Biodiversity of Rhizoctonia solani in Phaseolus vulgaris Seeds in East Delta of Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Process
2.1.1. Determination of Physical and Chemical Properties of Soil Samples
2.1.2. Isolation and Identification of R. solani
2.2. Molecular Identification
2.3. Pathogenicity of R. solani Isolates
2.4. Statistical Analysis
3. Results
3.1. Isolation of R. solani
3.2. Morphological Identification
3.3. The Virulence of R. solani Isolates
3.4. Molecular Characterization
3.5. Relationship Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva-Cristobal, L.; Osorio-Díaz, P.; Tovar, J.; Bello-Pérez, L. Chemical composition, carbohydrate digestibility, and antioxidant capacity of cooked black bean, chickpea, and lentil Mexican varieties Composición química, digestibilidad de carbohidratos, y capacidad antioxidante de variedades mexicanas cocidas de frijol negro, garbanzo, y lenteja. CYTA-J. Food 2010, 8, 7–14. [Google Scholar] [CrossRef]
- Sendi, Y.; Romdhane, S.B.; Mhamdi, R.; Mrabet, M. Diversity and geographic distribution of fungal strains infecting field-grown common bean (Phaseolus vulgaris L.) in Tunisia. Eur. J. Plant Pathol. 2019, 153, 947–955. [Google Scholar] [CrossRef]
- Rabey, J.; Vered, Y.; Shabtai, H.; Graff, E.; Korczyn, A. Improvement of parkinsonian features correlate with high plasma levodopa values after broad bean (Vicia faba) consumption. J. Neurol. Neurosurg. Psychiatry 1992, 55, 725–727. [Google Scholar] [CrossRef] [PubMed]
- Broughton, W.J.; Hernandez, G.; Blair, M.; Beebe, S.; Gepts, P.; Vanderleyden, J. Beans (Phaseolus spp.)–model food legumes. Plant Soil 2003, 252, 55–128. [Google Scholar] [CrossRef]
- Saha, S.; Singh, G.; Mahajan, V.; Gupta, H. Variability of nutritional and cooking quality in bean (Phaseolus vulgaris L.) as a function of genotype. Plant Foods Hum. Nutr. 2009, 64, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Mendoza, C.; Sánchez, E. Bioactive compounds from Mexican varieties of the common bean (Phaseolus vulgaris): Implications for health. Molecules 2017, 22, 1360. [Google Scholar] [CrossRef]
- Awaad, H.A. Approaches in faba bean to mitigate impact of climate change. In Sustainable Agriculture in Egypt; Springer: Berlin/Heidelberg, Germany, 2022; pp. 185–217. [Google Scholar] [CrossRef]
- Hashem, A.H.; Abdelaziz, A.M.; Askar, A.A.; Fouda, H.M.; Khalil, A.M.; Abd-Elsalam, K.A.; Khaleil, M.M. Bacillus megaterium-mediated synthesis of selenium nanoparticles and their antifungal activity against Rhizoctonia solani in Faba Bean Plants. J. Fungi 2021, 7, 195. [Google Scholar] [CrossRef]
- Leisner, C.P.; Potnis, N.; Sanz-Saez, A. Crosstalk and trade-offs: Plant responses to climate change-associated abiotic and biotic stresses. Plant Cell Environ. 2022. [Google Scholar] [CrossRef]
- Singh, S.; Schwartz, H. Breeding common bean for resistance to insect pests and nematodes. Can. J. Plant Sci. 2010, 91, 239–250. [Google Scholar] [CrossRef]
- Mwaipopo, B.; Nchimbi-Msolla, S.; Njau, P.J.; Mark, D.; Mbanzibwa, D.R. Comprehensive surveys of Bean common mosaic virus and Bean common mosaic necrosis virus and molecular evidence for occurrence of other Phaseolus vulgaris viruses in Tanzania. Plant Dis. 2018, 102, 2361–2370. [Google Scholar] [CrossRef]
- Foucher, J.; Ruh, M.; Préveaux, A.; Carrère, S.; Pelletier, S.; Briand, M.; Serre, R.F.; Jacques, M.A.; Chen, N.W.G. Common bean resistance to Xanthomonas is associated with upregulation of the salicylic acid pathway and downregulation of photosynthesis. BMC Genom. 2020, 21, 566. [Google Scholar] [CrossRef]
- FAOSTAT© FAO. Statistics Division. Statistical Yearbook of the Food and Agricultural Organization-FAO. 2017. Available online: www.fao.org/3/i3107e/i3107e03 (accessed on 25 January 2022).
