Dry Matter Yield of Pasture. Aust. J. Exp. Agric. 1975, 15, 663. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 7 February 2023).
- Veloso, M.G.; Angers, D.A.; Tiecher, T.; Giacomini, S.; Dieckow, J.; Bayer, C. High Carbon Storage in a Previously Degraded Subtropical Soil under No-Tillage with Legume Cover Crops. Agric. Ecosyst. Environ. 2018, 268, 15–23. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Stuedemann, J.A. Soil-Profile Organic Carbon and Total Nitrogen during 12 Years of Pasture Management in the Southern Piedmont USA. Agric. Ecosyst. Environ. 2009, 129, 28–36. [Google Scholar] [CrossRef]
- Conte, O.; Flores JP, C.; Cassol, L.C.; Anghinoni, I.; Carvalho PC, D.F.; Levien, R.; Wesp CD, L. Evolução de Atributos Físicos de Solo Em Sistema de Integração Lavoura-Pecuária. Pesqui. Agropecuária Bras. 2011, 46, 1301–1309. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, R.; Berhongaray, G.; Gimenez, A. Are Grassland Soils of the Pampas Sequestering Carbon? Sci. Total Environ. 2021, 763, 142978. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, E.L.; Silva, M.L.N.; Silva, C.A.; Curi, N.; Freitas, D.A.F. de Estoques de Carbono e Nitrogênio Em Solo Sob Florestas Nativas e Pastagens No Bioma Pantanal. Pesqui. Agropecuária Bras. 2010, 45, 1028–1035. [Google Scholar] [CrossRef]
- Fidalgo EC, C.; Benites VD, M.; Machado PD, A.; Madari, B.E.; Coelho, M.R.; de Moura, I.B.; de Lima, C.X. Estoque de Carbono nos Solos do Brasil. Bol. Pesqui. E Desenvolv. 2007, 121, 1–26. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Lupatini, M.; Suleiman, A.K.A.; Jacques, R.J.S.; Lemos, L.N.; Pylro, V.S.; Van Veen, J.A.; Kuramae, E.E.; Roesch, L.F.W. Moisture Is More Important than Temperature for Assembly of Both Potentially Active and Whole Prokaryotic Communities in Subtropical Grassland. Microb. Ecol. 2019, 77, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Reichert, J.M. Mecância do Solo. In Física do Solo; Van Lier, Q.J.: Viçosa, Brazil, 2016; pp. 29–102. [Google Scholar]
- Hewins, D.B.; Lyseng, M.P.; Schoderbek, D.F.; Alexander, M.; Willms, W.D.; Carlyle, C.N.; Chang, S.X.; Bork, E.W. Grazing and Climate Effects on Soil Organic Carbon Concentration and Particle-Size Association in Northern Grasslands. Sci. Rep. 2018, 8, 1336. [Google Scholar] [CrossRef] [Green Version]
- Lal, R.; Bruce, J.P. The Potential of World Cropland Soils to Sequester C and Mitigate the Greenhouse Effect. Environ. Sci. Policy 1999, 2, 177–185. [Google Scholar] [CrossRef]
- Chivenge, P.; Murwira, H.; Giller, K.; Mapfumo, P.; Six, J. Long-Term Impact of Reduced Tillage and Residue Management on Soil Carbon Stabilization: Implications for Conservation Agriculture on Contrasting Soils. Soil Tillage Res. 2007, 94, 328–337. [Google Scholar] [CrossRef]
- da Silva, S.C.; Sbrissia, A.F.; Pereira, L.E.T. Ecophysiology of C4 Forage Grasses—Understanding Plant Growth for Optimising Their Use and Management. Agriculture 2015, 5, 598–625. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, K.L.; McKenzie, B.M. Grazing Effects on Soil Physical Properties and the Consequences for Pastures: A Review. Aust. J. Exp. Agric. 2001, 41, 1231. [Google Scholar] [CrossRef]
- Evrendilek, F.; Celik, I.; Kilic, S. Changes in Soil Organic Carbon and Other Physical Soil Properties along Adjacent Mediterranean Forest, Grassland, and Cropland Ecosystems in Turkey. J. Arid Environ. 2004, 59, 743–752. [Google Scholar] [CrossRef]
- Greenwood, K.L.; MacLeod, D.A.; Hutchinson, K.J. Long-Term Stocking Rate Effects on Soil Physical Properties. Aust. J. Exp. Agric. 1997, 37, 413. [Google Scholar] [CrossRef]
- Ribeiro, R.H.; Ibarr, M.A.; Besen, M.R.; Bayer, C.; Piva, J.T. Managing Grazing Intensity to Reduce the Global Warming Potential in Integrated Crop-Livestock Systems under No-till Agriculture. Eur. J. Soil Sci. 2019, 71, 1120–1131. [Google Scholar] [CrossRef]
