Effects of Nitrogen Fertilizer on Photosynthetic Characteristics and Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Crop Management
2.1.1. Photosynthetic Pigment and Chlorophyll Fluorescence Parameters
2.1.2. Yield Components
2.1.3. Grain Total Sucrose, Soluble Sugar, and Starch Content
2.1.4. Grain Protein and Its Components
2.1.5. Physiological and Biochemical Traits Measurement
2.1.6. Statistical Analysis
3. Results
3.1. Activities of Enzymes
3.2. Photosynthetic Characteristics
3.2.1. Regulation of Nitrogen Application on Aboveground Nitrogen Allocation
3.2.2. Regulation of Pre-Flowering Nitrogen Transfer Volume and Transfer Efficiency by Nitrogen Fertilizer
3.2.3. Regulation of Post-Flowering Dry Matter and Nitrogen Accumulation by Nitrogen Fertilizer
3.2.4. Effects of Nitrogen Application on SPAD Leaf of Winter Wheat
3.2.5. Effects of Nitrogen Application Rate on Grain Protein
3.2.6. Effects of Nitrogen Application on Grain Yield and Yield Components
3.2.7. Effects of Nitrogen Application on Starch Contents
3.2.8. Correlation Analysis of Yield with Photosynthesis in Flag Leaves of Wheat
4. Discussion
4.1. Effects of Different Nitrogen Applications on Photosynthesize Characteristics
4.2. Effects of Different Nitrogen Applications on Yield Formation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO (Food and Agriculture Organization). Available online: http://www.fao.org/faostat2019-07-05 (accessed on 27 May 2023).
- Lv, C.H.; Huang, Y.; Sun, W. Response of rice yield and yield components to elevated CO2: A synthesis of updated data from FACE experiments. Eur. J Agron. 2020, 112, 2020. [Google Scholar] [CrossRef]
- Lu, D.J.; Lu, F.F.; Yan, P.; Cui, Z.L.; Chen, X.P. Elucidating population establishment associated with N management and cultivars for wheat production in China. Field Crop. Res. 2014, 163, 81–89. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.J.; Dai, J.L. High plant density inhibits vegetative branching in cotton by altering hormone contents and photosynthetic production. Field Crop. Res. 2019, 230, 121–131. [Google Scholar] [CrossRef]
- Kitonyo, O.M.; Sadras, V.O.; Zhou, Y. Nitrogen supply and sink demand modulate the patterns of leaf senescence in maize. Field Crop. Res. 2018, 225, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Gregersen, P.L.; Culetic, A.; Boschian, L. Plant senescence and crop productivity. Plant Mol. Biol. 2013, 82, 603–622. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.Y.; Kuai, B.K.; Jia, J.Z. Regulation of leaf senescence and crop genetic improvement. Integr. Plant Biol. 2012, 54, 936–952. [Google Scholar] [CrossRef]
- Thomas, H.; Ougham, H. Senescence and crop performance. In Crop Physiology: Applications for Genetic Imprment and Agro; Sadras, V.O., Calderini, D.F., Eds.; Elsevier: London, UK, 2015; pp. 223–249. [Google Scholar]