- Van Emden, H.; Ball, S.; Rao, M. Pest, disease and weed problems in pea, lentil, faba bean and chickpea. In World Crops: Cool season Food Legumes; Springer: Berlin/Heidelberg, Germany, 1988; pp. 519–534. [Google Scholar] [CrossRef]
- López-Olmos, K.; Hernández-Delgado, S.; Mayek-Pérez, N. AFLP fingerprinting for Identification of Anastomosis Groups of Rhizoctonia solani Kühn from Common Bean (Phaseolus vulgaris L.) in México. Rev. Mex. Fitopatol. 2005, 23, 147–151. [Google Scholar]
- Derbalah, A.; Shebl, A.M.; Elgobashy, S.F.; Ahmad, A.A.; Ramadan, N.E.; Behiry, S.I.; Abdelkhalek, A.; Saleem, M.H.; Al-Askar, A.A.; Kamran, M.; et al. Resistance induction and direct antifungal activity of some monoterpenes against Rhizoctonia solani, the causal of root rot in common bean. Life 2022, 12, 1040. [Google Scholar] [CrossRef] [PubMed]
- Abawi, G.S. Roots rot. In Bean Production Problems in the Tropics; Schwartz, H.F., PastorCorrales, M.A., Eds.; CIAT: Cali, Colombia, 1989; pp. 105–157. [Google Scholar]
- Ajayi-Oyetundea, O.O.; Bradley, C.A. Rhizoctonia solani: Taxonomy, population biology and management of rhizoctonia seedling disease of soybean. Plant Pathol. 2018, 67, 3–17. [Google Scholar] [CrossRef]
- Mayo-Prieto, S.; Rodríguez-González, Á.; Lorenzana, A.; Gutiérrez, S.; Casquero, P.A. Influence of substrates in the development of bean and in pathogenicity of Rhizoctonia solani JG Kühn. Agronomy 2020, 10, 707. [Google Scholar] [CrossRef]
- Elwakil, M.; El-Refai, I.; Awadallah, O.; El-Metwally, M.; Mohammed, M. Seed-borne pathogens of faba bean in Egypt: Detection and pathogenicity. Plant Pathol. J. 2009, 8, 90–97. [Google Scholar] [CrossRef]
- Dell’Olmo, E.; Zaccardelli, M.; Basile, B.; Corrado, G.; Sigillo, L. Identification and characterization of new seedborne pathogens in Phaseolus vulgaris landraces of Southern Italy. Pathogens 2023, 12, 108. [Google Scholar] [CrossRef]
- Etebu, E.; Nwauzoma, A.B. A mini-review on the development and emerging perspectives of seed pathology. Microbiol. Res. Int. 2017, 5, 1–7. [Google Scholar] [CrossRef]
- Hane, J.K.; Anderson, J.P.; Williams, A.H.; Sperschneider, J.; Singh, K.B. Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8. PLoS Genet. 2014, 10, e1004281. [Google Scholar] [CrossRef]
- Spedaletti, Y.; Mercado Cárdenas, G.; Taboada, G.; Aban, C.; Aparicio, M.; Rodriguero, M.; Vizgarra, O.; Sühring, S.; Galíndez, G.; Galván, M. Molecular identification and pathogenicity of Rhizoctonia spp. recovered from seed and soil samples of the main bean growing area of Argentina. Aust. J. Crop Sci. 2017, 11, 952–958. [Google Scholar] [CrossRef]
- Neergaard, P. Seed Pathology; Revised Edition; The Macmillan Press Ltd.: London, UK, 1979; 1191p. [Google Scholar]
- Zrenner, R.; Genzel, F.; Verwaaijen, B.; Wibberg, D.; Grosch, R. Necrotrophic lifestyle of Rhizoctonia solani AG3-PT during interaction with its host plant potato as revealed by transcriptome analysis. Sci. Rep. 2020, 10, 12574. [Google Scholar] [CrossRef] [PubMed]
- Erlacher, A.; Cardinale, M.; Grosch, R.; Grube, M.; Berg, G. The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front. Microbiol. 2014, 5, 175. [Google Scholar] [CrossRef] [PubMed]
- Garrett, K.A.; Forbes, G.A.; Savary, S.; Skelsey, P.; Sparks, A.H.; Valdivia, C.; van Bruggen, A.H.; Willocquet, L.; Djurle, A.; Duveiller, E. Complexity in climate-change impacts: An analytical framework for effects mediated by plant disease. Plant Pathol. 2011, 60, 15–30. [Google Scholar] [CrossRef]
- Anees, M.; Edel-Hermann, V.; Steinberg, C. Build up of patches caused by Rhizoctonia solani. Soil Biol. Biochem. 2010, 42, 1661–1672. [Google Scholar] [CrossRef]
