Enhancing Drought Tolerance and Water Productivity of Diverse Maize Hybrids (Zea mays) Using Exogenously Applied Biostimulants under Varying Irrigation Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Agricultural Treatments
2.2. Plant Material and Irrigation Levels
2.3. Preparation and Foliar Application
2.4. Measured Parameters
2.4.1. Physiological Parameters
2.4.2. Agronomic Traits
2.5. Statistical Analysis
3. Results
3.1. Photosynthetic Pigments and Photosynthetic Efficiency
3.2. Water Relations and Oxidative Stress
3.3. Non-Enzymatic and Enzymatic Antioxidants Activities
3.4. Agronomic Traits
3.5. Crop Water Productivity (CWP)
3.6. Association among the Studied Parameters and Evaluated Treatments
3.7. Genetic Variability and Path Analysis for Agronomic Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 1007, 1295–1319. [Google Scholar] [CrossRef]
- Klopfenstein, T.; Erickson, G.; Berger, L. Maize is a critically important source of food, feed, energy and forage in the USA. Field Crops Res. 2013, 153, 5–11. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Statistical Database. 2022. Available online: http://www.fao.org/faostat/en/#data (accessed on 16 August 2022).
- Daryanto, S.; Wang, L.; Jacinthe, P.-A. Global synthesis of drought effects on maize and wheat production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef]
- El-Sanatawy, A.M.; El-Kholy, A.S.M.; Ali, M.M.A.; Awad, M.F.; Mansour, E. Maize seedling establishment, grain yield and crop water productivity response to seed priming and irrigation management in a Mediterranean arid environment. Agronomy 2021, 11, 756. [Google Scholar] [CrossRef]
- Menezes-Silva, P.E.; Sanglard, L.M.; Ávila, R.T.; Morais, L.E.; Martins, S.C.; Nobres, P.; Patreze, C.M.; Ferreira, M.A.; Araújo, W.L.; Fernie, A.R. Photosynthetic and metabolic acclimation to repeated drought events play key roles in drought tolerance in coffee. J. Exp. Bot. 2017, 68, 4309–4322. [Google Scholar] [CrossRef]
- Sabagh, A.E.; Hossain, A.; Barutçular, C.; Khaled, A.; Fahad, S.; Anjorin, F.B.; Islam, M.S.; Ratnasekera, D.; Kizilgeçi, F.; Yadav, G. Sustainable maize (Zea mays L.) production under drought stress by understanding its adverse effect, survival mechanism and drought tolerance indices. J. Exp. Biol. Agric. Sci. 2018, 6, 282–295. [Google Scholar] [CrossRef]
- Qi, J.; Song, C.P.; Wang, B.; Zhou, J.; Kangasjärvi, J.; Zhu, J.K.; Gong, Z. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J. Integr. Plant Biol. 2018, 60, 805–826. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, C.; Chen, F.; Yue, L.; Cao, X.; Li, J.; Zhao, X.; Wu, F.; Wang, Z.; Xing, B. Foliar carbon dot amendment modulates carbohydrate metabolism, rhizospheric properties and drought tolerance in maize seedling. Sci. Total Environ. 2022, 809, 151105. [Google Scholar] [CrossRef] [PubMed]
- Deihimfard, R.; Rahimi-Moghaddam, S.; Collins, B.; Azizi, K. Future climate change could reduce irrigated and rainfed wheat water footprint in arid environments. Sci. Total Environ. 2022, 807, 150991. [Google Scholar] [CrossRef]
- Del Buono, D. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci. Total Environ. 2021, 751, 141763. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Iqbal, A.; Akbar, N.; Abbas, R.N.; Khan, H.Z.; Maqsood, Q. Response of canola to foliar application of moringa (Moringa olifera L.) and brassica (Brassica napus L.) water extracts. Int. J. Agric. Crop Sci. 2014, 7, 1431–1433. [Google Scholar]