- Maddonni, G.; Otegui, M.E. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crop. Res. 2001, 71, 183–193. [Google Scholar] [CrossRef]
- Dong, H.Z.; Li, W.J.; Eneji, A.E.; Zhang, D.M. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crop. Res. 2012, 126, 137–144. [Google Scholar] [CrossRef]
- Su, W.N.; Kamran, M.; Xie, J. Shoot and root traits of summer maize hybrid varieties with higher grain yields and higher nitrogen use efficiency at low nitrogen application rates. Peer J. 2019, 7, e7294. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Davidson, E.A. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Li, Y.; Nie, J. Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.). Field Crop. Res. 2018, 219, 160–168. [Google Scholar] [CrossRef]
- Ma, F.Y.; Baik, K. Soft wheat quality characteristics required for making baking powder biscuits. Cereal Sci. 2018, 79, 127–133. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, T.; Tian, X.; Wang, X.; Li, M.; Wang, S.; Wang, Z. Effects of plastic film combined with straw mulch on grain yield and water use efficiency of winter wheat in Loess Plateau. Field Crops Res. 2015, 172, 53–58. [Google Scholar] [CrossRef]
- Zheng, B.; Zhao, H.; Zhou, Q.; Cai, J. Relationships of protein composition, gluten structure and dough rheological properties with short biscuits quality of soft wheat varieties. Agron. J. 2020, 112, 1921–1930. [Google Scholar] [CrossRef]
- Liu, C.A.; Li, F.R.; Zhou, L.M.; Zhang, R.H.; Lin, S.L.; Wang, L.J. Effect of organic manure and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semi-arid environment. Agric. Water Manag. 2013, 117, 123–132. [Google Scholar] [CrossRef]
- Lin, Y.C.; Hu, Y.G.; Ren, C.Z. Effects of nitrogen application on chlorophyll fluorescence parameters and leaf gas exchange in naked oat. Integr. Agric. 2013, 12, 2164–2171. [Google Scholar] [CrossRef] [Green Version]
- Dordas, C.A. Variation in dry matter and nitrogen accumulation and remobilization in barley as affected by fertilization, cultivar, and source–sink relations. Eur. J. Agron. 2012, 37, 31–42. [Google Scholar] [CrossRef]
- Shangguan, Z.; Shao, M.; Dyckmans, J. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. Plant Physiol. 2000, 156, 46–51. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, H.; Li, W.P. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crop. Res. 2018, 218, 150–157. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, F.; Wang, G.; Zhang, G.; Wang, Y.; Chen, X.; Mao, Z. Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. Seedlings under replant conditions. Sci. Hortic. 2014, 175, 9–15. [Google Scholar] [CrossRef]
- Noor, H.; Sun, M.; Fiaz, S.; Gao, Z. Chlorophyll fluorescence and grain filling characteristic of wheat (Triticum aestivum L.) in response to nitrogen application level. Mol. Biol. Rep. 2022, 49, 7157–7172. [Google Scholar] [CrossRef] [PubMed]