- Rauber, L.R.; Sequinatto, L.; Kaiser, D.R.; Bertol, I.; Baldissera, T.C.; Garagorry, F.C.; Sbrissia, A.F.; Pereira, G.E.; Pinto, C.E. Soil Physical Properties in a Natural Highland Grassland in Southern Brazil Subjected to a Range of Grazing Heights. Agric. Ecosyst. Environ. 2021, 319, 107515. [Google Scholar] [CrossRef]
System | pH-H2O | H + Al | Base Saturation (%) | Ca/Mg | P Mehlich−1 (mg dm–3) | K Mehlich−1 (mg dm–3) | Ca (cmolc dm–3) | Mg (cmolc dm–3) | Al+3 (cmolc dm–3) | CEC (cmolc dm–3) |
---|---|---|---|---|---|---|---|---|---|---|
NG | 5.29 | 11.39 | 14.76 | 0.68 | 10 | 0.33 | 0.66 | 0.92 | 1.42 | 3.33 |
ING | 6.20 | 2.72 | 85.30 | 1.34 | 18 | 0.38 | 9.01 | 6.80 | 0.00 | 16.18 |
PP | 6.13 | 2.58 | 83.12 | 1.67 | 16 | 0.31 | 7.85 | 4.77 | 0.00 | 12.93 |
AP | 6.16 | 3.16 | 81.53 | 1.49 | 16 | 0.31 | 8.13 | 5.64 | 0.00 | 14.08 |
System | Sand | Silt | Clay |
---|---|---|---|
% | |||
0–10 cm layer | |||
NG | 34.96 ± 2.50 | 28.38 ± 5.89 | 36.65 ± 4.37 |
ING | 29.46 ± 7.43 | 36.03 ± 4.48 | 34.50 ± 3.18 |
PP | 42.90 ± 6.47 | 31.06 ± 7.37 | 26.04 ± 1.16 |
AP | 32.82 ± 8.96 | 33.08 ± 5.87 | 34.10 ± 5.68 |
10–20 cm layer | |||
NG | 33.02 ± 7.03 | 36.67 ± 1.97 | 30.31 ± 7.02 |
ING | 35.14 ± 10.83 | 35.83 ± 11.03 | 29.03 ± 5.99 |
PP | 43.34 ± 1.73 | 33.03 ± 1.18 | 23.63 ± 2.35 |
AP | 29.21 ± 8.55 | 38.59 ± 7.89 | 32.20 ± 1.24 |
20–40 cm layer | |||
NG | 31.26 ± 4.56 | 34.53 ± 6.23 a | 34.21 ± 5.91 |
ING | 28.02 ± 7.28 | 37.00 ± 5.05 a | 34.98 ± 4.58 |
PP | 38.21 ± 11.20 | 25.09 ± 4.32 b | 36.67 ± 7.20 |
AP | 33.89 ± 7.29 | 29.08 ± 4.86 ab | 37.03 ± 2.60 |
40–60 cm layer | |||
NG | 30.91 ± 5.91 | 34.81 ± 6.23 | 34.28 ± 5.91 |
ING | 33.13 ± 9.32 | 35.35 ± 4.09 | 31.52 ± 5.09 |
PP | 40.10 ± 11.71 | 34.01 ± 6.21 | 25.89 ± 6.65 |
AP | 28.68 ± 9.25 | 34.43 ± 6.62 | 36.89 ± 3.41 |
60–100 cm layer | |||
NG | 29.89 ± 5.91 | 34.59 ± 5.29 | 35.52 ± 1.46 |
ING | 27.28 ± 8.82 | 39.27 ± 6.06 | 33.45 ± 3.94 |
PP | 36.86 ± 10.07 | 28.30 ± 4.71 | 34.84 ± 7.70 |
AP | 31.74 ± 7.24 | 27.90 ± 4.07 | 40.36 ± 3.60 |
Parameter | NG | ING | PP | AP |
---|---|---|---|---|
Roots | ||||
Volume (cm3) | 2.899.22 ± 649.08 a | 1.476.61 ± 522.59 b | 1.522.58 ± 534.58 b | 3.416.10 ± 989.65 a |
Dry matter density (g/m2) | 292.44 ± 51.63 a | 134.34 ± 57.76 b | 162.08 ± 70.39 b | 65.27 ± 19.89 c |
Shoot | ||||
Forage accumulation (kg MS·ha−1·year) | 6.615 ± 1468 c | 9.552 ± 563 b | 13.044 ± 450 a | 9.771 ± 805 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camacho, P.A.G.; Pinto, C.E.; Lopes, C.F.; Tomazelli, D.; Werner, S.S.; Garagorry, F.C.; Baldissera, T.C.; Schirmann, J.; Sbrissia, A.F. Intensification of Pasture-Based Animal Production System Has Little Short-Term Effect on Soil Carbon Stock in the Southern Brazilian Highland. Agronomy 2023, 13, 850. https://doi.org/10.3390/agronomy13030850
Camacho PAG, Pinto CE, Lopes CF, Tomazelli D, Werner SS, Garagorry FC, Baldissera TC, Schirmann J, Sbrissia AF. Intensification of Pasture-Based Animal Production System Has Little Short-Term Effect on Soil Carbon Stock in the Southern Brazilian Highland. Agronomy. 2023; 13(3):850. https://doi.org/10.3390/agronomy13030850
Chicago/Turabian StyleCamacho, Pedro Antonio Garzón, Cassiano Eduardo Pinto, Cássio Felipe Lopes, Daniela Tomazelli, Simone Silmara Werner, Fábio Cervo Garagorry, Tiago Celso Baldissera, Janquieli Schirmann, and André Fischer Sbrissia. 2023. "Intensification of Pasture-Based Animal Production System Has Little Short-Term Effect on Soil Carbon Stock in the Southern Brazilian Highland" Agronomy 13, no. 3: 850. https://doi.org/10.3390/agronomy13030850
APA StyleCamacho, P. A. G., Pinto, C. E., Lopes, C. F., Tomazelli, D., Werner, S. S., Garagorry, F. C., Baldissera, T. C., Schirmann, J., & Sbrissia, A. F. (2023). Intensification of Pasture-Based Animal Production System Has Little Short-Term Effect on Soil Carbon Stock in the Southern Brazilian Highland. Agronomy, 13(3), 850. https://doi.org/10.3390/agronomy13030850