Physiological, Biochemical, Anatomical, and Agronomic Responses of Sesame to Exogenously Applied Polyamines under Different Irrigation Regimes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Agricultural Treatments
2.2. Plant Material and Irrigation Levels
2.3. Foliar Application
2.4. Determination of Physio-Chemical Constituents
2.5. Determination of Antioxidants Enzymatic Activities
2.6. Anatomical Studies
2.7. Agronomic Traits and Crop Water Productivity (CWP)
2.8. Statistical Analysis
3. Results
3.1. Photosynthetic Pigments and Activities
3.2. Cell and Membrane Integrity, Nutrient Content, and Oxidative Stress Markers
3.3. Osmoprotectants and Antioxidative Status
3.4. Leaf Anatomy
3.5. Agronomic Performance and CWP
3.6. Relationships among Evaluated Treatments
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borchani, C.; Besbes, S.; Blecker, C.; Attia, H. Chemical characteristics and oxidative stability of sesame seed, sesame paste, and olive oils. J. Agric. Sci. Technol. 2010, 12, 585–596. [Google Scholar]
- Anilakumar, K.R.; Pal, A.; Khanum, F.; Bawa, A.S. Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds-an overview. Agric. Conspec. Sci. 2010, 75, 159–168. [Google Scholar]
- Li, D.; Dossa, K.; Zhang, Y.; Wei, X.; Wang, L.; Zhang, Y.; Liu, A.; Zhou, R.; Zhang, X. GWAS uncovers differential genetic bases for drought and salt tolerances in sesame at the germination stage. Genes 2018, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Gharib, M.A.A.H.; Qabil, N.; Salem, A.H.; Ali, M.M.A.; Awaad, H.A.; Mansour, E. Characterization of wheat landraces and commercial cultivars based on morpho-phenological and agronomic traits. Cereal Res. Commun. 2020, 49, 149–159. [Google Scholar] [CrossRef]
- Gracia, M.P.; Mansour, E.; Casas, A.M.; Lasa, J.M.; Medina, B.; Molina-Cano, J.L.; Moralejo, M.A.; López, A.; López-Fuster, P.; Escribano, J.; et al. Progress in the Spanish national barley breeding program. Span. J. Agric. Res. 2012, 10, 741. [Google Scholar] [CrossRef] [Green Version]
- El-Sanatawy, A.M.; El-Kholy, A.S.M.; Ali, M.M.A.; Awad, M.F.; Mansour, E. Maize seedling establishment, grain yield and crop water productivity response to seed priming and irrigation management in a mediterranean arid environment. Agronomy 2021, 11, 756. [Google Scholar] [CrossRef]
- Mansour, E.; Moustafa, E.S.A.; El-Naggar, N.Z.A.; Abdelsalam, A.; Igartua, E. Grain yield stability of high-yielding barley genotypes under Egyptian conditions for enhancing resilience to climate change. Crop Pasture Sci. 2018, 69, 681–690. [Google Scholar] [CrossRef]
- Megahed, E.M.; Awaad, H.A.; Ramadan, I.E.; Abdul-Hamid, M.I.; Sweelam, A.A.; El-Naggar, D.R.; Mansour, E. Assessing performance and stability of yellow rust resistance, heat tolerance, and agronomic performance in diverse bread wheat genotypes for enhancing resilience to climate change under Egyptian conditions. Front. Plant Sci. 2022, 13, 1014824. [Google Scholar] [CrossRef] [PubMed]
- Salman, S.A.; Shahid, S.; Sharafati, A.; Salem, G.S.A.; Bakar, A.A.; Farooque, A.A.; Chung, E.-S.; Ahmed, Y.A.; Mikhail, B.; Yaseen, Z.M. Projection of agricultural water stress for climate change scenarios: A regional case study of Iraq. Agriculture 2021, 11, 1288. [Google Scholar] [CrossRef]
- Kamara, M.M.; Ibrahim, K.M.; Mansour, E.; Kheir, A.M.S.; Germoush, M.O.; Abd El-Moneim, D.; Motawei, M.I.; Alhusays, A.Y.; Farid, M.A.; Rehan, M. Combining ability and gene action controlling grain yield and its related traits in bread wheat under heat stress and normal conditions. Agronomy 2021, 11, 1450. [Google Scholar] [CrossRef]
- Mansour, E.; Mahgoub, H.A.M.; Mahgoub, S.A.; El-Sobky, E.-S.E.A.; Abdul-Hamid, M.I.; Kamara, M.M.; AbuQamar, S.F.; El-Tarabily, K.A.; Desoky, E.-S.M. Enhancement of drought tolerance in diverse Vicia faba cultivars by inoculation with plant growth-promoting rhizobacteria under newly reclaimed soil conditions. Sci. Rep. 2021, 11, 24142. [Google Scholar] [CrossRef]
- Desoky, E.-S.M.; Mansour, E.; Ali, M.M.A.; Yasin, M.A.T.; Abdul-Hamid, M.I.E.; Rady, M.M.; Ali, E.F. Exogenously used 24-epibrassinolide promotes drought tolerance in maize hybrids by improving plant and water productivity in an arid environment. Plants 2021, 10, 354. [Google Scholar] [CrossRef]
- Mannan, M.A.; Tithi, M.A.; Islam, M.R.; Al Mamun, M.A.; Mia, S.; Rahman, M.Z.; Awad, M.F.; ElSayed, A.I.; Mansour, E.; Hossain, M.S. Soil and foliar applications of zinc sulfate and iron sulfate alleviate the destructive impacts of drought stress in wheat. Cereal Res. Commun. 2022, 50, 1279–1289. [Google Scholar] [CrossRef]