- Elrys, A.S.; Merwad, A.-R.; Abdo, A.I.; Abdel-Fatah, M.K.; Desoky, E.-S.M. Does the application of silicon and Moringa seed extract reduce heavy metals toxicity in potato tubers treated with phosphate fertilizers? Environ. Sci. Pollut. Res. 2018, 25, 16776–16787. [Google Scholar] [CrossRef] [PubMed]
- Farhat, F.; Arfan, M.; Wang, X.; Tariq, A.; Kamran, M.; Tabassum, H.N.; Tariq, I.; Mora-Poblete, F.; Iqbal, R.; El-Sabrout, A.M. The impact of bio-stimulants on Cd-stressed wheat (Triticum aestivum L.): Insights into growth, chlorophyll fluorescence, Cd accumulation, and osmolyte regulation. Front. Plant Sci. 2022, 13, 850567. [Google Scholar] [CrossRef]
- Desoky, E.; Elrys, A.; Mohamed, G.; Rady, M. Exogenous application of moringa seed extract positively alters fruit yield and its contaminant contents of Capsicum annuum plants grown on a saline soil contaminated with heavy metals. Adv. Plants Agric. Res. 2018, 8, 591–601. [Google Scholar]
- Muñoz, P.; Munné-Bosch, S. Vitamin E in plants: Biosynthesis, transport, and function. Trends Plant Sci. 2019, 24, 1040–1051. [Google Scholar] [CrossRef]
- Hemida, K.A.; Eloufey, A.Z.; Seif El-Yazal, M.A.; Rady, M.M. Integrated effect of potassium humate and α-tocopherol applications on soil characteristics and performance of Phaseolus vulgaris plants grown on a saline soil. Arch. Agron. Soil Sci. 2017, 63, 1556–1571. [Google Scholar] [CrossRef]
- Kim, S.-E.; Lee, C.-J.; Ji, C.Y.; Kim, H.S.; Park, S.-U.; Lim, Y.-H.; Park, W.S.; Ahn, M.-J.; Bian, X.; Xie, Y. Transgenic sweetpotato plants overexpressing tocopherol cyclase display enhanced α-tocopherol content and abiotic stress tolerance. Plant Physiol. Biochem. 2019, 144, 436–444. [Google Scholar] [CrossRef]
- Ali, Q.; Tariq Javed, M.; Haider, M.Z.; Habib, N.; Rizwan, M.; Perveen, R.; Ali, S.; Nasser Alyemeni, M.; El-Serehy, H.A.; Al-Misned, F.A. α-Tocopherol foliar spray and translocation mediates growth, photosynthetic pigments, nutrient uptake, and oxidative defense in maize (Zea mays L.) under drought stress. Agronomy 2020, 10, 1235. [Google Scholar] [CrossRef]
- Shah, W.; Ullah, S.; Ali, S.; Idrees, M.; Khan, M.N.; Ali, K.; Khan, A.; Ali, M.; Younas, F. Effect of exogenous alpha-tocopherol on physio-biochemical attributes and agronomic performance of lentil (Lens culinaris Medik.) under drought stress. PLoS ONE 2021, 16, e0248200. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Makkar, H.a.; Becker, K. Nutritional value and antinutritional components of whole and ethanol extracted Moringa oleifera leaves. Anim. Feed Sci. Technol. 1996, 63, 211–228. [Google Scholar] [CrossRef]
- Sadiq, M.; Akram, N.A.; Ashraf, M.; Al-Qurainy, F.; Ahmad, P. Alpha-tocopherol-induced regulation of growth and metabolism in plants under non-stress and stress conditions. J. Plant Growth Regul. 2019, 38, 1325–1340. [Google Scholar] [CrossRef]
- Semida, W.; Taha, R.; Abdelhamid, M.; Rady, M. Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. S. Afr. J. Bot. 2014, 95, 24–31. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Jagendorf, A.T. Oxidation and reduction of pyridine nucleotides by purified chloroplasts. Arch. Biochem. Biophys. 1956, 62, 141–150. [Google Scholar] [CrossRef]