- Monneveux, P.; Pastenes, C.; Reynolds, M.P. Limitations to photosynthesis under light and heat stress in three high-yielding wheat genotypes. J. Plant Physiol. 2003, 160, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Z.; Ke, Q.; Ji, C.Y.; Jeong, J.C.; Lee, H.S.; Lim, Y.P.; Xu, B. Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa. Plant Physiol. Biochem. 2014, 85, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.B.; Kim, Y.H.; Lee, H.S.; Kim, K.Y.; Deng, X.P.; Kwak, S.S. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol. Biochem. 2009, 47, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Noctor, G. Oxidant and antioxidant signalling in plants: A re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 2005, 28, 1056–1071. [Google Scholar] [CrossRef]
- Li, P.B.; Fang, G.S.; Ti, D.G.; Zhao, H.S.; Yin, Y.L.; Guang, S.Z. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere 2006, 16, 326–332. [Google Scholar]
- Deng, X.P.; Shan, L.; Zhang, H.; Turner, N.C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 2006, 80, 23–40. [Google Scholar] [CrossRef]
- Li, C.; Cao, W.; Dai, T. Dynamic characteristics of floret primordium development in wheat. Field Crops Res. 2001, 71, 71–76. [Google Scholar] [CrossRef]
- Li, F.; Wei, C.; Zhang, F.; Zhang, J.; Nong, M.; Kang, S.Z. Water-use efficiency and physiological responses of maize under partial root-zone irrigation. Agric. Water Manag. 2010, 97, 1156–1164. [Google Scholar] [CrossRef]
- Wang, X.; Cai, D.; Hoogmoed, W.B.; Oenema, O. Crop residue, manure and fertilizer in dryland maize under reduced tillage in northern China: I grain yields and nutrient use efficiencies. Nutr. Cycl. Agroecosyst. 2007, 79, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Yu, J.; Nong, M.; Kang, S.; Zhang, J. Partial root-zone irrigation enhanced soil enzyme activities and water use of maize under different ratios of inorganic to organic nitrogen fertilizers. Agric. Water Manag. 2010, 97, 231–239. [Google Scholar] [CrossRef]
- Li, H.; Cai, J.; Jiang, D.; Liu, F.; Dai, T.; Cao, W. Carbohydrates accumulation and remobilization in wheat plants as influenced by combined waterlogging and shading stress during grain filling. J. Agron. Crop Sci. 2013, 199, 38–48. [Google Scholar] [CrossRef]
- Mullen, R.W.; Raun, W.R. Identifying an in-season response index and the potential to increase wheat yield with nitrogen. J. Agron. 2003, 95, 347–351. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, R.K.; Kaur, J. Assessment of the nitrogen management strategy using an optical sensor for irrigated wheat. J. Agron. Sustain. Dev. 2011, 31, 589–603. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Feng, L.; Liu, Q. Effect of interactions between light intensity and red-to-far-red ratio on the photosynthesis of soybean leaves under shade condition. Environ. Exp. Bot. 2018, 150, 79–87. [Google Scholar] [CrossRef]
- Yu, X.; Chen, X.; Wang, L.; Yang, Y.; Xiong, F. Novel insights into the effect of nitrogen on storage protein biosynthesis and protein body development in wheat caryopsis. J. Exp. Bot. 2017, 68, 2259–2274. [Google Scholar] [CrossRef]
