Nitrogen Fertilization Improves the Agro-Morphological and Yield Attributes of Sinapis alba L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Conditions
2.2. Soil Data Collection
2.3. Weather Data Collection
2.4. Agro-Morphological Parameters
2.5. Seed Quality Parameters
2.6. Nitrogen Use Efficiency Parameters
2.7. Physiological Efficiency
2.8. Apparent Recovery Efficiency
2.9. Agronomic Efficiency
2.10. Nitrogen Use Efficiency
2.11. Statistical Analysis
3. Results
3.1. Impact of N Fertilizer Levels on Agro-Morphological Parameters of S. alba
3.2. Effect of Different Nitrogen Fertilizer Levels on Quality Parameters of S. alba
3.3. Impact of Fertilizer Levels of Nitrogen on Various Efficiencies of S. alba
3.4. Correlation between Agro-Morphological and Seed Quality Traits of S. alba
3.5. Principle Component Analysis (PCA) for Agro-Morphological and Seed Quality Traits of S. alba
3.6. Principal Component Analysis (PCA) for Agro-Morphological and Seed Quality Parameters of S. alba
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Economic Survey of Pakistan. 2022. Available online: https://kpmg.com/pk/en/home/insights/2022/06/pakistan-economic-brief-2022.html (accessed on 4 May 2023).
- Cheng, F.; Wu, J.; Wang, X. Genome triplication drove the diversification of Brassica plants. Hortic. Res. 2014, 1, 14024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic Compounds in Brassica Vegetables. Molecules 2011, 16, 251–280. [Google Scholar] [CrossRef]
- Cartea, E.; De Haro-Bailón, A.; Padilla, G.; Obregón-Cano, S.; del Rio-Celestino, M.; Ordás, A. Seed Oil Quality of Brassica napus and Brassica rapa Germplasm from Northwestern Spain. Foods 2019, 8, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imran; Amanullah; Al Tawaha, A.R. Regenerating Potential of Dual Purpose Rapeseed (Brassica napus L.) as Influenced by Decapitation Stress and Variable Rates of Phosphorous. Commun. Soil Sci. Plant Anal. 2022, 54, 534–543. [Google Scholar] [CrossRef]
- Siddiqui, M.A.; Aslam, M.M.; Khan, M.T.; Yasmeen, S.; Iqbal, R.; Sial, M.A.; Khan, I.A. Allometric parameters assessment in canola under different macro and micronutrient regimes. Pak. J. Bot. 2021, 54, 1097–1101. [Google Scholar] [CrossRef]
- Katepa-Mupondwa, F.; Gugel, R.K.; Raney, J.P. Genetic diversity for agronomic, morphological and seed quality traits in Sinapis alba L. (yellow mustard). Can. J. Plant Sci. 2006, 86, 1015–1025. [Google Scholar] [CrossRef] [Green Version]
- Falasca, S.; Ulberich, A. Argentina’s semiarid lands aptitude to cultivate non-traditional species for biodiesel production. In Biodiesel: Blends, Properties and Applications; Marchetti, J.M., Fang, Z., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2011; pp. 123–150. [Google Scholar]
- Mitrović, P.M.; Stamenković, O.S.; Banković-Ilić, I.; Djalović, I.G.; Nježić, Z.B.; Farooq, M.; Siddique, K.H.M.; Veljković, V.B. White Mustard (Sinapis alba L.) Oil in Biodiesel Production: A Review. Front. Plant Sci. 2020, 11, 299. [Google Scholar] [CrossRef]
- Arif, M.; Shehzad, M.A.; Mushtaq, S. Inter and intra row spacing effects on growth, seed yield and oil contents of white mustard (Sinapis alba L.) under rainfed conditions. Pak. J. Agric. Sci. 2012, 49, 21–25. [Google Scholar]
- Alcántara, C.; Pujadas, A.; Saavedra, M. Management of Sinapis alba subsp. mairei winter cover crop residues for summer weed control in southern Spain. Crop Prot. 2011, 30, 1239–1244. [Google Scholar] [CrossRef]
- Barłóg, P.; Grzebisz, W. Effect of timing and nitrogen fertilizer application on winter oilseed rape (Brassica napus L.): II—Nitrogen uptake dynamics and fertilizer efficiency. J. Agron. Crop Sci. 2004, 190, 314–323. [Google Scholar] [CrossRef]
- Veronica, M.A.P. The Production of a Potential Feedstock for Biodiesel Using Water and Isopropyl Alcohol to Extract Yellow Mustard Oil; Master of Applied Science, Graduate Department of Chemical Engineering and Applied Chemistry, University of Toronto: Toronto, ON, Canada, 2010; Available online: https://www.utoronto.ca/2010 (accessed on 10 January 2023).