- Avron, M. Photophosphorylation by swiss-chard chloroplasts. Biochim. Biophys. Acta 1960, 40, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Premachandra, G.; Saneoka, H.; Ogata, S. Nutrio-physiological evaluation of the polyethylene glycol test of cell membrane stability in maize. Crop Sci. 1989, 29, 1287–1292. [Google Scholar] [CrossRef]
- Barrs, H.; Weatherley, P. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 1962, 15, 413–428. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Sullivan, C.Y. Selection for drought and heat tolerance in grain sorghum. In Stress Physiology in Crop Plants; John Wiley and Sons: New York, NY, USA, 1979; pp. 263–281. [Google Scholar]
- Bates, L.; Waldren, R.P.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Irigoyen, J.; Einerich, D.; Sánchez-Díaz, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant 1992, 84, 55–60. [Google Scholar] [CrossRef]
- Vitória, A.P.; Lea, P.J.; Azevedo, R.A. Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 2001, 57, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Chance, B.; Maehly, A. Assay of catalase and peroxidase. In Methods of Enzymology; Colowick, S.P., Kaplar, N.O., Eds.; Academic Press: New York, NY, USA, 1955; Volume 2, pp. 764–775. [Google Scholar]
- Foster, J.G.; Hess, J.L. Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol. 1980, 66, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Alcon, F.; Diaz-Espejo, A.; Hernandez-Santana, V.; Cuevas, M. Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard. Agric. Water Manag. 2020, 237, 106074. [Google Scholar] [CrossRef]
- Burton, G.W.; Devane, D.E. Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material 1. Agron. J. 1953, 45, 478–481. [Google Scholar] [CrossRef]
- Dewey, D.R.; Lu, K. A correlation and path-coefficient analysis of components of crested wheatgrass seed production. Agron. J. 1959, 51, 515–518. [Google Scholar]
- Van Nguyen, D.; Nguyen, H.M.; Le, N.T.; Nguyen, K.H.; Nguyen, H.T.; Le, H.M.; Nguyen, A.T.; Dinh, N.T.T.; Hoang, S.A.; Van Ha, C. Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. J. Plant Growth Regul. 2022, 41, 364–375. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, G.; Wei, Z.; Feng, T.; Zhang, K.; Zhang, M.; Li, Z.; Zhou, Y.; Duan, L. Exogenous application of coronatine and alginate oligosaccharide to maize seedlings enhanced drought tolerance at seedling and reproductive stages. Agric. Water Manag. 2023, 279, 108185. [Google Scholar] [CrossRef]
- Ahmad, S.; Muhammad, I.; Wang, G.Y.; Zeeshan, M.; Yang, L.; Ali, I.; Zhou, X.B. Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. BMC Plant Biol. 2021, 21, 368. [Google Scholar] [CrossRef]
- Sun, Y.; Miao, F.; Wang, Y.; Liu, H.; Wang, X.; Wang, H.; Guo, J.; Shao, R.; Yang, Q. L-Arginine alleviates the reduction in photosynthesis and antioxidant activity induced by drought stress in maize seedlings. Antioxidants 2023, 12, 482. [Google Scholar] [CrossRef] [PubMed]
- Yasmeen, A.; Basra, S.; Farooq, M.; Hussain, N. Exogenous application of moringa leaf extract modulates the antioxidant enzyme system to improve wheat performance under saline conditions. Plant Growth Regul. 2013, 69, 225–233. [Google Scholar] [CrossRef]
- Zahoor, R.; Dong, H.; Abid, M.; Zhao, W.; Wang, Y.; Zhou, Z. Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environ. Exp. Bot. 2017, 137, 73–83. [Google Scholar] [CrossRef]
- Ren, B.; Yu, W.; Liu, P.; Zhao, B.; Zhang, J. Responses of photosynthetic characteristics and leaf senescence in summer maize to simultaneous stresses of waterlogging and shading. Crop J. 2023, 11, 269–277. [Google Scholar] [CrossRef]