- Selem, E.; Hassan, A.A.S.A.; Awad, M.F.; Mansour, E.; Desoky, E.-S.M. Impact of exogenously sprayed antioxidants on physio-biochemical, agronomic, and quality parameters of potato in salt-affected soil. Plants 2022, 11, 210. [Google Scholar] [CrossRef]
- Desoky, E.-S.M.; Merwad, A.-R.M.A.; Abo El-Maati, M.F.; Mansour, E.; Arnaout, S.M.A.I.; Awad, M.F.; Ramadan, M.F.; Ibrahim, S.A. Physiological and biochemical mechanisms of exogenously applied selenium for alleviating destructive impacts induced by salinity stress in bread wheat. Agronomy 2021, 11, 926. [Google Scholar] [CrossRef]
- Habibullah, M.; Sarkar, S.; Islam, M.M.; Ahmed, K.U.; Rahman, M.Z.; Awad, M.F.; ElSayed, A.I.; Mansour, E.; Hossain, M.S. Assessing the response of diverse sesame genotypes to waterlogging durations at different plant growth stages. Plants 2021, 10, 2294. [Google Scholar] [CrossRef] [PubMed]
- El-Hady, A.; Mohamed, A.; Abd-Elkrem, Y.M.; Rady, M.O.; Mansour, E.; El-Tarabily, K.A.; AbuQamar, S.F.; El-Temsah, M.E. Impact on plant productivity under low fertility sandy soil in arid environment by revitalization of lentil roots. Front. Plant Sci. 2022, 13, 937073. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef] [PubMed]
- El-Sanatawy, A.M.; Ash-Shormillesy, S.M.A.I.; Qabil, N.; Awad, M.F.; Mansour, E. Seed halo-priming improves seedling vigor, grain yield, and water use efficiency of maize under varying irrigation regimes. Water 2021, 13, 2115. [Google Scholar] [CrossRef]
- ElShamey, E.A.Z.; Hamad, H.S.; Alshallash, K.S.; Alghuthaymi, M.A.; Ghazy, M.I.; Sakran, R.M.; Selim, M.E.; ElSayed, M.A.A.; Abdelmegeed, T.M.; Okasha, S.A.; et al. Growth regulators improve outcrossing rate of diverse rice cytoplasmic male sterile lines through affecting floral traits. Plants 2022, 11, 1291. [Google Scholar] [CrossRef]
- Ali, M.M.; Mansour, E.; Awaad, H.A. Drought tolerance in some field crops: State of the art review. In Mitigating Environmental Stresses for Agricultural Sustainability in Egypt; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 17–62. [Google Scholar]
- Awaad, H.A.; Mansour, E.; Akrami, M.; Fath, H.E.S.; Javadi, A.A.; Negm, A. Availability and feasibility of water desalination as a non-conventional resource for agricultural irrigation in the mena region: A review. Sustainability 2020, 12, 7592. [Google Scholar] [CrossRef]
- Ullah, H.; Ahmed, S.F.; Santiago-Arenas, R.; Himanshu, S.K.; Mansour, E.; Cha-um, S.; Datta, A. Tolerance mechanism and management concepts of iron toxicity in rice: A critical review. Adv. Agron. 2023, 17, 215–257. [Google Scholar]
- Parvaiz, A.; ul Khalid, R.H.; Ashwani, K.; Muhammad, A.; Nudrat, A.A. Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr. J. Biotechnol. 2012, 11, 2694–2703. [Google Scholar] [CrossRef]
- Liu, J.-H.; Kitashiba, H.; Wang, J.; Ban, Y.; Moriguchi, T. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol. 2007, 24, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.S.; Tuteja, N. Polyamines and abiotic stress tolerance in plants. Plant Signal. Behav. 2010, 5, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, G.; Liu, L.; Zhao, K.; Wu, L.; Hu, C.; Di, H. The role of calcium in regulating alginate-derived oligosaccharides in nitrogen metabolism of Brassica campestris L. var. utilis Tsen et Lee. Plant Growth Regul. 2011, 64, 193–202. [Google Scholar] [CrossRef]
- Silveira, V.; de Vita, A.M.; Macedo, A.F.; Dias, M.F.R.; Floh, E.I.S.; Santa-Catarina, C. Morphological and polyamine content changes in embryogenic and non-embryogenic callus of sugarcane. Plant Cell Tissue Organ Cult. 2013, 114, 351–364. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Liu, K.; Wang, Z.; Liu, L. Involvement of polyamines in the drought resistance of rice. J. Exp. Bot. 2007, 58, 1545–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagor, G.; Berberich, T.; Takahashi, Y.; Niitsu, M.; Kusano, T. The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes. Transgenic Res. 2013, 22, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Nayyar, H.; Satwinder, K.; Kumar, S.; Singh, K.; Dhir, K. Involvement of polyamines in the contrasting sensitivity of chickpea (Cicer arietinum L.) and soybean (Glycine max (L.) Merrill.) to water deficit stress. Bot. Bull. Acad. 2005, 46, 333–338. [Google Scholar]
- Farooq, M.; Basra, S.M.; Hussain, M.; Rehman, H.; Saleem, B. Incorporation of polyamines in the priming media enhances the germination and early seedling growth in hybrid sunflower (Helianthus annuus L.). Int. J. Agric. Biol. 2007, 9, 868–872. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome 1998, 300, D05109. [Google Scholar]