- Haq, E.U.; Hassan, F.U.; Iqbal, M.; Ahmed, M.; Ghuffar, S.; Ahmed, J.; Ahmed, R.; Shahbaz, M.; Rehman, A.U.; Hamzah, A.M. Effects of micronutrients (Boron and Zinc) as foliar application on growth and yield of Camelina sativa L. Plant CELL Biotechnol. Mol. Biol. 2022, 23, 1–11. [Google Scholar] [CrossRef]
- Jarecki, W. The Reaction of Winter Oilseed Rape to Different Foliar Fertilization with Macro- and Micronutrients. Agriculture 2021, 11, 515. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, Y.; Wang, Y.; Xia, H.; Zheng, S.; Xie, S.; Cao, Y.; Liu, J.; Sehar, S.; Lin, Y.; et al. Nitrogen metabolic rate and differential ammonia volatilization regulate resistance against opportunistic fungus Alternaria alternata in tobacco. Front. Plant Sci. 2022, 13, 1003534. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, F.; Diacono, M. Towards a Better Understanding of Agronomic Efficiency of Nitrogen: Assessment and Improvement Strategies. Agronomy 2016, 6, 31. [Google Scholar] [CrossRef]
- Bingham, I.J.; Garzon, D.C. Relative contribution of soil N availability and grain sink demand to the control of post-anthesis N uptake by field-grown spring barley. Field Crops Res. 2023, 292, 108829. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Anglade, J.; Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 2014, 9, 105011. [Google Scholar] [CrossRef]
- Robertson, G.P.; Bruulsema, T.W.; Gehl, R.J.; Kanter, D.; Mauzerall, D.L.; Rotz, C.A.; Williams, C.O. Nitrogen–climate interactions in US agriculture. Biogeochemistry 2012, 114, 41–70. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-H.; Li, S.-X. Nitrate N loss by leaching and surface runoff in agricultural land: A global issue (a review). Adv. Agron. 2019, 156, 159–217. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Gan, Y.; Malhi, S.S.; Brandt, S.; Katepa-Mupondwa, F.; Kutcher, H.R. Brassica juncea Canola in the Northern Great Plains: Responses to Diverse Environments and Nitrogen Fertilization. Agron. J. 2007, 99, 1208–1218. [Google Scholar] [CrossRef]
- Isfan, D. Nitrogen physiological efficiency index in some selected spring barley cultivars. J. Plant Nutr. 1990, 13, 907–914. [Google Scholar] [CrossRef]
- Rathke, G.-W.; Behrens, T.; Diepenbrock, W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review. Agric. Ecosyst. Environ. 2006, 117, 80–108. [Google Scholar] [CrossRef]
- Roussis, I.; Kakabouki, I.; Beslemes, D.; Tigka, E.; Kosma, C.; Triantafyllidis, V.; Mavroeidis, A.; Zotos, A.; Bilalis, D. Nitrogen Uptake, Use Efficiency, and Productivity of Nigella sativa L. in Response to Fertilization and Plant Density. Sustainability 2022, 14, 3842. [Google Scholar] [CrossRef]
- Minter, D.L.; Westerman, R.L.; Johnson, G.V. Humidification for ICAP-AES analysis of salt extracts of soils. Commun. Soil Sci. Plant Anal. 1990, 21, 1587–1606. [Google Scholar] [CrossRef]