- Desoky, E.-S.M.; Elrys, A.S.; Rady, M.M. Integrative moringa and licorice extracts application improves Capsicum annuum fruit yield and declines its contaminant contents on a heavy metals-contaminated saline soil. Ecotoxicol. Environ. Saf. 2019, 169, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Lalarukh, I.; Wang, X.; Amjad, S.F.; Hussain, R.; Ahmar, S.; Mora-Poblete, F.; Abdel-Hafez, S.H.; Fawzy, M.A.; Abbas, M.H.; Abdelhafez, A.A. Chemical role of α-tocopherol in salt stress mitigation by improvement in morpho-physiological attributes of sunflower (Helianthus annuus L.). Saudi J. Biol. Sci. 2022, 29, 1386–1393. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Shah, S.; Ullah, S.; Mansour, A.T.; Shalaby, T.A. Impacts of ascorbic acid and alpha-tocopherol on chickpea (Cicer arietinum L.) grown in water deficit regimes for sustainable production. Sustainability 2022, 14, 8861. [Google Scholar] [CrossRef]
- Abd El-hady, M.A.; Abd-Elkrem, Y.M.; Rady, M.O.; Mansour, E.; El-Tarabily, K.A.; AbuQamar, S.F.; El-temsah, M.E. Impact on plant productivity under low-fertility sandy soil in arid environment by revitalization of lentil roots. Front. Plant Sci. 2022, 13, 937073. [Google Scholar] [CrossRef]
- Desoky, E.-S.M.; Elrys, A.S.; Mansour, E.; Eid, R.S.M.; Selem, E.; Rady, M.M.; Ali, E.F.; Mersal, G.A.M.; Semida, W.M. Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Sci. Hortic. 2021, 288, 110340. [Google Scholar] [CrossRef]
- Basu, S.; Prabhakar, A.A.; Kumari, S.; Kumar, R.R.; Shekhar, S.; Prakash, K.; Singh, J.P.; Singh, G.P.; Prasad, R.; Kumar, G. Micronutrient and redox homeostasis contribute to Moringa oleifera regulated drought tolerance in wheat. Plant Growth Regul. 2022, 1–12. [Google Scholar] [CrossRef]
- Ali, Q.; Ali, S.; Iqbal, N.; Javed, M.T.; Rizwan, M.; Khaliq, R.; Shahid, S.; Perveen, R.; Alamri, S.A.; Alyemeni, M.N. Alpha-tocopherol fertigation confers growth physio-biochemical and qualitative yield enhancement in field grown water deficit wheat (Triticum aestivum L.). Sci. Rep. 2019, 9, 12924. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Li, J.; Zhang, X.; Wei, H.; Cui, L. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ. Exp. Bot. 2006, 56, 274–285. [Google Scholar] [CrossRef]
- Sedaghat, M.; Tahmasebi-Sarvestani, Z.; Emam, Y.; Mokhtassi-Bidgoli, A. Physiological and antioxidant responses of winter wheat cultivars to strigolactone and salicylic acid in drought. Plant Physiol. Biochem. 2017, 119, 59–69. [Google Scholar] [CrossRef]
- Kosar, F.; Akram, N.A.; Ashraf, M.; Ahmad, A.; Alyemeni, M.N.; Ahmad, P. Impact of exogenously applied trehalose on leaf biochemistry, achene yield and oil composition of sunflower under drought stress. Physiol. Plant. 2021, 172, 317–333. [Google Scholar] [CrossRef]
- Yang, F.; Hu, J.; Li, J.; Wu, X.; Qian, Y. Chitosan enhances leaf membrane stability and antioxidant enzyme activities in apple seedlings under drought stress. Plant Growth Regul. 2009, 58, 131–136. [Google Scholar] [CrossRef]
- Szarka, A.; Tomasskovics, B.; Bánhegyi, G. The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int. J. Mol. Sci. 2012, 13, 4458–4483. [Google Scholar] [CrossRef]