- Wu, Y.W.; Li, Q.; Jin, R. Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low nitrogen tolerances. Integr. Agric. 2019, 18, 1246–1256. [Google Scholar] [CrossRef]
- Noor, H.; Wang, Q.; Sun, M.; Fida, N.; Gao, Z.Q. Effects of sowing methods and nitrogen rates on photosynthetic characteristics, yield and quality of winter wheat. Photosynthetica 2021, 59, 277–285. [Google Scholar] [CrossRef]
- Shanahan, J.F.; Kitchen, N.R.; Raun, W.R. Responsive in season nitrogen management for cereals. Comput. Electron. Agric. 2008, 61, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Acreche, M.M.; Slafer, G.A. Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crops Res. 2011, 122, 40–48. [Google Scholar] [CrossRef]
- Dordas, C.A.; Sioulas, C. Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions. Ind. Crop. Prod. 2008, 27, 75–85. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, J.; Zhao, J.; Ma, Y.; Li, Q. Effects of delayed irrigation during the jointing stage on the photosynthetic characteristics and yield of winter wheat under different planting patterns. Agric. Water Manag. 2019, 221, 371–376. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, B. Effects of Nitrogen on Winter Wheat Growth under Different Salt Stress. J. Irrig. Drain. 2019, 38, 36–40. [Google Scholar]
- Messinger, S.M.; Buckley, T.N. Evidence for involvement of photosynthetic processes in the stomatal response to CO2. Plant Physiol. 2006, 140, 771–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takashima, T.; Hikosaka, K.; Hirose, T. Photosynthesis or persistence: Nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ. 2004, 27, 1047–1054. [Google Scholar] [CrossRef]
- Flowers, M.; Weisz, R.; Heiniger, R.; Osmond, D. Inseason optimization and site-specific nitrogen management for soft red winter wheat. Agron. J. 2004, 96, 124–134. [Google Scholar] [CrossRef]
- Gaju, O.; Allard, V.; Martre, P.; Le Gouis, J.; Moreau, D.; Bogard, M.; Hubbart, S.; Foulkes, M.J. Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars. Field Crops Res. 2014, 155, 213–223. [Google Scholar] [CrossRef]
- Noor, H.; Sun, M.; Lin, W.; Gao, Z. Effect of Different Sowing Methods on Water Use Efficiency and Grain Yield of Wheat in the Loess Plateau, China. Water 2022, 14, 577. [Google Scholar] [CrossRef]
- Noor, H.; Min, S.; Yu, S.; Lin, W. Different sowing methods increase the yield and quality of soil water consumption of dryland Winter wheat on the loess plateau China. Appl. Ecol. Environ. Res. 2020, 18, 8285–8308. [Google Scholar] [CrossRef]
- Ferrante, A.; Savin, R.; Slafer, G.A. Differences in yield physiology between modern, well adapted durum wheat cultivars grown under contrasting conditions. Field Crops Res. 2012, 136, 52–64. [Google Scholar] [CrossRef]