- Liu, Y.; Liang, H.; Lv, X.; Liu, D.; Wen, X.; Liao, Y. Effect of polyamines on the grain filling of wheat under drought stress. Plant Physiol. Biochem. 2016, 100, 113–129. [Google Scholar] [CrossRef] [PubMed]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Barrs, H.; Weatherley, P. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 1962, 15, 413–428. [Google Scholar] [CrossRef] [Green Version]
- Premachandra, G.S.; Saneoka, H.; Ogata, S. Cell membrane stability, an indicator of drought tolerance, as affected by applied nitrogen in soyabean. J. Agric. Sci. 1990, 115, 63–66. [Google Scholar] [CrossRef]
- Farshadfar, E.; Zamani, M.; Motallebi, M.; Imamjomeh, A. Selection for drought resistance in chickpea lines. Iran Agric. Res. 2001, 32, 65–77. [Google Scholar]
- Chapman, H.; Pratt, F. Determination of Minerals by Titration Method: Methods of Analysis for Soils, Plants and Water; Agriculture Division, California University: Oakland, CA, USA, 1982; pp. 169–170. [Google Scholar]
- Watanabe, F.; Olsen, S. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. J. 1965, 29, 677–678. [Google Scholar] [CrossRef]
- Lachica, M.; Aguilar, A.; Yañez, J. Foliar analysis: Analytical methods used in the Estacion Experimental del Zaidin. An Edafol Agribiol 1973, 32, 1033–1047. [Google Scholar]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, C.Y. Selection for drought and heat tolerance in grain sorghum. In Stress Physiology in Crop Plants; John Wiley & Sons: New York, NY, USA, 1979; pp. 263–281. [Google Scholar]
- Kubiś, J. Exogenous spermidine differentially alters activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water-stressed cucumber leaves. J. Plant Physiol. 2008, 165, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Choudhuri, M. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol. Plant. 1983, 58, 166–170. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Irigoyen, J.; Einerich, D.; Sánchez-Díaz, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant. 1992, 84, 55–60. [Google Scholar] [CrossRef]
- Ching, L.S.; Mohamed, S. Alpha-tocopherol content in 62 edible tropical plants. J. Agric. Food Chem. 2001, 49, 3101–3105. [Google Scholar] [CrossRef]
- Konings, E.J.; Roomans, H.H.; Beljaars, P.R. Liquid chromatographic determination of tocopherols and tocotrienols in margarine, infant foods, and vegetables. J. AOAC Int. 1996, 79, 902–906. [Google Scholar] [CrossRef] [Green Version]
- Kampfenkel, K.; Vanmontagu, M.; Inzé, D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 1995, 225, 165–167. [Google Scholar] [CrossRef]
- Griffith, O.W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 1980, 106, 207–212. [Google Scholar] [CrossRef]
- Vitória, A.P.; Lea, P.J.; Azevedo, R.A. Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 2001, 57, 701–710. [Google Scholar] [CrossRef]
- Chance, B. Assay of catalase and peroxidase. Methods Enzymol. 1955, 2, 765–775. [Google Scholar]
- Thomas, R.L.; Jen, J.J.; Morr, C.V. Changes in soluble and bound peroxidase-IAA oxidase during tomato fruit development. J. Food Sci. 1982, 47, 158–161. [Google Scholar] [CrossRef]
- Fielding, J.L.; Hall, J. A biochemical and cytochemical study of peroxidase activity in roots of Pisum sativum: II. Distribution of enzymes in relation to root development. J. Exp. Bot. 1978, 29, 983–991. [Google Scholar] [CrossRef]
- Sairam, R.K.; Rao, K.V.; Srivastava, G. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 2002, 163, 1037–1046. [Google Scholar] [CrossRef]
- Rao, M.V.; Paliyath, G.; Ormrod, D.P. Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 1996, 110, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Paolillo, D.J., Jr.; Zobel, R.W. The formation of adventitious roots on root axes is a widespread occurrence in field-grown dicotyledonous plants. Am. J. Bot. 2002, 89, 1361–1372. [Google Scholar] [CrossRef]
- Johansen, D.A. Plant Microtechnique; McGraw-Hill Book Company, Inc: London, UK, 1940; 530p. [Google Scholar]
- Helrich, K. Official Methods of analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Arlington, VA, USA, 1990; pp. 770–772. [Google Scholar]
- Fernández, J.; Alcon, F.; Diaz-Espejo, A.; Hernandez-Santana, V.; Cuevas, M. Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard. Agric. Water Manag. 2020, 237, 106074. [Google Scholar] [CrossRef]
- Huang, X.; Chen, X. A regional eco-compensation assessment framework for blue water scarcity based on the spatial effects of socio-economic factors. J. Clean. Prod. 2022, 368, 133171. [Google Scholar] [CrossRef]