- Alhussaini, M.S.; Alghonaim, M.; Al-Ghanayem, A.; Al-Yahya, A.; Hefny, H.; Saadabi, A. Characterization of Cladosporium species by Internal Transcribed Spacer-PCR and Microsatellites-PCR. Pak. J. Biol. Sci. 2016, 19, 143–157. [Google Scholar] [CrossRef]
- Dubey, S.C.; Tripathi, A.; Upadhyay, B.K.; Kumar, A. Development of conventional and real time PCR assay for detection and quantification of Rhizoctonia solani infecting pulse crops. Biologia 2016, 71, 133–138. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Chang, J.-Y.; Liu, E.-T.; Chao, C.-P.; Huang, J.-W.; Chang, P.-F.L. Development of a molecular marker for specific detection of Fusarium oxysporum f. sp. cubense race 4. Eur. J. Plant Pathol. 2009, 123, 353–365. [Google Scholar] [CrossRef]
- Johanson, A.; Turner, H.C.; McKay, G.J.; Brown, A.E. A PCR-based method to distinguish fungi of the rice sheath-blight complex, Rhizoctonia solani, R. oryzae and R. oryzae-sativae. FEMS Microbiol. Lett. 1998, 162, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Erper, I.; Ozer, G.; Kalendar, R.; Avci, S.; Yildirim, E.; Alkan, M.; Turkkan, M. Genetic Diversity and Pathogenicity of Rhizoctonia spp. Isolates Associated with Red Cabbage in Samsun (Turkey). J. Fungi 2021, 7, 234. [Google Scholar] [CrossRef] [PubMed]
- Sharon, M.; Sneh, B.; Kuninaga, S.; Hyakumachi, M.; Naito, S. Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. Mycoscience 2008, 49, 93–114. [Google Scholar] [CrossRef]
- Chambers, F.M.; Beilman, D.; Yu, Z. Methods for Determining Peat Humification and for Quantifying Peat Bulk Density, Organic Matter and Carbon Content for Palaeostudies of Climate and Peatland Carbon Dynamics. Mires Peat 2011, 7, 1–10. [Google Scholar]
- Dhingra, O.; Sinclair, J. Location of Macrophomina phaseoli on soybean plants related to culture characteristics and virulence. Phytopathology 1973, 63, 934–936. [Google Scholar] [CrossRef]
- Sneh, B.; Burpee, L.; Ogoshi, A. Identification of Rhizoctonia Species; American Phytopathological Society Press: St. Paul, MN, USA, 1991; pp. 1–133. [Google Scholar]
- Carling, D.E.; Pope, E.J.; Brainard, K.A.; Carter, D.A. Characterization of mycorrhizal isolates of Rhizoctonia solani from an orchid, including AG-12, a new anastomosis group. Phytopathology 1999, 89, 942–946. [Google Scholar] [CrossRef] [PubMed]
- Ajayi-Oyetunde, O.O.; Bradley, C.A. Identification and characterization of Rhizoctonia species associated with soybean seedling disease. Plant Dis. 2017, 101, 520–533. [Google Scholar] [CrossRef]
- Wilfinger, W.W.; Mackey, K.; Chomczynski, P. Assessing the quantity, purity and integrity of RNA and DNA following nucleic acid purification. In DNA Sequencing II Optimizing Preparation and Cleanup; Sudbury, K.J., Ed.; Jones and Bartlett Publishers: Burlington, MA, USA, 2006; Chapter 16; pp. 291–312. [Google Scholar]
- Sneh, B.; Jabaji-Hare, S.; Neate, S.; Dijst, G. Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control, 1st ed.; American Phytopathological Society: St. Paul, MN, USA, 1996; pp. 1–133. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: London, UK, 1990; Volume 18, pp. 315–322. [Google Scholar]
- Vilgalys, R.; Hopple, J.S., Jr.; Hibbett, D.S. Phylogenetic implications of generic concepts in fungal taxonomy: The impact of molecular systematic studies. Mycol. Helv. 1994, 6, 73–91. [Google Scholar]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547. [Google Scholar] [CrossRef]
- Shan, Q.; Wang, Y.; Chen, K.; Liang, Z.; Li, J.; Zhang, Y.; Zhang, K.; Liu, J.; Voytas, D.F.; Zheng, X. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol. Plant 2013, 6, 1365–1368. [Google Scholar] [CrossRef]
- CoStat. CoHort Software, Version 6.4. 798 Lighthouse Ave. PMB 320; Cohort Software Ltd: Monterey, CA, USA, 2008; Available online: https://www.cohortsoftware.com/costat.html (accessed on 5 February 2022).