- Noor, H.; Sun, M.; Gao, Z. Effects of Nitrogen on Photosynthetic Productivity and Yield Quality of Wheat (Triticum aestivum L.). Agronomy 2023, 13, 1448. [Google Scholar] [CrossRef]
- Ju, C.; Buresh, R.J.; Wang, Z.; Zhang, H.; Liu, L.; Yang, J.C.; Zhang, J.H. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res. 2015, 175, 47–55. [Google Scholar] [CrossRef]
- Huang, G.B.; Qiang, C.; Feng, F.X.; Yu, A.Z. Effects of different tillage systems on soil properties, root growth, grain yield, and water use efficiency of winter wheat (Triticum aestivum L.) in arid Northwest China. J. Integr. Agric. 2012, 11, 1286–1296. [Google Scholar] [CrossRef]
- Pask, A.; Sylvester-Bradley, R.; Jamieson, P.; Foulkes, M. Quantifying how winter wheat crops accumulate and use nitrogen reserves during growth. Field Crops Res. 2012, 126, 104–118. [Google Scholar] [CrossRef]
- Sun, M.; Gao, Z.; Zhao, W.; Deng, L.; Deng, Y.; Zhao, H.; Ren, A.; Yang, Z. Effect of subsoiling in fallow period on soil water storage and grain protein accumulation of dryland wheat and its regulatory effect by nitrogen application. PLoS ONE 2013, 8, e75191. [Google Scholar] [CrossRef] [PubMed]
- Hao, B.; Xue, Q.; Marek, T.H.; Jessup, K.E.; Hou, X.; Xu, W.; Bynum, E.D.; Bean, B.W. Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains. Agric. Water Manag. 2015, 155, 11–21. [Google Scholar] [CrossRef]
- Tao, Z.; Wang, D.; Ma, S.; Yang, Y. Light interception and radiation use efficiency response to tridimensional uniform sowing in winter wheat. Integr. Agric. 2018, 17, 566–578. [Google Scholar] [CrossRef]
- Tian, H.; Fu, J.; Drijber, R.A.; Gao, Y.J. Expression patterns of five genes involved in nitrogen metabolism in two winter wheat (Triticum aestivum L.) genotypes with high and low nitrogen utilization efficiencies. J. Cereal Sci. 2015, 61, 48–54. [Google Scholar] [CrossRef]
Year | Organic Matter (g kg−1) | Total N (g kg−1) | Alkaline N (mg kg−1) | Olsen P (mg kg−1) | Available K (mg kg−1) |
---|---|---|---|---|---|
2019–2020 | 9.89 | 1.07 | 42.78 | 11.66 | 206.74 |
2020–2021 | 9.69 | 0.99 | 43.06 | 10.95 | 194.53 |
2021–2022 | 9.61 | 1.06 | 44.07 | 10.71 | 188.87 |
Year | N Application (kg ha−1) | Anthesis (%) | Harvest (%) | |||||
---|---|---|---|---|---|---|---|---|
Stems + Sheath | Leaves | Ears | Stems + Sheath | Leaves | Chaff | Grains | ||
2019–2020 | N0 | 36.08 b | 44.69 a | 19.23 b | 7.29 c | 6.82 b | 8.93 a | 76.96 a |
N120 | 42.82 a | 35.64 b | 21.54 ab | 9.69 b | 7.04 b | 7.80 b | 75.47 a | |
N150 | 37.57 b | 39.02 b | 23.41 a | 11.07 a | 9.90 a | 7.61 b | 71.41 a | |
N210 | 40.91 ab | 36.62 b | 22.46 a | 12.27 a | 9.35 a | 7.33 b | 71.05 a | |
2020–2021 | N0 | 21.71 b | 54.99 a | 23.30 a | 12.00 b | 8.35 b | 14.08 ab | 65.57 a |
N120 | 23.97 b | 52.86 ab | 23.18 a | 12.25 b | 8.43 b | 13.26 b | 66.07 a | |
N150 | 28.34 a | 46.84 bc | 24.82 a | 12.98 b | 7.08 c | 15.10 a | 64.84 a | |
N210 | 30.99 a | 44.04 c | 24.97 a | 14.91 a | 9.93 a | 15.09 a | 60.07 a | |