- Kamara, M.M.; Rehan, M.; Mohamed, A.M.; El Mantawy, R.F.; Kheir, A.M.S.; Abd El-Moneim, D.; Safhi, F.A.; Alshamrani, S.M.; Hafez, E.M.; Behiry, S.I.; et al. Genetic potential and inheritance patterns of physiological, agronomic and quality traits in bread wheat under normal and water deficit conditions. Plants 2022, 11, 952. [Google Scholar] [CrossRef] [PubMed]
- Sakran, R.M.; Ghazy, M.I.; Rehan, M.; Alsohim, A.S.; Mansour, E. Molecular genetic diversity and combining ability for some physiological and agronomic traits in rice under well-watered and water-deficit conditions. Plants 2022, 11, 702. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Mageed, T.A.; Belal, E.E.; Rady, M.O.A.; Abd El-Mageed, S.A.; Mansour, E.; Awad, M.F.; Semida, W.M. Acidified biochar as a soil amendment to drought stressed (Vicia faba L.) plants: Influences on growth and productivity, nutrient status, and water use efficiency. Agronomy 2021, 11, 1290. [Google Scholar] [CrossRef]
- Ostadi, A.; Javanmard, A.; Amani Machiani, M.; Kakaei, K. Optimizing antioxidant activity and phytochemical properties of peppermint (Mentha piperita L.) by integrative application of biofertilizer and stress-modulating nanoparticles under drought stress conditions. Plants 2023, 12, 151. [Google Scholar] [CrossRef]
- Guidi, L.; Lo Piccolo, E.; Landi, M. Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? Front. Plant Sci. 2019, 10, 174. [Google Scholar] [CrossRef]
- Rady, M.M.; Boriek, S.H.; Abd El-Mageed, T.A.; Seif El-Yazal, M.A.; Ali, E.F.; Hassan, F.A.; Abdelkhalik, A. Exogenous gibberellic acid or dilute bee honey boosts drought stress tolerance in Vicia faba by rebalancing osmoprotectants, antioxidants, nutrients, and phytohormones. Plants 2021, 10, 748. [Google Scholar] [CrossRef] [PubMed]
- Gimenez, C.; Mitchell, V.J.; Lawlor, D.W. Regulation of photosynthetic rate of two sunflower hybrids under water stress. Plant Physiol. 1992, 98, 516–524. [Google Scholar] [CrossRef] [Green Version]
- Yokota, A.; Kawasaki, S.; Iwano, M.; Nakamura, C.; Miyake, C.; Akashi, K. Citrulline and DRIP-1 protein (ArgE homologue) in drought tolerance of wild watermelon. Ann. Bot. 2002, 89, 825–832. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Wahid, A.; Lee, D.-J. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol. Plant. 2009, 31, 937–945. [Google Scholar] [CrossRef]
- Kusano, T.; Berberich, T.; Tateda, C.; Takahashi, Y. Polyamines: Essential factors for growth and survival. Planta 2008, 228, 367–381. [Google Scholar] [CrossRef]
- ElSayed, A.I.; Mohamed, A.H.; Rafudeen, M.S.; Omar, A.A.; Awad, M.F.; Mansour, E. Polyamines mitigate the destructive impacts of salinity stress by enhancing photosynthetic capacity, antioxidant defense system and upregulation of calvin cycle-related genes in rapeseed (Brassica napus L.). Saudi J. Biol. Sci. 2022, 29, 3675–3686. [Google Scholar] [CrossRef] [PubMed]
- Ebeed, H.T.; Hassan, N.M.; Aljarani, A.M. Exogenous applications of polyamines modulate drought responses in wheat through osmolytes accumulation, increasing free polyamine levels and regulation of polyamine biosynthetic genes. Plant Physiol. Biochem. 2017, 118, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Groppa, M.; Ianuzzo, M.; Tomaro, M.; Benavides, M. Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids 2007, 32, 265–275. [Google Scholar] [CrossRef]
- Minocha, R.; Majumdar, R.; Minocha, S.C. Polyamines and abiotic stress in plants: A complex relationship. Front. Plant Sci. 2014, 5, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoshbakht, D.; Asghari, M.; Haghighi, M. Influence of foliar application of polyamines on growth, gas-exchange characteristics, and chlorophyll fluorescence in Bakraii citrus under saline conditions. Photosynthetica 2018, 56, 731–742. [Google Scholar] [CrossRef]
- Nahar, K.; Hasanuzzaman, M.; Rahman, A.; Alam, M.M.; Mahmud, J.-A.; Suzuki, T.; Fujita, M. Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems. Front. Plant Sci. 2016, 7, 1104. [Google Scholar] [CrossRef] [PubMed]
- Alcázar, R.; Bueno, M.; Tiburcio, A.F. Polyamines: Small amines with large effects on plant abiotic stress tolerance. Cells 2020, 9, 2373. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z.; Waraich, E.A.; Akhtar, S.; Anjum, S.; Ahmad, T.; Mahboob, W.; Hafeez, O.B.A.; Tapera, T.; Labuschagne, M.; Rizwan, M. Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiol. Plant. 2018, 40, 80. [Google Scholar] [CrossRef]
- Yan, W.; Zhong, Y.; Shangguan, Z. A meta-analysis of leaf gas exchange and water status responses to drought. Sci. Rep. 2016, 6, 20917. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Front. Plant Sci. 2020, 11, 559876. [Google Scholar] [CrossRef]