- Malcolm, B.; Cameron, K.; Curtin, D.; Di, H.; Beare, M.; Johnstone, P.; Edwards, G. Organic matter amendments to soil can reduce nitrate leaching losses from livestock urine under simulated fodder beet grazing. Agric. Ecosyst. Environ. 2018, 272, 10–18. [Google Scholar] [CrossRef]
- Bremner, J.M.; Hauck, R.D. Advances in Methodology for Research on Nitrogen Transformations in Soils. Nitrogen Agric. Soils 1982, 22, 467–502. [Google Scholar] [CrossRef]
- Sato, S.; Hirayama, T.; Hirazawa, N. Lipid content and fatty acid composition of the monogenean Neobenedenia girellae and comparison between the parasite and host fish species. Parasitology 2008, 135, 967–975. [Google Scholar] [CrossRef]
- Gan, Y.; Malhi, S.S.; Brandt, S.; Katepa-Mupondwa, F.; Stevenson, C. Nitrogen Use Efficiency and Nitrogen Uptake of juncea Canola under Diverse Environments. Agron. J. 2008, 100, 285–295. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics, a Biometrical Approach, 2nd ed.; McGraw-Hill Kogakusha, Ltd.: New York, NY, USA, 1980. [Google Scholar]
- Guarda, G.; Padovan, S.; Delogu, G. Grain yield, nitrogen-use efficiency and baking quality of old and modern Italian bread-wheat cultivars grown at different nitrogen levels. Eur. J. Agron. 2004, 21, 181–192. [Google Scholar] [CrossRef]
- Zhao, K.; Yang, Y.; Peng, H.; Zhang, L.; Zhou, Y.; Zhang, J.; Du, C.; Liu, J.; Lin, X.; Wang, N.; et al. Silicon fertilizers, humic acid and their impact on physicochemical properties, availability and distribution of heavy metals in soil and soil aggregates. Sci. Total Environ. 2022, 822, 153483. [Google Scholar] [CrossRef] [PubMed]
- Razaq, M.; Zhang, P.; Shen, H.-L. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS ONE 2017, 12, e0171321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wierzbowska, J.; Cwalina-Ambroziak, B.; Bogucka, B. The Effect of Nitrogen Fertilization on Yield and Macronutrient Concentrations in Three Cultivars of Jerusalem Artichoke (Helianthus tuberosus L.). Agronomy 2021, 11, 2161. [Google Scholar] [CrossRef]
- Kukal, M.; Irmak, S.; Dobos, R.; Gupta, S. Atmospheric dryness impacts on crop yields are buffered in soils with higher available water capacity. Geoderma 2023, 429, 116270. [Google Scholar] [CrossRef]
- Liao, J.; Liu, X.; Hu, A.; Song, H.; Chen, X.; Zhang, Z. Effects of biochar-based controlled release nitrogen fertilizer on nitrogen-use efficiency of oilseed rape (Brassica napus L.). Sci. Rep. 2020, 10, 11063. [Google Scholar] [CrossRef]
- Seepaul, R.; Kumar, S.; Iboyi, J.E.; Bashyal, M.; Stansly, T.L.; Bennett, R.; Boote, K.J.; Mulvaney, M.J.; Small, I.M.; George, S.; et al. Brassica carinata: Biology and agronomy as a biofuel crop. GCB Bioenergy 2021, 13, 582–599. [Google Scholar] [CrossRef]