2021–2022 | N0 | 40.15 b | 33.27 b | 26.58 ab | 21.52 ab | 7.28 b | 9.35 b | 61.85 a |
N120 | 46.57 a | 25.90 c | 27.54 a | 23.14 a | 6.11 b | 10.84 a | 59.91 ab | |
N150 | 39.10 b | 35.55 ab | 25.35 ab | 19.14 b | 13.49 a | 10.35 ab | 57.03 ab | |
N210 | 36.70 b | 39.21 a | 24.08 b | 21.41 ab | 13.21 a | 10.45 ab | 54.94 b | |
Probability level of ANOVA | ||||||||
Y | ** | ** | ns | *** | *** | *** | ** | |
N | *** | *** | ** | *** | *** | ns | * | |
Y × N | ** | *** | * | *** | ** | ** | ns |
Year | N Application (kg ha−1) | N Remobilization NR (g m−2) | N Remobilization Efficiency NRE (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Stems + Sheath | Leaves | Chaff | Sum | Stems + Sheath | Leaves | Chaff | Whole Aboveground | ||
2019–2020 | N0 | 3.24 c | 3.70 c | 0.89 d | 7.83 d | 72.88 a | 79.52 a | 37.66 c | 69.07 a |
N120 | 4.19 b | 4.38 bc | 1.51 c | 10.08 c | 67.95 a | 72.05 ab | 48.71 b | 65.27 b | |
N150 | 4.50 b | 5.06 b | 2.63 b | 12.19 b | 62.23 b | 67.45 b | 58.30 a | 63.34 b | |
N210 | 6.19 a | 5.99 a | 3.24 a | 15.42 a | 64.76 ab | 69.99 b | 61.63 a | 65.97 ab | |
2020–2021 | N0 | 0.44 d | 3.61 b | 0.34 d | 4.40 c | 24.64 c | 79.31 ab | 17.65 c | 53.07 a |
N120 | 0.69 c | 3.74 b | 0.50 c | 4.92 c | 32.00 b | 78.79 ab | 23.90 b | 54.86 a | |
N150 | 1.51 b | 4.58 a | 0.76 b | 6.84 b | 43.50 a | 81.35 a | 24.95 b | 56.63 a | |
N210 | 1.91 a | 4.65 a | 1.02 a | 7.58 a | 43.48 a | 73.50 b | 28.95 a | 53.07 a | |
2021–2022 | N0 | 1.15 c | 2.27 c | 1.43 c | 5.11 b | 28.13 b | 70.67 a | 52.87 a | 48.86 a |
N120 | 2.20 b | 2.40 c | 1.74 b | 6.34 b | 38.25 ab | 70.66 a | 51.05 a | 50.17 a | |
N150 | 3.01 a | 3.93 b | 2.64 a | 9.91 a | 43.52 a | 56.21 b | 52.90 a | 50.41 a | |
N210 | 3.34 a | 5.30 a | 2.68 a | 11.73 a | 34.44 b | 62.15 b | 51.24 a | 49.35 a | |
Probability level of ANOVA | |||||||||
Y | *** | *** | *** | *** | *** | *** | *** | *** | |
N | *** | *** | *** | *** | ** | ** | *** | ns | |
Y × N | ** | *** | ** | ** | ** | * | *** | ns |
Year | N Application (kg ha−1) | Biomass (Mg ha−1) | PADMA | PANU | |
---|---|---|---|---|---|
Anthesis | Maturity | Mg ha−1 | kg ha−1 | ||
2019–2020 | N0 | 6.53 d | 10.65 c | 4.12 c | 42.20 b |
N120 | 8.32 c | 12.99 c | 4.67 b | 59.90 a | |
N150 | 9.90 b | 14.91 b | 4.96 b | 54.30 ab | |
N210 | 11.82 a | 17.37 a | 5.55 a | 41.00 b | |
2020–2021 | N0 | 5.03 c | 7.12 c | 2.09 a | 30.10 a |
N120 | 6.19 b | 8.46 b | 2.27 a | 29.60 a | |
N150 | 7.56 a | 9.61 a | 2.05 a | 28.50 a | |
N210 | 7.7 a | 9.74 a | 2.04 a | 24.80 b | |
2021–2022 | N0 | 8.27 c | 11.59 b | 3.32 b | 34.70 a |
N120 | 9.01 b | 12.45 b | 3.44 b | 30.10 b | |
N150 | 10.62 a | 15.34 a | 4.72 a | 30.30 b | |
N210 | 11.35 a | 15.62 a | 4.27 a | 27.00 b | |
Probability level of ANOVA | |||||
Y | *** | *** | *** | *** | |
N | ** | ** | ** | ns | |
Y × N | * | * | * | ns |
Year | N Application (kg ha−1) | Growth Stage | |||