- Takahama, U.; Oniki, T. A peroxidase/phenolics/ascorbate system can scavenge hydrogen peroxide in plant cells. Physiol. Plant. 1997, 101, 845–852. [Google Scholar] [CrossRef]
- Desoky, E.-S.M.; Mansour, E.; El-Sobky, E.-S.E.A.; Abdul-Hamid, M.I.; Taha, T.F.; Elakkad, H.A.; Arnaout, S.M.A.I.; Eid, R.S.M.; El-Tarabily, K.A.; Yasin, M.A.T. Physio-biochemical and agronomic responses of faba beans to exogenously applied nano-silicon under drought stress conditions. Front. Plant Sci. 2021, 12, 637783. [Google Scholar] [CrossRef]
Studied Factor | Chlorophyll a (mg g−1 FW) | Chlorophyll b (mg g−1 FW) | Carotenoids (mg g−1 FW) | Net Photosynthetic Rate (µmol CO2 m−2 s−1) | Transpiration Rate (mmol H2O m−2 s−1) | Stomatal Conductance (mmol H2O m−2 s−1) | |
---|---|---|---|---|---|---|---|
Irrigation (I) | |||||||
FI | 1.826 ± 0.032 a | 0.735 ± 0.029 a | 0.914 ± 0.004 a | 13.13 ± 0.12 a | 6.95 ± 0.05 a | 0.625 ± 0.008 a | |
MD | 1.403 ± 0.036 b | 0.574 ± 0.033 b | 0.891 ± 0.005 b | 10.60 ± 0.17 b | 5.68 ± 0.10 b | 0.501 ± 0.011 b | |
SD | 1.048 ± 0.041 c | 0.472 ± 0.034 c | 0.862 ± 0.004 c | 8.38 ± 0.23 c | 4.19 ± 0.17 c | 0.370 ± 0.009 c | |
Foliar (F) | |||||||
TW | 1.25 ± 0.092 d | 0.546 ± 0.027 d | 0.878 ± 0.007 d | 9.94 ± 0.81 d | 5.27 ± 0.42 d | 0.458 ± 0.038 d | |
Spm | 1.39 ± 0.081 c | 0.573 ± 0.025 c | 0.886 ± 0.004 c | 10.53 ± 0.69c | 5.50 ± 0.40 c | 0.492 ± 0.035 c | |
Spd | 1.51 ± 0.052 b | 0.605 ± 0.032 b | 0.890 ± 0.005 b | 11.03 ± 0.64 b | 5.71 ± 0.39 b | 0.510 ± 0.039 b | |
Put | 1.55 ± 0.092 a | 0.651 ± 0.054 a | 0.901 ± 0.008 a | 11.32 ± 0.61 a | 5.94 ± 0.40 a | 0.534 ± 0.036 a | |
Interaction (I × F) | |||||||
FI | TW | 1.68 ± 0.012 c | 0.662 ± 0.004 d | 0.902 ± 0.005 d | 12.8 ± 0.058 d | 6.74 ± 0.016 d | 0.586 ± 0.04 d |
Spm | 1.80 ± 0.008 b | 0.707 ± 0.005 c | 0.910 ± 0.004 c | 13.0 ± 0.035 c | 6.86 ± 0.032 c | 0.623 ± 0.03 c | |
Spd | 1.84 ± 0.011 b | 0.752 ± 0.004 b | 0.916 ± 0.006 b | 13.2 ± 0.029 b | 6.97 ± 0.035 b | 0.636 ± 0.04 b | |
Put | 1.97 ± 0.009 a | 0.819 ± 0.007 a | 0.926 ± 0.003 a | 13.4 ± 0.035 a | 7.21 ± 0.041 a | 0.653 ± 0.04 a | |
MD | TW | 1.23 ± 0.012 g | 0.538 ± 0.003 h | 0.882 ± 0.005 h | 9.84 ± 0.026 h | 5.24 ± 0.039 h | 0.453 ± 0.02 h |
Spm | 1.39 ± 0.009 f | 0.556 ± 0.002 g | 0.890 ± 0.004 g | 10.3 ± 0.045 g | 5.50 ± 0.032 g | 0.486 ± 0.02 g | |
Spd | 1.44 ± 0.019 e | 0.586 ± 0.003 f | 0.893 ± 0.006 f | 10.9 ± 0.067 f | 5.81 ± 0.029 f | 0.516 ± 0.03 f | |
Put | 1.55 ± 0.006 d | 0.617 ± 0.005 e | 0.898 ± 0.005 e | 11.3 ± 0.033 e | 6.15 ± 0.034 e | 0.564 ± 0.04 e | |
SD | TW | 0.83 ± 0.002 j | 0.438 ± 0.002 l | 0.851 ± 0.007 l | 7.18 ± 0.028 l | 3.82 ± 0.011 l | 0.332 ± 0.01 k |
Spm | 0.98 ± 0.003 i | 0.456 ± 0.001 k | 0.857 ± 0.008 k | 8.25 ± 0.029 k | 4.13 ± 0.019 k | 0.366 ± 0.01 j | |
Spd | 1.13 ± 0.001 h | 0.478 ± 0.002 j | 0.862 ± 0.006 j | 8.91 ± 0.024 j | 4.34 ± 0.015 j | 0.376 ± 0.02 j | |
Put | 1.22 ± 0.002 g | 0.517 ± 0.003 i | 0.878 ± 0.007 i | 9.18 ± 0.035 i | 4.46 ± 0.017 i | 0.403 ± 0.02 i | |
ANOVA | df | p-value | |||||
I | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
F | 3 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
I × F | 6 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.004 |
Studied Factor | Relative Water Content (%) | Membrane Stability Index (%) | Excised leaf Water Retention (%) | Nitrogen (%) | Phosphorus (%) | Potassium (%) | |
---|---|---|---|---|---|---|---|
Irrigation (I) | |||||||
FI | 79.11 ± 0.52 a | 62.37 ± 0.72 a | 75.86 ± 0.51 a | 2.23 ± 0.08 a | 0.359 ± 0.027 a | 3.36 ± 0.09 a | |
MD | 72.06 ± 0.61 b | 54.36 ± 0.87 b | 66.66 ± 0.52 b | 1.78 ± 0.14 b | 0.262 ± 0.021 b | 2.77 ± 0.05 b | |
SD | 62.38 ± 0.86 c | 41.04 ± 1.11 c | 61.66 ± 0.55 c | 1.56 ± 0.07 c | 0.226 ± 0.008 c | 2.13 ± 0.06 c | |
Foliar (F) | |||||||
TW | 67.89 ± 1.73 d | 48.62 ± 2.14 d | 65.43 ± 1.11 d | 1.53 ± 0.12 d | 0.220 ± 0.016 d | 2.54 ± 0.20 c | |
Spm | 71.00 ± 1.36 c | 52.01 ± 2.16 c | 67.78 ± 1.08 c | 1.87 ± 0.09 c | 0.286 ± 0.017 c | 2.72 ± 0.17 b | |
Spd | 72.08 ± 1.45 b | 53.78 ± 2.02 b | 68.98 ± 1.09 b | 1.96 ± 0.12 b | 0.307 ± 0.026 b | 2.76 ± 0.18 b | |
Put | 73.76 ± 1.28 a | 55.94 ± 2.20 a | 70.03 ± 1.06 a | 2.06 ± 0.19 a | 0.316 ± 0.043 a | 3.00 ± 0.19 a | |
Interaction (I × F) | |||||||
FI | TW | 76.7 ± 0.36 d | 59.8 ± 0.45 d | 73.2 ± 0.42 d | 2.18 ± 0.010 d | 0.310 ± 0.001 d | 3.18 ± 0.02 bc |
Spm | 78.6 ± 0.38 c | 62.1 ± 0.53 c | 75.6 ± 0.45 c | 2.30 ± 0.012 c | 0.350 ± 0.002 c | 3.22 ± 0.04 bc | |