- Jungklang, J.; Saengnil, K.; Uthaibutra, J. Effects of water-deficit stress and paclobutrazol on growth, relative water content, electrolyte leakage, proline content and some antioxidant changes in Curcuma alismatifolia Gagnep. cv. Chiang Mai Pink. Saudi J. Biol. Sci. 2017, 24, 1505–1512. [Google Scholar] [CrossRef]
- Sharma, A.; Wang, J.; Xu, D.; Tao, S.; Chong, S.; Yan, D.; Li, Z.; Yuan, H.; Zheng, B. Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Sci. Total Environ. 2020, 713, 136675. [Google Scholar] [CrossRef]
- Afzal, S.; Chaudhary, N.; Singh, N.K. Role of soluble sugars in metabolism and sensing under abiotic stress. In Plant Growth Regulators; Springer: Berlin/Heidelberg, Germany, 2021; pp. 305–334. [Google Scholar]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants 2021, 10, 277. [Google Scholar] [CrossRef]
- Atteya, A.K.; El-Serafy, R.S.; El-Zabalawy, K.M.; Elhakem, A.; Genaidy, E.A. Exogenously supplemented proline and phenylalanine improve growth, productivity, and oil composition of salted moringa by up-regulating osmoprotectants and stimulating antioxidant machinery. Plants 2022, 11, 1553. [Google Scholar] [CrossRef]
- Howladar, S.M. A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicol. Environ. Saf. 2014, 100, 69–75. [Google Scholar] [CrossRef]
- Haider, M.W.; Nafees, M.; Ahmad, I.; Ali, B.; Iqbal, R.; Vodnar, D.C.; Marc, R.A.; Kamran, M.; Saleem, M.H.; Al-Ghamdi, A.A. Postharvest dormancy-related changes of endogenous hormones in relation to different dormancy-breaking methods of potato (Solanum tuberosum L.) tubers. Front. Plant Sci. 2022, 13, 945256. [Google Scholar] [CrossRef]
- Orabi, S.A.; Abdelhamid, M.T. Protective role of α-tocopherol on two Vicia faba cultivars against seawater-induced lipid peroxidation by enhancing capacity of anti-oxidative system. J. Saudi Soc. Agric. Sci. 2016, 15, 145–154. [Google Scholar] [CrossRef]
- Desoky, E.S.M.; Alharbi, K.; Rady, M.M.; Elnahal, A.S.; Selem, E.; Arnaout, S.M.; Mansour, E. Physiological, biochemical, anatomical, and agronomic responses of sesame to exogenously applied polyamines under different irrigation regimes. Agronomy 2023, 13, 875. [Google Scholar] [CrossRef]
- Selem, E.; Hassan, A.A.; Awad, M.F.; Mansour, E.; Desoky, E.-S.M. Impact of exogenously sprayed antioxidants on physio-biochemical, agronomic, and quality parameters of potato in salt-affected soil. Plants 2022, 11, 210. [Google Scholar] [CrossRef] [PubMed]
- Mansour, E.; Desoky, E.-S.M.; Ali, M.M.A.; Abdul-Hamid, M.I.; Ullah, H.; Attia, A.; Datta, A. Identifying drought-tolerant genotypes of faba bean and their agro-physiological responses to different water regimes in an arid Mediterranean environment. Agric. Water Manag. 2021, 247, 106754. [Google Scholar] [CrossRef]
- Kumar, B.; Guleria, S.K.; Khanorkar, S.M.; Dubey, R.B.; Patel, J.; Kumar, V.; Parihar, C.M.; Jat, S.L.; Singh, V.; Yatish, K. Selection indices to identify maize (Zea mays L.) hybrids adapted under drought-stress and drought-free conditions in a tropical climate. Crop Pasture Sci. 2016, 67, 1087–1095. [Google Scholar] [CrossRef]
- El-Sanatawy, A.M.; Ash-Shormillesy, S.M.A.I.; Qabil, N.; Awad, M.F.; Mansour, E. Seed halo-priming improves seedling vigor, grain yield, and water use efficiency of maize under varying irrigation regimes. Water 2021, 13, 2115. [Google Scholar] [CrossRef]
- Rehman, F.; Saeed, A.; Yaseen, M.; Shakeel, A.; Ziaf, K.; Munir, H.; Tariq, S.A.; Raza, M.A.; Riaz, A. Genetic evaluation and characterization using cluster heat map to assess NaCl tolerance in tomato germplasm at the seedling stage. Chil. J. Agric. Res. 2019, 79, 56–65. [Google Scholar] [CrossRef]