---|---|---|---|---|---|
0 Day | 5 Day | 10 Day | 15 Day | ||
2019–2020 | N0 | 46.38 a | 52.79 c | 53.1 a | 46.37 a |
N120 | 46.19 a | 53.28 b | 54.72 a | 47.97 a | |
N150 | 47.47 a | 54.12 a | 55.75 a | 49.47 a | |
N210 | 47.14 a | 53.17 bc | 55.62 a | 47.77 a | |
Mean | 46.79 | 53.34 | 54.80 | 47.90 | |
2020–2021 | N0 | 45.64 b | 51.40 b | 51.77 a | 45.67 a |
N120 | 45.75 ab | 52.34 a | 53.01 a | 46.07 a | |
N150 | 46.25 a | 52.73 a | 53.19 a | 47.27 a | |
N210 | 46.29 a | 52.79 a | 53.34 a | 47.57 a | |
Mean | 45.98 | 52.32 | 52.83 | 46.65 | |
2021–2022 | N0 | 43.88 b | 49.53 c | 50.97 b | 43.65 a |
N120 | 45.86 a | 49.84 c | 51.37 b | 45.64 a | |
N150 | 45.3 a | 51.53 a | 52.77 a | 45.67 a | |
N210 | 45.07 a | 50.54 b | 51.77 ab | 45.07 a | |
Mean | 45.03 | 50.35 | 51.72 | 45.01 | |
Probability level of ANOVA | |||||
Y | * | ** | * | * | |
N | ns | ** | * | ns | |
Y × N | ns | * | ns | ns |
Year | N Application (kg ha−1) | Albumin (%) | Gliadin (%) | Glutenin (%) | Glu/Gli | Protein (%) |
---|---|---|---|---|---|---|
2019–2020 | N0 | 1.60 b | 3.95 b | 3.85 b | 0.97 b | 12.08 b |
N120 | 2.01 a | 4.35 a | 4.28 a | 0.98 b | 13.13 a | |
N150 | 2.11 a | 4.36 a | 4.32 a | 0.99 ab | 13.51 a | |
N210 | 2.20 a | 4.34 a | 4.37 a | 1.01 a | 13.63 a | |
Mean | 1.98 A | 4.25 A | 4.21 A | 0.99 A | 13.09 A | |
2020–2021 | N0 | 1.52 b | 3.78 b | 3.63 b | 0.96 b | 11.69 b |
N120 | 1.69 a | 4.16 a | 4.18 a | 1.00 ab | 13.13 a | |
N150 | 1.75 a | 4.15 a | 4.25 a | 1.02 ab | 13.55 a | |
N210 | 1.76 a | 4.15 a | 4.22 a | 1.02 a | 13.62 a | |
Mean | 1.68 A | 4.06 A | 4.07 A | 1.00 A | 13.00 A | |
2021–2022 | N0 | 1.53 c | 3.78 c | 3.68 c | 0.97 b | 11.63 c |
N120 | 1.66 b | 4.16 b | 4.05 b | 0.97 b | 13.05 b | |
N150 | 1.66 b | 4.19 b | 4.06 b | 0.97 b | 13.25 b | |
N210 | 1.88 a | 4.35 a | 4.39 a | 1.01 a | 14.15 a | |
Mean | 1.68 A | 4.12 A | 4.05 A | 0.98 A | 13.02 A | |
Probability level of ANOVA | ||||||
Y | ** | ** | ** | * | ** | |
N | ns | ns | ns | ns | ns | |
Y × N | ** | ** | ** | ** | ** |
Year | N Application (kg ha−1) | Ear Number (104 ha−1) | Grain Number per Ear | 1000-Grain Weight (g) | Yield (kg ha−1) |
---|---|---|---|---|---|
2019–2020 | N0 | 358.3 d | 28.7 c | 42.1 a | 3868.9 c |
N120 | 500.5 c | 30.4 a | 39.9 b | 4450.8 b | |
N150 | 540.5 b | 32.1 a | 39.8 b | 6095.4 a | |
N210 | 600.3 a | 31.3 b | 38.1 c | 5225.6 a | |
Mean | 499.9 A | 31.1 B | 40.0 A | 7185.2 A | |
2020–2021 | N0 | 434.0 d | 23.1 c | 43.1 a | 3671.8 c |
N120 | 577.5 c | 25.0 a | 41.6 b | 4000.8 b | |
N150 | 613.0 b | 27.8 a | 41.1 b | 6593.2 a | |
N210 | 680.1 a | 26.5 b | 40.8 c | 5778.5 a | |
Mean | 576.2 A | 30.6 B | 41.6 A | 5511.1 A | |
2021–2022 | N0 | 290.3 d | 29.9 c | 42.5 a | 3450.1 c |
N120 | 438.0 c | 30.2 a | 40.2 b | 4857.0 b | |
N150 | 462.3 b | 32.9 a | 40.1 b | 6340.7 a | |
N210 | 481.3 a | 31.3 b | 37.1 c | 5721.4 b | |
Mean | 417.9 B | 33.3 A | 40.0 A | 6317.3 B | |