Spd | 79.7 ± 0.42 b | 63.0 ± 0.52 b | 76.7 ± 0.49 b | 2.44 ± 0.013 b | 0.411 ± 0.003 b | 3.37 ± 0.06 b | |
Put | 81.3 ± 0.45 a | 64.4 ± 0.57 a | 77.6 ± 0.53 a | 2.56 ± 0.014 a | 0.476 ± 0.002 a | 3.69 ± 0.02 a | |
MD | TW | 68.7 ± 0.31 g | 50.4 ± 0.49 h | 64.1 ± 0.39 h | 1.69 ± 0.007 h | 0.240 ± 0.001 h | 2.54 ± 0.01 ef |
Spm | 71.9 ± 0.41 f | 53.5 ± 0.46 g | 66.2 ± 0.38 g | 1.78 ± 0.008 g | 0.254 ± 0.002 g | 2.72 ± 0.02 de | |
Spd | 72.9 ± 0.45 f | 55.5 ± 0.48 f | 67.2 ± 0.34 f | 1.89 ± 0.006 f | 0.266 ± 0.001 f | 2.85 ± 0.04 d | |
Put | 74.3 ± 0.48 e | 57.9 ± 0.45 e | 68.9 ± 0.38 e | 2.02 ± 0.011 e | 0.281 ± 0.001 e | 2.97 ± 0.02 cd | |
SD | TW | 57.8 ± 0.26 k | 35.6 ± 0.31 l | 58.8 ± 0.29 k | 1.21 ± 0.005 l | 0.181 ± 0.007 l | 1.85 ± 0.03 h |
Spm | 62.3 ± 0.28 j | 40.4 ± 0.32 k | 61.0 ± 0.32 j | 1.27 ± 0.004 k | 0.189 ± 0.003 k | 2.06 ± 0.04 gh | |
Spd | 63.4 ± 0.24 i | 42.7 ± 0.29 j | 62.7 ± 0.39 i | 1.36 ± 0.003 j | 0.196 ± 0.008 j | 2.25 ± 0.03 fg | |
Put | 65.5 ± 0.32 h | 45.4 ± 0.28 i | 63.5 ± 0.38 h | 1.56 ± 0.002 i | 0.227 ± 0.001 i | 2.36 ± 0.02 f | |
ANOVA | df | p-value | |||||
I | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
F | 3 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
I × F | 6 | 0.002 | <0.001 | 0.008 | <0.001 | 0.006 | <0.001 |
Studied Factor | Malondialdehyde (µmol g−1 FW) | Electrolyte Leakage (%) | Superoxide (A580 g−1 FW) | Hydrogen Peroxide (µmol g−1 FW) | |
---|---|---|---|---|---|
Irrigation (I) | |||||
FI | 1.84 ± 0.08 c | 6.83 ± 0.32 c | 0.65 ± 0.010 c | 17.00 ± 0.45 c | |
MD | 3.12 ± 0.14 b | 11.56 ± 0.49 b | 0.83 ± 0.013 b | 34.27 ± 1.18 b | |
SD | 4.99 ± 0.24 a | 11.12 ± 0.26 a | 0.99 ± 0.018 a | 45.25 ± 1.56 a | |
Foliar (F) | |||||
TW | 4.14 ± 0.51 a | 10.87 ± 0.84 a | 0.88 ± 0.055 a | 37.63 ± 6.38 a | |
Spm | 3.34 ± 0.38 b | 10.27 ± 0.98 b | 0.84 ± 0.051 b | 32.26 ± 5.14 b | |
Spd | 2.86 ± 0.41 c | 9.43 ± 0.53 c | 0.80 ± 0.049 c | 29.53 ± 5.16 c | |
Put | 2.94 ± 0.45 c | 8.60 ± 0.56 d | 0.76 ± 0.045 d | 29.26 ± 5.48 c | |
Interaction (I × F) | |||||
FI | TW | 2.25 ± 0.11 h | 7.93 ± 0.13 i | 0.69 ± 0.009 h | 19.3 ± 0.37 g |
Spm | 1.89 ± 0.09 i | 7.61 ± 0.15 j | 0.66 ± 0.005 i | 17.2 ± 0.35 g h | |
Spd | 1.62 ± 0.06 j | 6.56 ± 0.06 k | 0.63 ± 0.004 j | 15.8 ± 0.22 h | |
Put | 1.59 ± 0.05 j | 5.21 ± 0.14 l | 0.60 ± 0.003 j | 15.7 ± 0.33 h | |
MD | TW | 3.89 ± 0.08 e | 10.8 ± 0.14 e | 0.87 ± 0.007 e | 40.5 ± 0.26 d |
Spm | 3.13 ± 0.07 f | 10.4 ± 0.12 f | 0.85 ± 0.006 e | 34.5 ± 0.24 e | |
Spd | 2.74 ± 0.11 g | 9.94 ± 0.05 g | 0.81 ± 0.007 f | 31.2 ± 0.31 f | |
Put | 2.70 ± 0.12 g | 9.38 ± 0.06 h | 0.76 ± 0.005 g | 30.9 ± 0.24 f | |
SD | TW | 6.26 ± 0.11 a | 13.9 ± 0.11 a | 1.07 ± 0.009 a | 53.1 ± 0.26 a |
Spm | 4.98 ± 0.12 b | 12.8 ± 0.08 b | 1.01 ± 0.007 b | 45.1 ± 0.19 b | |
Spd | 4.49 ± 0.10 c | 11.8 ± 0.09 c | 0.96 ± 0.006 c | 41.6 ± 0.18 c | |
Put | 4.23 ± 0.11 d | 11.3 ± 0.07 d | 0.91 ± 0.007 d | 41.2 ± 0.27 c | |
ANOVA | df | p-value | |||
I | 2 | <0.001 | <0.001 | <0.001 | <0.001 |
F | 3 | <0.001 | <0.001 | <0.001 | <0.001 |
I × F | 6 | <0.001 | <0.001 | 0.008 | 0.002 |
Studied Factor |
Free Proline (µmol g−1 DW) |
Soluble Sugars (mg g−1 DW) | α-Tocopherol (µmol g−1 DW) | Ascorbate (µmol g−1 FW) | Glutathione (µmol g−1 FW) | |
---|---|---|---|---|---|---|
Irrigation (I) | ||||||
FI | 25.08 ± 1.21 c | 11.96 ± 0.69 c | 1.72 ± 0.02 c | 1.00 ± 0.02 c | 0.50 ± 0.009 c | |
MD | 26.38 ± 1.30 b | 13.79 ± 0.96 b | 2.79 ± 0.04 b | 1.96 ± 0.03 b | 0.98 ± 0.015 b | |
SD | 34.13 ± 0.98 a | 17.15 ± 0.70 a | 3.27 ± 0.06 a | 2.21 ± 0.04 a | 1.10 ± 0.011 a | |
Foliar (F) | ||||||
TW | 26.00 ± 1.47 d | 12.46 ± 1.05 d | 2.43 ± 0.20 d | 1.62 ± 0.18 d | 0.81 ± 0.090 d | |
Spm | 27.50 ± 0.80 c | 13.71 ± 0.94 c | 2.53 ± 0.22 c | 1.69 ± 0.15 c | 0.84 ± 0.092 c | |
Spd | 28.53 ± 1.31 b | 14.93 ± 0.75 b | 2.64 ± 0.24 b | 1.75 ± 0.19 b | 0.87 ± 0.091 b | |
Put | 31.23 ± 1.92 a | 15.94 ± 1.06 a | 2.77 ± 0.26 a | 1.83 ± 0.16 a | 0.91 ± 0.094 a | |
Interaction (I × F) | ||||||
FI | TW | 17.7 ± 0.21 k | 8.40 ± 0.13 j | 1.66 ± 0.009 j | 0.46 ± 0.006 k | 0.92 ± 0.007 k |
Spm | 19.1 ± 0.13 i | 9.23 ± 0.15 i | 1.69 ± 0.006 j | 0.48 ± 0.007 j | 0.97 ± 0.008 j | |
Spd | 20.4 ± 0.17 i | 10.5 ± 0.11 h | 1.73 ± 0.008 i | 0.51 ± 0.004 i | 1.01 ± 0.009 i | |
Put | 22.6 ± 0.15 h | 11.7 ± 0.19 g | 1.79 ± 0.009 h | 0.54 ± 0.005 h | 1.08 ± 0.006 h | |
MD | TW | 27.8 ± 0.19 g | 13.2 ± 0.15 f | 2.62 ± 0.008 g | 0.91 ± 0.006 g | 1.82 ± 0.005 g |
Spm | 30.0 ± 0.23 f | 14.3 ± 0.19 e | 2.74 ± 0.009 f | 0.96 ± 0.007 f | 1.82 ± 0.007 f | |
Spd | 30.8 ± 0.25 e | 14.8 ± 0.18 e | 2.82 ± 0.007 e | 0.99 ± 0.008 e | 1.99 ± 0.006 e | |