- Morsi, N.A.; Hashem, O.S.; El-Hady, M.A.A.; Abd-Elkrem, Y.M.; El-temsah, M.E.; Galal, E.G.; Gad, K.I.; Boudiar, R.; Silvar, C.; El-Hendawy, S. Assessing drought tolerance of newly developed tissue-cultured canola genotypes under varying irrigation regimes. Agronomy 2023, 13, 836. [Google Scholar] [CrossRef]
- ElShamey, E.A.Z.; Hamad, H.S.; Alshallash, K.S.; Alghuthaymi, M.A.; Ghazy, M.I.; Sakran, R.M.; Selim, M.E.; ElSayed, M.A.A.; Abdelmegeed, T.M.; Okasha, S.A.; et al. Growth regulators improve outcrossing rate of diverse rice cytoplasmic male sterile lines through affecting floral traits. Plants 2022, 11, 1291. [Google Scholar] [CrossRef] [PubMed]
- Megahed, E.M.; Awaad, H.A.; Ramadan, I.E.; Abdul-Hamid, M.I.; Sweelam, A.A.; El-Naggar, D.R.; Mansour, E. Assessing performance and stability of yellow rust resistance, heat tolerance, and agronomic performance in diverse bread wheat genotypes for enhancing resilience to climate change under Egyptian conditions. Front. Plant Sci. 2022, 13, 1014824. [Google Scholar] [CrossRef] [PubMed]
- Canas, R.A.; Amiour, N.; Quilleré, I.; Hirel, B. An integrated statistical analysis of the genetic variability of nitrogen metabolism in the ear of three maize inbred lines (Zea mays L.). J. Exp. Bot. 2011, 62, 2309–2318. [Google Scholar] [CrossRef] [PubMed]
Studied Factors | Chlorophyll (mg/g FW) | Carotenoids (mg/g FW) | Photochemical (micromole/ Mgchl/min) | Pn (μmol CO2 /m2/s) | Tr (μmol CO2 /m2/s) | gs (μmol CO2 /m2/s) | Fv/Fm | |
---|---|---|---|---|---|---|---|---|
Irrigation (I) | ||||||||
Well-watered | 2.838 a | 1.057 a | 44.23 a | 13.452 a | 7.198 a | 0.668 a | 0.858 a | |
Mild drought | 2.284 b | 0.746 b | 35.59 b | 10.389 b | 5.849 b | 0.524 b | 0.734 b | |
Severe drought | 1.481 c | 0.483 c | 29.95 c | 7.136 c | 3.815 c | 0.390 c | 0.638 c | |
Foliar (F) | ||||||||
Untreated control | 1.958 b | 0.690 b | 34.52 c | 9.384 c | 5.258 b | 0.499 b | 0.716 b | |
Moringa seed extract | 2.316 a | 0.805 a | 38.25 a | 11.053 a | 5.823 a | 0.546 a | 0.763 a | |
ɑ-tocopherol | 2.329 a | 0.791 a | 36.99 b | 10.542 b | 5.781 a | 0.536 a | 0.750 a | |
Hybrid (H) | ||||||||
SC162 | 2.138 c | 0.732 e | 36.14 c | 10.169 c | 5.599 ab | 0.518 c | 0.735 bc | |
SC166 | 2.170 c | 0.751 d | 36.33 c | 10.125 c | 5.711 ab | 0.520 c | 0.737 bc | |
SC167 | 2.263 b | 0.783 c | 36.77 b | 10.504 b | 5.751 ab | 0.539 ab | 0.751 ab | |
SC168 | 2.344 a | 0.816 a | 37.54 a | 10.876 a | 5.836 a | 0.546 a | 0.763 a | |
SC176 | 2.008 d | 0.700 f | 35.44 d | 9.572 d | 5.389 b | 0.506 d | 0.723 c | |
SC178 | 2.283 b | 0.791 b | 37.31 a | 10.711 ab | 5.437 b | 0.533 b | 0.749 ab | |
ANOVA | DF | p-value | ||||||
Irrigation (I) | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Foliar (F) | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Hybrid (H) | 5 | <0.001 | <0.001 | <0.001 | <0.001 | 0.024 | <0.001 | <0.001 |
I × F | 4 | <0.001 | <0.001 | <0.001 | <0.001 | 0.492 | 0.004 | 0.03 |
I × H | 10 | <0.001 | <0.001 | <0.001 | <0.001 | 0.014 | <0.001 | <0.001 |
F × H | 10 | <0.001 | <0.001 | 0.001 | <0.001 | 0.359 | 0.013 | 0.020 |
I × F × H | 20 | <0.001 | <0.001 | 0.001 | <0.001 | 0.053 | 0.001 | 0.010 |
Studied Factors | RWC (%) | MSI (%) | MDA (µmol/g FW) | EL (%) | Proline (µmol/g DW) | SS (mg/g DW) | CAT (unit/mg protein) | POD (unit/mg protein) | SOD (unit/mg protein) | |