- Achakzai, A.K.K.; Bangulzai, M.I. Effect of various levels of nitrogen fertilizer on the yield and yield attributes of pea (Pisum sativum L.) cultivars. Pak. J. Bot. 2006, 38, 331. [Google Scholar]
- Chrysargyris, A.; Höfte, M.; Tzortzakis, N.; Petropoulos, S.A.; Di Gioia, F. Micronutrients: The Borderline between Their Beneficial Role and Toxicity in Plants. Front. Plant Sci. 2022, 13, 178. [Google Scholar] [CrossRef]
- Aminpanah, H. Effect of nitrogen rate on seed yield, protein and oil content of two canola (Brassica napus L.) cultivars. Acta Agric. Slov. 2013, 101, 183–190. [Google Scholar] [CrossRef]
- Sokólski, M.; Załuski, D.; Jankowski, K. Crambe: Seed Yield and Quality in Response to Nitrogen and Sulfur—A Case Study in Northeastern Poland. Agronomy 2020, 10, 1436. [Google Scholar] [CrossRef]
- Öztürk, E. Critical dose of nitrogen and phosphorus for the enhanced growth, yield, and quality components in mustard (Sinapsis arvensis L.) in a semi-arid environment. Turk. J. Field Crops 2021, 26, 244–252. [Google Scholar] [CrossRef]
- Williams, S.T.; Vail, S.; Arcand, M.M. Nitrogen Use Efficiency in Parent vs. Hybrid Canola under Varying Nitrogen Availabilities. Plants 2021, 10, 2364. [Google Scholar] [CrossRef] [PubMed]
- Gastal, F.; Lemaire, G. N uptake and distribution in crops: An agronomical and ecophysiological perspective. J. Exp. Bot. 2002, 53, 789–799. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.N.; Iqbal, J.; Tanveer, M.; Yang, G.; Hassan, W.; Fahad, S.; Yousaf, M.; Wu, Y. Nitrogen fertilization and conservation tillage: A review on growth, yield, and greenhouse gas emissions in cotton. Environ. Sci. Pollut. Res. 2016, 24, 2261–2272. [Google Scholar] [CrossRef] [PubMed]
- Youssef, M.A.; Yousef, A.F.; Ali, M.M.; Ahmed, A.I.; Lamlom, S.F.; Strobel, W.R.; Kalaji, H.M. Exogenously applied ni-trogenous fertilizers and effective microorganisms improve plant growth of stevia (Stevia rebaudiana Bertoni) and soil fertility. AMB Express 2021, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Umar, W.; Ayub, M.A.; Zia ur Rehman, M.; Ahmad, H.R.; Farooqi, Z.U.R.; Shahzad, A.; Rehman, U.; Mustafa, A.; Nadeem, M. Nitrogen and phosphorus use efficiency in agroecosystems. In Resources Use Efficiency in Agriculture; Kumar, S., Meena, R.S., Jhariya, M.K., Eds.; Springer: Singapore, 2020; pp. 213–257. [Google Scholar]
- Yahbi, M.; Nabloussi, A.; Maataoui, A.; El Alami, N.; Boutagayout, A.; Daoui, K. Effects of nitrogen rates on yield, yield components, and other related attributes of different rapeseed (Brassica napus L.) varieties. OCL 2022, 29, 8. [Google Scholar] [CrossRef]
- Potdar, D.S.; Purohit, H.S.; Meena, R.H.; Kaushik, M.K.; Jain, H.K.; Ameta, K.D. Effect of integrated phosphorus management on growth, yield, and quality of mustard (Brassica juncea L.). J. Pharmacogn. Phytochem. 2019, 8, 1700–1704. [Google Scholar]