Put | 31.9 ± 0.22 d | 15.4 ± 0.14 d | 2.97 ± 0.009 d | 1.04 ± 0.009 d | 2.08 ± 0.009 d | |
SD | TW | 32.5 ± 0.26 d | 15.8 ± 0.19 d | 3.02 ± 0.009 d | 1.06 ± 0.008 d | 2.12 ± 0.007 d |
Spm | 33.4 ± 0.24 c | 17.6 ± 0.17 c | 3.17 ± 0.011 c | 1.09 ± 0.007 c | 2.17 ± 0.009 c | |
Spd | 34.4 ± 0.28 b | 19.5 ± 0.19 b | 3.37 ± 0.012 b | 1.12 ± 0.006 b | 2.23 ± 0.011 b | |
Put | 39.2 ± 0.29 a | 20.7 ± 0.12 a | 3.53 ± 0.011 a | 1.15 ± 0.008 a | 2.30 ± 0.012 a | |
ANOVA | df | p-value | ||||
I | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
F | 3 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
I × F | 6 | <0.001 | <0.001 | <0.001 | 0.009 | 0.002 |
Studied Factor | Peroxidase (A470 min−1 mg−1 Protein) | Catalase (A240 min−1 mg−1 Protein) | Ascorbate Peroxidase (A290 min−1 mg−1 Protein) | Superoxide Dismutase (A560 min−1 mg−1 Protein) | Glutathione Reductase (A340 min−1 mg−1 Protein) | |
---|---|---|---|---|---|---|
Irrigation (I) | ||||||
FI | 1.29 ± 0.09 c | 48.18 ± 1.55 c | 50.71 ± 2.18 c | 5.05 ± 0.17 c | 28.23 ± 1.78 c | |
MD | 1.99 ± 0.21 b | 64.33 ± 1.91 b | 70.54 ± 2.51 b | 6.96 ± 0.27 b | 45.22 ± 2.19 b | |
SD | 2.30 ± 0.14 a | 70.43 ± 1.94 a | 78.01 ± 1.94 a | 7.67 ± 0.36 a | 51.61 ± 2.52 a | |
Foliar (F) | ||||||
TW | 1.53 ± 0.21 d | 54.23 ± 3.21 d | 58.83 ± 3.60 d | 5.85 ± 0.49 d | 36.20 ± 4.77 d | |
Spm | 1.76 ± 0.06 c | 59.90 ± 2.75 c | 65.10 ± 2.31 c | 6.46 ± 0.39 c | 41.53 ± 3.52 c | |
Spd | 1.99 ± 0.22 b | 62.91 ± 2.81 b | 68.16 ± 2.89 b | 6.71 ± 0.58 b | 42.91 ± 4.09 b | |
Put | 2.09 ± 0.30 a | 66.70 ± 3.28 a | 73.43 ± 3.87 a | 7.18 ± 0.65 a | 46.00 ± 7.11 a | |
Interaction (I × F) | ||||||
FI | TW | 0.81 ± 0.06 h | 40.7 ± 0.22 l | 36.8 ± 0.56 k | 4.27 ± 0.032 l | 20.4 ± 0.33 k |
Spm | 0.83 ± 0.07 h | 43.7 ± 0.23 k | 42.2 ± 0.55 j | 4.46 ± 0.036 k | 22.6 ± 0.35 j | |
Spd | 1.25 ± 0.05 g | 46.2 ± 0.25 j | 47.0 ± 0.59 i | 4.78 ± 0.056 j | 25.2 ± 0.36 i | |
Put | 1.48 ± 0.03f | 51.7 ± 0.36 i | 58.1 ± 0.66 h | 5.38 ± 0.054 i | 31.2 ± 0.39 h | |
MD | TW | 1.59 ± 0.02 ef | 53.9 ± 0.38 h | 60.8 ± 0.69 g | 5.75 ± 0.062 h | 36.0 ± 0.42 g |
Spm | 1.79 ± 0.03 de | 58.9 ± 0.37 g | 70.2 ± 0.72 f | 6.39 ± 0.052 g | 42.7 ± 0.46 f | |
Spd | 1.94 ± 0.04 cd | 63.1 ± 0.34 f | 73.2 ± 0.79 e | 6.62 ± 0.055 f | 43.8 ± 0.48 e | |
Put | 2.00 ± 0.04 c | 65.9 ± 0.39 e | 76.6 ± 0.86 d | 7.08 ± 0.056 e | 46.3 ± 0.52 d | |
SD | TW | 2.20 ± 0.06 b | 68.1 ± 0.36 d | 78.9 ± 0.86 c | 7.55 ± 0.058 d | 52.2 ± 0.56 c |
Spm | 2.66 ± 0.06 a | 77.1 ± 0.37 c | 82.9 ± 0.88 b | 8.54 ± 0.059 c | 59.3 ± 0.59 b | |
Spd | 2.80 ± 0.08 a | 79.4 ± 0.42 b | 84.3 ± 0.99 a | 8.75 ± 0.075 b | 59.7 ± 0.57 ab | |
Put | 2.81 ± 0.06 a | 82.5 ± 0.49 a | 85.6 ± 0.96 a | 9.10 ± 0.075 a | 60.5 ± 0.62 a | |
ANOVA | df | p-value | ||||
I | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
F | 3 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
I × F | 6 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Studied Factor | Midrib Length (μm) | Midrib Width (μm) | Vascular Bundle Length (μm) | Vascular Bundle Width (μm) | Phloem Thickness (μm) | Xylem Thickness (μm) | Collenchyma Thickness (μm) | Vessel Diameter (μm) | Number of Xylem Rows in Midvein Bundle | |
---|---|---|---|---|---|---|---|---|---|---|
Irrigation (I) | ||||||||||
FI | 1927 ± 22 a | 1881 ± 19 a | 1217 ± 21 a | 1354 ± 13 a | 122.3 ± 5 a | 218.1 ± 6 a | 749.5 ± 7 a | 46.3 ± 3 a | 47.5 ± 3 a | |
MD | 1353 ± 25 b | 1462 ± 20 b | 881 ± 15 b | 999 ± 15 b | 63.84 ± 3 b | 85.79 ± 4 b | 387.8 ± 3 b | 28.5 ± 2 b | 35.5 ± 2 b | |
SD | 818 ± 17 c | 862 ± 14 c | 381 ± 12 c | 545 ± 8 c | 42.56 ± 4 c | 69.16 ± 3 c | 297.5 ± 4 c | 19.0 ± 1 c | 24.6 ± 2 c | |
Foliar (F) | ||||||||||
TW | 1248 ± 26 b | 1266 ± 19 b | 775 ± 12 b | 848 ± 11 b | 63.84 ± 4 b | 99.29 ± 4 b | 460.5 ± 4 b | 27.7 ± 2 b | 32.6 ± 3 b | |
Put | 1484 ± 30 a | 1537 ± 19 a | 878 ± 14 a | 1084 ± 13 a | 88.66 ± 5 a | 156.1 ± 6 a | 496.0 ± 5 a | 34.8 ± 3 a | 39.7 ± 3 a | |
Interaction (I × F) | ||||||||||
FI | TW | 1872 ± 18 b | 1818 ± 19 b | 1163 ± 16 b | 1272 ± 24 b | 106.4 ± 3 b | 170.2 ± 3 b | 744 ± 8 b | 42.8 ± 2 b | 46 ± 2 b |
Put | 1981 ± 16 a | 1945 ± 23 a | 1272 ± 18 a | 1436 ± 27 a | 138.3 ± 4 a | 266.0 ± 5 a | 755 ± 9 a | 49.9 ± 3 a | 49 ± 3 a | |
MD | TW | 1236 ± 21 d | 1254 ± 24 d | 799 ± 14 d | 818 ± 16 d | 53.20 ± 2 d | 74.48 ± 2 d | 372 ± 5 d | 23.8 ± 2 d | 30 ± 1 d |
Put | 1472 ± 24 c | 1672 ± 18 c | 963 ± 18 c | 1181 ± 20 c | 74.48 ± 4 c | 117.1 ± 3 c | 404 ± 7 c | 33.3 ± 3 c | 42 ± 3 c | |
SD | TW | 636 ± 12 f | 727 ± 16 f | 363 ± 9 f | 454 ± 8 f | 31.92 ± 2 e | 53.20 ± 2 f | 266 ± 3 f | 16.6 ± 1 f | 21 ± 1 f |