Probability level of ANOVA | |||||
Y | ** | ** | ** | ** | |
N | ** | ** | ** | ** | |
Y × N | ns | ns | ns | ns |
Year | N Application (kg ha−1) | Am (%) | Ap (%) | Starch (%) | Am/Ap | Sy (kg ha−1) |
---|---|---|---|---|---|---|
2019–2020 | N0 | 17.5 a | 57.7 a | 75.2 a | 0.30 a | 3875.8 c |
N120 | 14.1 b | 57.9 a | 72.0 b | 0.24 b | 5737.6 a | |
N150 | 13.4 bc | 51.8 b | 65.1 c | 0.26 b | 5496.4 a | |
N210 | 13.1 c | 51.4 b | 64.5 c | 0.25 b | 5044.2 b | |
Mean | 14.5 A | 54.7 A | 69.2 A | 0.26 A | 5038.5 B | |
2020–2021 | N0 | 17.5 a | 58.0 a | 75.4 a | 0.30 a | 4278.2 b |
N120 | 14.2 b | 57.7 a | 71.8 b | 0.25 b | 6465.3 a | |
N150 | 13.4 bc | 52.4 b | 65.7 c | 0.26 b | 6303.7 a | |
N210 | 13.3 c | 52.3 b | 65.6 c | 0.25 b | 6416.6 a | |
Mean | 14.6 A | 55.1 A | 69.6 A | 0.26 A | 5866.0 A | |
2021–2022 | N0 | 15.5 a | 54.3 a | 69.8 a | 0.29 a | 3122.2 c |
N120 | 13.6 b | 54.1 a | 67.7 b | 0.25 b | 4640.8 a | |
N150 | 13.5 b | 50.3 b | 63.7 c | 0.27 b | 4676.0 a | |
N210 | 12.1 c | 50.5 b | 62.6 c | 0.24 b | 4209.6 b | |
Mean | 14.0 A | 52.3 A | 65.9 A | 0.26 A | 4162.1 B | |
Probability level of ANOVA | ||||||
Y | ** | ** | ** | * | * | |
N | ** | ** | ** | ** | ** | |
Y × N | ns | ns | ns | ns | ns |
Index | 0 Day | 5 Day | 10 Day | 15 Day | 20 Day | |
---|---|---|---|---|---|---|
Yield | Pn | 0.4212 | 0.4655 | 0.5612 * | 0.8212 ** | 0.9125 ** |
SOD | 0.4259 | 0.4545 | 0.6419 * | 0.8512 ** | 0.9645 ** | |
POD | 0.4825 | 0.4745 | 0.5819 * | 0.8716 ** | 0.9569 ** | |
Yield | GS | 0.4555 | 0.4268 | 0.6519 * | 0.8215 ** | 0.8155 ** |
MDA | 0.4561 | 0.4556 | 0.6412 * | 0.9112 ** | 0.9645 ** | |
SPC | 0.4666 | 0.3755 | 0.6535 * | 0.8612 ** | 0.8555 ** | |
Yield | Tr | 0.4557 | 0.3612 | 0.6602 * | 0.7126 ** | 0.7115 ** |
CAT | 0.4565 | 0.3566 | 0.6802 * | 0.9125 ** | 0.8655 ** | |
POD | 0.4569 | 0.4765 | 0.6836 * | 0.8226 ** | 0.8555 ** | |
Yield | Ci | 0.4066 | 0.4655 | 0.5966 * | 0.7155 ** | 0.8147 ** |
DM | 0.4666 | 0.4555 | 0.6555 * | 0.8154 ** | 0.8555 ** | |
MDA | 0.4554 | 0.4612 | 0.5966 * | 0.8612 ** | 0.8109 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noor, H.; Ding, P.; Ren, A.; Sun, M.; Gao, Z. Effects of Nitrogen Fertilizer on Photosynthetic Characteristics and Yield. Agronomy 2023, 13, 1550. https://doi.org/10.3390/agronomy13061550
Noor H, Ding P, Ren A, Sun M, Gao Z. Effects of Nitrogen Fertilizer on Photosynthetic Characteristics and Yield. Agronomy. 2023; 13(6):1550. https://doi.org/10.3390/agronomy13061550
Chicago/Turabian StyleNoor, Hafeez, Pengcheng Ding, Aixia Ren, Min Sun, and Zhiqiang Gao. 2023. "Effects of Nitrogen Fertilizer on Photosynthetic Characteristics and Yield" Agronomy 13, no. 6: 1550. https://doi.org/10.3390/agronomy13061550
APA StyleNoor, H., Ding, P., Ren, A., Sun, M., & Gao, Z. (2023). Effects of Nitrogen Fertilizer on Photosynthetic Characteristics and Yield. Agronomy, 13(6), 1550. https://doi.org/10.3390/agronomy13061550