- Diederichsen, A.; McVetty, P.B. Botany and Plant Breeding. In Biology; AOCS Press: Urbana, IL, USA, 2011; pp. 29–56. [Google Scholar] [CrossRef]
- Kim, S.-J.; Matsuo, T.; Watanabe, M.; Watanabe, Y. Effect of nitrogen and sulphur application on the glucosinolate content in vegetable turnip rape (Brassica rapa L.). Soil Sci. Plant Nutr. 2002, 48, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Øvsthus, I.; Thorup-Kristensen, K.; Seljåsen, R.; Riley, H.; Dörsch, P.; Breland, T.A. Calibration of the EU-Rotate_N model with measured C and N mineralization from potential fertilizers and evaluation of its prediction of crop and soil data from a vegetable field trial. Eur. J. Agron. 2021, 129, 126336. [Google Scholar] [CrossRef]
- Nayak, H.S.; Parihar, C.; Mandal, B.; Patra, K.; Jat, S.; Singh, R.; Singh, V.; Jat, M.; Garnaik, S.; Nayak, J.; et al. Point placement of late vegetative stage nitrogen splits increase the productivity, N-use efficiency and profitability of tropical maize under decade long conservation agriculture. Eur. J. Agron. 2021, 133, 126417. [Google Scholar] [CrossRef]
- Waqar, M.; Habib-ur-Rahman, M.; Hasnain, M.U.; Iqbal, S.; Ghaffar, A.; Iqbal, R.; Sabagh, A.E. Effect of slow release nitrog-enous fertilizers and biochar on growth, physiology, yield, and nitrogen use efficiency of sunflower under arid climate. Environ. Sci. Pollut. Res. 2022, 29, 52520–52533. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, S.; Ju, M.; Liu, L. Preparation and Modification of Biochar Materials and their Application in Soil Remediation. Appl. Sci. 2019, 9, 1365. [Google Scholar] [CrossRef] [Green Version]
- Parihar, C.M.; Jat, H.S.; Jat, S.L.; Kakraliya, S.K.; Nayak, H.S. Precision nutrient management for higher nutrient use effi-ciency and farm profitability in irrigated cereal-based cropping systems. Ind. J. Ferti. 2020, 16, 1000–1014. [Google Scholar]
- Yasari, E.; Patwardhan, A. Physiological Analysis of the Growth and Development of Canola (Brassica napus L.) Under Different Chemical Fertilizers Application. Asian J. Plant Sci. 2006, 5, 745–752. [Google Scholar] [CrossRef] [Green Version]
- Keerthi, P.; Pannu, R.K.; Dhaka, A.K.; Reddy, Y.A. Yield attributes, yield and quality of Indian mustard (Brassica juncea L.) as influenced by dates of sowing and nitrogen levels in Western Haryana. IJCS 2017, 5, 1890–1893. [Google Scholar]
Parameters | Units | 0–15 cm | 15–30 cm |
---|---|---|---|
Textural class | Sandy clay loam | Sandy clay loam | |
EC | dS m−1 | 0.61 | 0.58 |
pH | 7.84 | 7.81 | |
O.M | % | 0.75 | 0.72 |
BD | g cm−3 | 1.53 | 1.55 |
NO3N | mg kg−1 | 3.74 | 3.68 |
NH4 | mg kg−1 | 0.7 | 0.5 |
Phosphorus—Olsen P | mg kg−1 | 3.79 | 3.74 |
Potassium | mg kg−1 | 185 | 162 |
Months | Monthly Rainfall (mm) | Max. Temperature Mean | Min. Temperature Mean | Humidity (%) | ||||
---|---|---|---|---|---|---|---|---|