Put | 999 ± 19 e | 998 ± 20 e | 399 ± 11 e | 636 ± 12 e | 53.20 ± 3 d | 85.12 ± 4 e | 329 ± 4 e | 21.4 ± 2 e | 28 ± 2 e | |
ANOVA | df | p-value | ||||||||
I | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
F | 3 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
I × F | 6 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Studied Factor | Plant Height (cm) | Leaf Area (cm2) | No. of Capsules Plant−1 | 1000-Seed Weight (g) | Seed Yield (Kg ha−1) | Oil Content (%) | Crop Water Productivity | |
---|---|---|---|---|---|---|---|---|
Irrigation (I) | ||||||||
FI | 150.8 ± 2.21 a | 38.80 ± 0.37 a | 68.64 ± 0.69 a | 3.60 ± 0.034 a | 1672 ± 10.25 a | 42.14 ± 0.20 a | 0.283 ± 0.001 a | |
MD | 129.2 ± 1.63 b | 33.65 ± 0.59 b | 59.86 ± 0.81 b | 3.26 ± 0.029 b | 1540 ± 16.6 b | 39.60 ± 0.34 b | 0.348 ± 0.003 b | |
SD | 98.32 ± 1.73 c | 28.09 ± 0.55 c | 50.41 ± 0.55 c | 2.94 ± 0.025 c | 1271 ± 12.1 c | 37.15 ± 0.18 c | 0.431 ± 0.004 c | |
Foliar (F) | ||||||||
TW | 117.3 ± 4.30 d | 31.23 ± 1.70 d | 56.46 ± 2.61 d | 3.14 ± 0.089 d | 1439 ± 64.1 d | 38.53 ± 0.74 d | 0.340 ± 0.019 d | |
Spm | 124.5 ± 4.64 c | 33.11 ± 1.52 c | 58.63 ± 2.56 c | 3.24 ± 0.094 c | 1485 ± 58.2 c | 39.43 ± 0.73 c | 0.352 ± 0.021 c | |
Spd | 128.6 b ± 5.04 b | 33.94 ± 1.57 b | 60.48 ± 2.74 b | 3.30 ± 0.101 b | 1512 ± 58.5 b | 39.96 ± 0.75 b | 0.359 ± 0.022 b | |
Put | 134.1 a ± 4.91 a | 35.77 ± 1.48 a | 62.98 ± 2.79 a | 3.40 ± 0.102 a | 1540 ± 58.0 a | 40.60 ± 0.74 a | 0.366 ± 0.023 a | |
Interaction (I × F) | ||||||||
FI | TW | 140.5 ± 0.62 d | 37.2 ± 0.12 c | 65.8 ± 0.35 d | 3.44 ± 0.012 d | 1652 ± 3.5 c | 41.2 ± 0.22 c | 0.280 ± 0.0002 k |
Spm | 148.7 ± 0.66 c | 38.2 ± 0.16 b | 67.5 ± 0.38 c | 3.56 ± 0.016 c | 1662 ± 4.2 b | 41.9 ± 0.26 b | 0.282 ± 0.0001 j k | |
Spd | 153.4 ± 0.72 b | 39.0 ± 0.21 b | 69.3 ± 0.37 b | 3.62 ± 0.019 b | 1667 ± 5.3 b | 42.3 ± 0.24 b | 0.283 ± 0.0002 j | |
Put | 160.6 ± 0.76 a | 40.6 ± 0.26 a | 71.8 ± 0.36 a | 3.75 ± 0.021 a | 1706 ± 5.8 a | 43.1 ± 0.28 a | 0.289 ± 0.0005 i | |
MD | TW | 121.1 ± 0.68 h | 30.9 ± 0.18 g | 55.6 ± 0.32 g | 3.13 ± 0.013 h | 1455 ± 4.6 g | 37.9 ± 0.27 f | 0.329 ± 0.0008 h |
Spm | 128.4 ± 0.58 g | 33.3 ± 0.16 f | 58.5 ± 0.34 f | 3.22 ± 0.014 g | 1526 ± 4.7 f | 39.5 ± 0.31 e | 0.345 ± 0.0007 g | |
Spd | 131.4 ± 0.54 f | 34.1 ± 0.15 e | 60.9 ± 0.35 d | 3.29 ± 0.018 f | 1579 ± 3.5 e | 40.1 ± 0.35 d | 0.357 ± 0.0002 f | |
Put | 135.8 ± 0.67 e | 36.2 ± 0.13 d | 64.3 ± 0.39 d | 3.39 ± 0.016 e | 1597 ± 3.9 d | 40.8 ± 0.36 c | 0.361 ± 0.0008 e | |
SD | TW | 90.40 ± 0.58 l | 25.5 ± 0.21 j | 47.8 ± 0.25 k | 2.83 ± 0.012 l | 1210 ± 3.9 k | 36.3 ± 0.29 g | 0.410 ± 0.0020 d |
Spm | 96.30 ± 0.56 k | 27.7 ± 0.24 i | 49.8 ± 0.31 j | 3.92 ± 0.011 k | 1266 ± 3.6 j | 36.8 ± 0.27 g | 0.429 ± 0.0015 c | |
Spd | 100.6 ± 0.61 j | 28.6 ± 0.23 h | 51.1 ± 0.37 i | 2.97 ± 0.018 j | 1289 ± 4.3 i | 37.4 ± 0.24 f | 0.437 ± 0.0010 b | |
Put | 105.9 ± 0.69 i | 30.4 ± 0.28 g | 52.7 ± 0.39 h | 3.04 ± 0.017 i | 1317 ± 4.9 h | 37.8 ± 0.26 f | 0.447 ± 0.0013 a | |
ANOVA | df | p-value | ||||||
I | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
F | 3 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
I × F | 6 | 0.002 | 0.007 | 0.006 | 0.009 | <0.001 | 0.008 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desoky, E.S.M.; Alharbi, K.; Rady, M.M.; Elnahal, A.S.M.; Selem, E.; Arnaout, S.M.A.I.; Mansour, E. Physiological, Biochemical, Anatomical, and Agronomic Responses of Sesame to Exogenously Applied Polyamines under Different Irrigation Regimes. Agronomy 2023, 13, 875. https://doi.org/10.3390/agronomy13030875
Desoky ESM, Alharbi K, Rady MM, Elnahal ASM, Selem E, Arnaout SMAI, Mansour E. Physiological, Biochemical, Anatomical, and Agronomic Responses of Sesame to Exogenously Applied Polyamines under Different Irrigation Regimes. Agronomy. 2023; 13(3):875. https://doi.org/10.3390/agronomy13030875
Chicago/Turabian StyleDesoky, El Sayed M., Khadiga Alharbi, Mostafa M. Rady, Ahmed S. M. Elnahal, Eman Selem, Safaa M. A. I. Arnaout, and Elsayed Mansour. 2023. "Physiological, Biochemical, Anatomical, and Agronomic Responses of Sesame to Exogenously Applied Polyamines under Different Irrigation Regimes" Agronomy 13, no. 3: 875. https://doi.org/10.3390/agronomy13030875
APA StyleDesoky, E. S. M., Alharbi, K., Rady, M. M., Elnahal, A. S. M., Selem, E., Arnaout, S. M. A. I., & Mansour, E. (2023). Physiological, Biochemical, Anatomical, and Agronomic Responses of Sesame to Exogenously Applied Polyamines under Different Irrigation Regimes. Agronomy, 13(3), 875. https://doi.org/10.3390/agronomy13030875