- Akber, M.A.; Mubeen, M.; Sohail, M.A.; Khan, S.W.; Solanki, M.K.; Khalid, R.; Abbas, A.; Divvela, P.K.; Zhou, L. Global distribution, traditional and modern detection, diagnostic, and management approaches of Rhizoctonia solani associated with legume crops. Front. Microbiol. 2023, 13, 1091288. [Google Scholar] [CrossRef]
- Aydin, M.H. Rhizoctonia solani and its biological control. Turk. J. Agric. Res. 2022, 9, 118–135. [Google Scholar] [CrossRef]
- El-Benawy, N.M.; Abdel-Fattah, G.M.; Ghoneem, K.M.; Shabana, Y.M. Antimicrobial activities of Trichoderma atroviride against common bean seed-borne Macrophomina phaseolina and Rhizoctonia solani. Egypt. J. Basic Appl. Sci. 2020, 7, 267–280. [Google Scholar] [CrossRef]
- Mahmoud, S.Y.; Hosseny, M.H.; Obiadalla, A.H. Seed borne fungal pathogens associated with common bean (Phaseolus vulgaris L.) seeds and their impact on germination. J. Environ. Sci. Stud. 2013, 11, 19–26. [Google Scholar] [CrossRef]
- Abu-Tahon, M.; Mogazy, A.; Isaac, G. Resistance assessment and enzymatic responses of common bean (Phaseolus vulgaris L.) against Rhizoctonia solani damping-off in response to seed presoaking in Vitex agnus-castus L. oils and foliar spray with zinc oxide nanoparticles. S. Afr. J. Bot. 2022, 146, 77–89. [Google Scholar] [CrossRef]
- Valentín Torres, S.; Vargas, M.M.; Godoy-Lutz, G.; Porch, T.G.; Beaver, J.B. Isolates of Rhizoctonia solani can produce both web blight and root rot symptoms in common bean (Phaseolus vulgaris L.). Plant Dis. 2016, 100, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Oladzad, A.; Zitnick-Anderson, K.; Jain, S.; Simons, K.; Osorno, J.M.; McClean, P.E.; Pasche, J.S. Genotypes and genomic regions associated with Rhizoctonia solani resistance in common bean. Front. Plant Sci. 2019, 10, 956. [Google Scholar] [CrossRef]
- Tachibana, H. Rhizoctonia solani root rot epidemic of soybeans in central Iowa 1967. Plant Dis. Rep. 1968, 52, 613–614. [Google Scholar]
- Liu, Z.; Sinclair, J.B. Isolates of Rhizoctonia solani anastomosis group 2-2 pathogenic to soybean. Plant Dis. 1991, 75, 682–687. [Google Scholar] [CrossRef]
- van Bruggen, A.H.C.; Whalen, C.H.; Arneson, P.A. Emergence, growth, and development of dry bean seedlings in response to temperature, soil moisture, and Rhizoctonia solani. Phytopathology 1986, 76, 568–572. [Google Scholar] [CrossRef]
- van Bruggen, A.H.; Gamliel, A.; Finckh, M.R. Plant disease management in organic farming systems. Pest Manag. Sci. 2016, 72, 30–44. [Google Scholar] [CrossRef]
- Harris, K.; Young, I.M.; Gilligan, C.A.; Otten, W.; Ritz, K. Effect of bulk density on the spatial organisation of the fungus Rhizoctonia solani in soil. FEMS Microbiol. Ecol. 2003, 44, 45–56. [Google Scholar] [CrossRef]