2019–2020 | 2020–2021 | 2019–2020 | 2020–2021 | 2019–2020 | 2020–2021 | 2019–2020 | 2020–2021 | |
October | 14 | 15 | 29.0 | 31.2 | 13.3 | 13.3 | 59 | 61 |
November | 19 | 24 | 22.0 | 25.1 | 8.3 | 8.3 | 63 | 63 |
December | 7.6 | 15.5 | 18.2 | 18.3 | 3.1 | 3.1 | 66 | 58 |
January | 51.9 | 16 | 15 | 17.7 | 3.5 | 3.4 | 75 | 70 |
February | 53.1 | 10.2 | 21.5 | 23.5 | 6.4 | 6.4 | 77 | 64 |
March | 195.6 | 65.8 | 21.9 | 25.9 | 8.8 | 8.8 | 69 | 54 |
April | 45.8 | 23.8 | 28 | 29.2 | 15.7 | 15.7 | 58 | 59 |
Total/Average | 387 | 170.3 | 22.5 | 24.4 | 13.3 | 8.4 | 59 | 61.3 |
Parameters | Dim 1 | Dim2 | Dim 3 | Dim 4 | Dim 5 | Dim 6 |
---|---|---|---|---|---|---|
PH | 0.9458 | −0.0947 | 0.2794 | −0.1267 | −0.2794 | −0.0455 |
PB | 0.9805 | 0.02772 | −0.1074 | 0.1544 | 0.0384 | 0.0051 |
SB | 0.9891 | 0.0083 | 0.1362 | −0.0064 | −0.0449 | −0.0290 |
SP | 0.9842 | 0.1428 | 0.0592 | 0.0753 | 0.0347 | −0.0207 |
TSW | 0.9884 | 0.0100 | −0.0978 | 0.0838 | −0.0597 | 0.0524 |
SS | 0.9755 | −0.0939 | 0.1253 | 0.1426 | 0.0484 | −0.0323 |
BY | 0.9847 | 0.1418 | 0.0118 | −0.0351 | −0.0920 | −0.0169 |
SY | 0.9970 | 0.0694 | 0.0251 | 0.0127 | −0.0075 | 0.0119 |
HI | 0.9939 | 0.0561 | 0.0385 | −0.0419 | 0.0740 | −0.0094 |
OY | 0.967 | 0.0731 | 0.2365 | 0.0535 | −0.0245 | 0.0021 |
GSL | −0.7659 | 0.6395 | 0.0595 | 0.0105 | 0.0186 | 0.0157 |
PC | 0.9871 | −0.0788 | 0.0516 | −0.1057 | 0.0248 | 0.0697 |
OC | 0.9559 | 0.0505 | −0.2638 | 0.1109 | 0.0327 | 0.0232 |
Eigenvalue | 12.09 | 0.49 | 0.27 | 0.1 | 0.02 | 0.01 |
Variability % | 93.04 | 3.77 | 2.08 | 0.78 | 0.21 | 0.1 |
Cumulative % | 93.04 | 96.81 | 98.89 | 99.68 | 99.89 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haq, E.U.; Hassan, F.U.; Zhou, F.; Gong, X.; Manaf, A.; Shabbir, G.; Karim, M.F.; King, P.J.H.; Adil, M.F.; Shamsi, I.H. Nitrogen Fertilization Improves the Agro-Morphological and Yield Attributes of Sinapis alba L. Agronomy 2023, 13, 1621. https://doi.org/10.3390/agronomy13061621
Haq EU, Hassan FU, Zhou F, Gong X, Manaf A, Shabbir G, Karim MF, King PJH, Adil MF, Shamsi IH. Nitrogen Fertilization Improves the Agro-Morphological and Yield Attributes of Sinapis alba L. Agronomy. 2023; 13(6):1621. https://doi.org/10.3390/agronomy13061621
Chicago/Turabian StyleHaq, Ehsan Ul, Fayyaz Ul Hassan, Fanrui Zhou, Xiaomin Gong, Abdul Manaf, Ghulam Shabbir, Muhammad Fazal Karim, Patricia Jie Hung King, Muhammad Faheem Adil, and Imran Haider Shamsi. 2023. "Nitrogen Fertilization Improves the Agro-Morphological and Yield Attributes of Sinapis alba L." Agronomy 13, no. 6: 1621. https://doi.org/10.3390/agronomy13061621
APA StyleHaq, E. U., Hassan, F. U., Zhou, F., Gong, X., Manaf, A., Shabbir, G., Karim, M. F., King, P. J. H., Adil, M. F., & Shamsi, I. H. (2023). Nitrogen Fertilization Improves the Agro-Morphological and Yield Attributes of Sinapis alba L. Agronomy, 13(6), 1621. https://doi.org/10.3390/agronomy13061621