---|---|---|---|---|---|---|---|---|---|---|
Irrigation (I) | ||||||||||
Well-watered | 84.02 a | 79.39 a | 43.22 c | 20.67 c | 65.22 c | 19.54 c | 4.858 c | 8.398 c | 3.356 c | |
Mild drought | 66.99 b | 59.81 b | 56.04 b | 26.65 b | 138.2 b | 35.61 b | 8.605 b | 16.64 b | 6.868 b | |
Severe drought | 47.28 c | 38.51 c | 70.07 a | 31.92 a | 171.3 a | 49.49 a | 13.89 a | 29.60 a | 11.50 a | |
Foliar (F) | ||||||||||
Untreated control | 62.42 b | 54.23 c | 58.36 a | 27.42 a | 120.2 c | 33.28 c | 8.730 b | 17.08 c | 6.598 b | |
Moringa seed extract | 68.29 a | 62.48 a | 55.11 b | 25.60 c | 128.4 a | 36.23 a | 9.554 a | 19.21 a | 7.795 a | |
ɑ-tocopherol | 67.57 a | 61.00 b | 55.86 b | 26.22 b | 126.1 b | 35.13 b | 9.072 a | 18.35 b | 7.329 a | |
Hybrid (H) | ||||||||||
SC162 | 64.15 d | 57.76 c | 57.25 b | 26.92 ab | 123.5 c | 33.89 d | 8.788 e | 17.85 c | 6.796 d | |
SC166 | 65.66 c | 58.33 c | 57.47 b | 26.81 b | 124.3 bc | 34.45 c | 8.966 d | 17.93 c | 7.163 c | |
SC167 | 67.58 b | 61.09 b | 54.60 c | 25.99 c | 126.3 ab | 35.87 b | 9.259 c | 18.79 b | 7.481 b | |
SC168 | 68.88 a | 62.33 a | 54.46 c | 25.43 c | 128.1 a | 36.68 a | 9.914 a | 19.35 a | 7.758 a | |
SC176 | 62.62 e | 55.03 d | 60.25 a | 27.40 a | 121.1 d | 32.27 e | 8.248 f | 16.31 e | 6.472 e | |
SC178 | 67.68 b | 60.87 b | 54.63 c | 25.93 c | 126.0 b | 36.13 b | 9.539 b | 19.04 b | 7.775 a | |
ANOVA | DF | p-value | ||||||||
Irrigation (I) | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Foliar (F) | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Hybrid (H) | 5 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
I × F | 4 | <0.001 | <0.001 | 0.003 | 0.001 | <0.001 | <0.001 | 0.050 | <0.001 | 0.006 |
I × H | 10 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
F × H | 10 | <0.001 | <0.001 | 0.02 | 0.034 | 0.136 | <0.001 | <0.001 | 0.027 | <0.001 |
I × F × H | 20 | <0.001 | 0.001 | 0.024 | <0.001 | 0.182 | <0.001 | <0.001 | 0.001 | 0.001 |
Studied Factors | PH (cm) | No. Rows | No. Grains | TGW (g) | GY (kg/ha) | BY (kg/ha) | CWPg (kg/m3) | CWPb (kg/m3) | |
---|---|---|---|---|---|---|---|---|---|
Irrigation (I) | |||||||||
Well-watered | 243.6 a | 15.28 a | 39.65 a | 254.3 a | 7648 a | 16997 a | 1.053 c | 2.340 c | |
Mild drought | 235.0 b | 14.84 b | 36.64 b | 233.4 b | 6335 b | 14170 b | 1.163 b | 2.602 b | |
Severe drought | 213.4 c | 14.07 c | 30.82 c | 214.5 c | 4533 c | 10448 c | 1.248 a | 2.877 a | |
Foliar (F) | |||||||||
Untreated control | 225.3 b | 14.29 b | 34.71 b | 228.6 c | 5802 b | 13027 b | 1.073 b | 2.425 b | |
Moringa seed extract | 233.7 a | 14.92 a | 36.25 a | 237.8 a | 6365 a | 14471 a | 1.200 a | 2.733 a | |
ɑ-tocopherol | 232.9 a | 14.97 a | 36.15 a | 235.8 b | 6348 a | 14117 a | 1.192 a | 2.662 a | |
Hybrid (H) | |||||||||
SC162 | 233.4 c | 14.24 f | 35.66 d | 242.6 b | 5829 e | 14329 b | 1.095 b | 2.685 d | |
SC166 | 229.2 d | 14.68 c | 37.47 a | 220.5 e | 6338 c | 13293 e | 1.189 d | 2.500 c | |
SC167 | 221.8 f | 15.22 b | 35.84 c | 237.7 d | 6104 d | 14025 c | 1.151 b | 2.653 c | |
SC168 | 226.6 e | 15.05 a | 36.92 b | 239.2 c | 6582 a | 14950 a | 1.223 a | 2.804 a | |
SC176 | 236.3 b | 14.55 d | 34.03 f | 216.2 f | 5787 f | 12818 d | 1.075 e | 2.397 e | |
SC178 | 236.6 a | 14.62 e | 34.29 e | 248.3 a | 6391 b | 13813 f | 1.195 c | 2.601 b | |
ANOVA | DF | p-value | |||||||