- Ghosh, S.; Kanwar, P.; Jha, G. Alterations in rice chloroplast integrity, photosynthesis and metabolome associated with pathogenesis of Rhizoctonia solani. Sci. Rep. 2017, 7, 41610. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Zhu, C.; Kramer, M.; Yang, S.; Song, W.; Piepho, H.; Yu, J. Variation explained in mixed-model association mapping. Heredity 2010, 105, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Costa-Coelho, G.R.; de Toledo-Souza, E.D.; Café-Filho, A.C.; Lobo, M. Dynamics of common bean web blight epidemics and grain yields in different tillage systems. Trop. Plant Pathol. 2016, 41, 306–311. [Google Scholar] [CrossRef]
- Bolkan, H.; Ribeiro, W. Anastomosis groups and pathogenicity of Rhizoctonia solani isolates from Brazil. Plant Dis. 1985, 69, 599–601. [Google Scholar] [CrossRef]
- Bolkan, H.A.; Butler, E.E. Studies on heterokaryosis and virulence of Rhizoctonia solani. Phytopathology 1974, 64, 13–522. [Google Scholar] [CrossRef]
- Mahendra, K.; Baiswar, P.; Chandra, S.; Choudhury, B.; Majumder, D.; Rajesh, T.; Firake, D. Molecular characterization and influence of soil factors on isolates of Rhizoctonia solani in Meghalaya. Indian Phytopathol. 2016, 69, 271. [Google Scholar]
- Echávez-Badel, R.; Gómez-Galué, J.E.; Alameda-Lozada, M. Characterization of Rhizoctonia spp. isolates collected from Phaseolus vulgaris in Puerto Rico. J. Agrie. Univ. Puerto Rico 2000, 84, 79–86. [Google Scholar] [CrossRef]
- Bohlooli, A.; Okhovvat, S.M.; Javan-Nikkhah, M. Identification of anastomosis group of Rhizotonia solani, the causal agent of seed root and damping-off of bean in Iran. Commun. Agric. App. Biol. Sci. 2005, 70, 137–141. [Google Scholar]
- Mikhail, M.S.; Sabet, K.K.; Omar, M.R.; Asran, A.A.; Kasem, K.K. Current Rhizoctonia solani anastomosis groups in Egypt and their pathogenic relation to cotton seedlings. Afr. J. Microbiol. Res. 2010, 4, 386–395. [Google Scholar]
- Rashad, Y.M.; Abdel-Fattah, G.M.; Hafez, E.E.; El-Haddad, S.A. Diversity among some Egyptian isolates of Rhizoctonia solani based on anastomosis grouping, molecular identification and virulence on common bean. Afr. J. Microbiol. Res. 2012, 6, 6661–6667. [Google Scholar] [CrossRef]
- Meinhardt, L.W.; Wulff, N.A.; Bellato, C.M.; Tsai, S.M. Genetic analyses of Rhizoctonia solani isolates from Phaseolus vulgaris grown in the Atlantic Rainforest Region of São Paulo, Brazil. Fitopatol. Brasil. 2002, 27, 259–267. [Google Scholar] [CrossRef]
- Kataria, H.R.; Grover, R.K. Influence of soil factors, fertilizers and manures on pathogenicity of Rhizoctonia solani on Vigna species. Plant Soil 1987, 103, 57–66. [Google Scholar] [CrossRef]
- Grosch, R.; Kofoet, A. Influence of temperature, pH and inoculum density on bottom rot on lettuce caused by Rhizoctonia solani/Einfluss von Temperatur, pH und Inokulumdichte auf die Salatfäule verursacht durch Rhizoctonia solani. J. Plant Dis. Prot. 2003, 110, 366–378. [Google Scholar]
- Datta, S.; Das, S.; Sarkar, A.; Tarafdar, J.; Chowdhury, A. Assessing the effects of varied temperature and pH on the growth and sclerotial formation of Rhizoctonia solani Kuhn, isolated from paddy field: A case study. Int. J. Life Sci. 2014, 8, 4–9. [Google Scholar] [CrossRef]
- Velásquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant and pathogen warfare under changing climate conditions. Curr. Biol. 2018, 28, 619–634. [Google Scholar] [CrossRef]
- Benson, D.M.; Baker, R. Epidemiology of Rhizoctonia solani pre emergence damping-off of radish: Survival. Phytopathology 1974, 64, 1163–1168. [Google Scholar] [CrossRef]
Isolates No. | Linear Growth (mm) | Number of Sclerotia | Sclerotial Formation Days | Sclerotial Location | |
---|---|---|---|---|---|
White | Brown | ||||
RSA1 | 90.0 a * | 23.33 e | 3.0 a | 5.0 a | Aerial |
RIT2 | 90.0 a | 25.00 d,e | 3.0 a | 5.0 a | Aerial |
RIF3 | 65.8 c | 73.33 b | 5.0 a | 7.0 a | Surface |
RSoR4 | 90.0 a | 83.33 a | 4.0 a | 6.0 a | Surface |
RNB5 | 83.3 b | 26.66 d,e | 4.0 a | 6.0 a | Aerial |
RSzA6 | 90.0 a | 39.33 c | 5.0 a | 7.0 a | Surface |
RPS11 | 90.0 a | 29.33 d | 5.0 a | 7.0 a | Surface |
p value at 0.05 | 0.000 | 0.000 | 0.0210 | 0.0159 |
Isolates Code | Disease Incidence % | ||
---|---|---|---|
Pre-Emergence Damping Off * | Post-Emergence Damping Off * | Survival * | |
RSA1 | 20.00 c,d ** | 15.8 a–c | 64.20 b |
RIT2 | 26.67 a,b | 18.0 a | 55.33 b |
RIF3 | 29.00 a | 11.0 c | 60.00 b |
RSoR4 | 25.00 a–c | 15.0 a–c | 60.00 b |
RNB5 | 30.00 a | 12.0 b,c | 58.00 b |
RSzA6 | 22.00 b–d | 17.0 a,b | 61.00 b |
RPS11 | 17.00 d | 20.0 a | 63.00 b |
Control (without infection) | 0.000 e | 0.00 d | 100.0 a |
p value at 0.05 | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghoneem, K.M.; El-Wakil, D.A.; Ahmed, M.I.M.; Kamel, H.M.; Rashad, E.M.; Al-Askar, A.A.; Elsherbiny, E.A.; Ibrahim, A.A. Biodiversity of Rhizoctonia solani in Phaseolus vulgaris Seeds in East Delta of Egypt. Agronomy 2023, 13, 1317. https://doi.org/10.3390/agronomy13051317
Ghoneem KM, El-Wakil DA, Ahmed MIM, Kamel HM, Rashad EM, Al-Askar AA, Elsherbiny EA, Ibrahim AA. Biodiversity of Rhizoctonia solani in Phaseolus vulgaris Seeds in East Delta of Egypt. Agronomy. 2023; 13(5):1317. https://doi.org/10.3390/agronomy13051317
Chicago/Turabian StyleGhoneem, Khalid M., Deiaa A. El-Wakil, Mohamed I. M. Ahmed, Hisham M. Kamel, Ehsan M. Rashad, Abdulaziz A. Al-Askar, Elsherbiny A. Elsherbiny, and Amira A. Ibrahim. 2023. "Biodiversity of Rhizoctonia solani in Phaseolus vulgaris Seeds in East Delta of Egypt" Agronomy 13, no. 5: 1317. https://doi.org/10.3390/agronomy13051317
APA StyleGhoneem, K. M., El-Wakil, D. A., Ahmed, M. I. M., Kamel, H. M., Rashad, E. M., Al-Askar, A. A., Elsherbiny, E. A., & Ibrahim, A. A. (2023). Biodiversity of Rhizoctonia solani in Phaseolus vulgaris Seeds in East Delta of Egypt. Agronomy, 13(5), 1317. https://doi.org/10.3390/agronomy13051317