Irrigation (I) | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Foliar (F) | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Hybrid (H) | 5 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
I × F | 4 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
I × H | 10 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
F × H | 10 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
I × F × H | 20 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Parameter | Plant Height | No of Rows/Ear | No of Grains /row | 1000-Grain Weight | Biological Yield | Grain Yield |
---|---|---|---|---|---|---|
Genotypic variance | 18.05 | 0.187 | 2.551 | 328.1 | 901,842 | 165,034 |
Environmental variance | 3.560 | 0.020 | 1.071 | 119.34 | 865,676 | 149,352 |
Phenotypic variance | 21.61 | 0.207 | 3.622 | 447.4 | 1,767,518 | 314,386 |
Genotypic coefficient of variance | 1.976 | 3.057 | 5.092 | 7.478 | 8.895 | 8.583 |
Phenotypic coefficient of variance | 2.162 | 3.216 | 6.067 | 8.733 | 12.45 | 11.85 |
Heritability (broad sense) | 83.53 | 90.34 | 70.43 | 73.33 | 51.02 | 52.49 |
Trait | Plant Height | No. of Rows/Ear | No. Grains /Row | 1000-Grain Weight | Biological Yield | CWPb | CWPg |
---|---|---|---|---|---|---|---|
Plant height | 0.088 | −0.280 | −0.001 | 0.417 | 0.133 | 0.033 | −0.087 |
No. of rows per ear | 0.050 | 0.488 | 0.001 | −0.202 | −0.081 | 0.106 | 0.053 |
No. grains per row | 0.062 | 0.308 | 0.002 | −0.204 | −0.121 | 0.044 | 0.079 |
1000-grain weight | −0.044 | −0.119 | −0.0004 | 0.830 | −0.260 | 0.203 | 0.170 |
Biological yield | 0.029 | 0.098 | 0.0005 | 0.536 | 0.403 | 0.184 | 0.263 |
Crop water productivity of biological yield (CWPb) | −0.011 | 0.197 | 0.0003 | 0.647 | −0.284 | 0.265 | 0.185 |
Crop water productivity of grain yield (CWPg) | 0.029 | 0.099 | 0.0005 | 0.536 | −0.403 | 0.183 | 0.261 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, E.; El-Sobky, E.-S.E.A.; Abdul-Hamid, M.I.E.; Abdallah, E.; Zedan, A.M.I.; Serag, A.M.; Silvar, C.; El-Hendawy, S.; Desoky, E.-S.M. Enhancing Drought Tolerance and Water Productivity of Diverse Maize Hybrids (Zea mays) Using Exogenously Applied Biostimulants under Varying Irrigation Levels. Agronomy 2023, 13, 1320. https://doi.org/10.3390/agronomy13051320
Mansour E, El-Sobky E-SEA, Abdul-Hamid MIE, Abdallah E, Zedan AMI, Serag AM, Silvar C, El-Hendawy S, Desoky E-SM. Enhancing Drought Tolerance and Water Productivity of Diverse Maize Hybrids (Zea mays) Using Exogenously Applied Biostimulants under Varying Irrigation Levels. Agronomy. 2023; 13(5):1320. https://doi.org/10.3390/agronomy13051320
Chicago/Turabian StyleMansour, Elsayed, El-Sayed E. A. El-Sobky, Mohamed I. E. Abdul-Hamid, Eman Abdallah, Abdeltawab M. I. Zedan, Ahmed M. Serag, Cristina Silvar, Salah El-Hendawy, and El-Sayed M. Desoky. 2023. "Enhancing Drought Tolerance and Water Productivity of Diverse Maize Hybrids (Zea mays) Using Exogenously Applied Biostimulants under Varying Irrigation Levels" Agronomy 13, no. 5: 1320. https://doi.org/10.3390/agronomy13051320
APA StyleMansour, E., El-Sobky, E. -S. E. A., Abdul-Hamid, M. I. E., Abdallah, E., Zedan, A. M. I., Serag, A. M., Silvar, C., El-Hendawy, S., & Desoky, E. -S. M. (2023). Enhancing Drought Tolerance and Water Productivity of Diverse Maize Hybrids (Zea mays) Using Exogenously Applied Biostimulants under Varying Irrigation Levels. Agronomy, 13(5), 1320. https://doi.org/10.3390/agronomy13051320