Effects of Planting Practices on Soil Organic Carbon during Old Apple Orchards’ Reconstruction on the Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Area
2.2. Experiment Design
2.3. Soil Sampling
2.4. Laboratory Analyses and Calculation
2.5. Data Analysis and Statistics
3. Results
3.1. Characteristics of Monthly Rainfall, Solar Radiation, and Temperature
3.2. SOC and Soil Moisture Content under Different Planting Practices
3.3. Variation in Depth of SOC under Different Planting Practices
3.4. Change with Time of SOC under Different Planting Practices
3.5. Relationships between Rainfall, Soil Moisture, Solar Radiation, Temperature, and SOC
4. Discussion
4.1. Changes in SOC under Different Planting Practices
4.2. Relationships between Rainfall, Soil Moisture, Solar Radiation, Temperature, and SOC
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kopecký, M.; Vojta, J. Land use legacies in post-agricultural forests in the Doupovské Mountains, Czech Republic. Appl. Veg. Sci. 2009, 12, 251–260. [Google Scholar] [CrossRef]
- Praise, S.; Ito, H.; Sakuraba, T.; Pham, D.V.; Watanabe, T. Water extractable organic matter and iron in relation to land use and seasonal changes. Sci. Total. Environ. 2019, 707, 136070. [Google Scholar] [CrossRef]
- Li, Z.H.; Ji, Q.; Zhao, S.X.; Wei, B.M.; Wang, X.D.; Hussain, Q. Changes in C and N fractions with composted manure plus chemical fertilizers applied in apple orchard soil: An in-situ field incubation study on the Loess Plateau, China. Soil Use Manag. 2018, 34, 276–285. [Google Scholar] [CrossRef]
- Qi, Q.; Zhang, D.; Zhang, M.; Tong, S.; Wang, W.; An, Y. Spatial distribution of soil organic carbon and total nitrogen in disturbed Carex tussock wetland. Ecol. Indic. 2021, 120, 106930. [Google Scholar] [CrossRef]
- Zimmerman, R.H.; Steffens, G.L. Long-term evaluation of micropropagated apple trees: Vegetative growth, cropping, and photosynthesis. Sci. Hortic. 1996, 66, 69–76. [Google Scholar] [CrossRef]
- Norelli, J.L.; Miller, S.S. Effect of Prohexadione-Calcium Dose Level on Shoot Growth and Fire Blight in Young Apple Trees. Plant Dis. 2004, 88, 1099–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenis, K.; Keulemans, J. Study of tree architecture of apple (Malus × domestica Borkh.) by QTL analysis of growth traits. Mol. Breed. 2007, 19, 193–208. [Google Scholar] [CrossRef]
- Xu, L.; Yu, G.; He, N. Increased soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s. J. Geogr. Sci. 2019, 29, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Bowden, R.D.; Deem, L.; Plante, A.F.; Peltre, C.; Nadelhoffer, K.; Lajtha, K. Litter Input Controls on Soil Carbon in a Temperate Deciduous Forest. Soil Sci. Soc. Am. J. 2014, 78, S66–S75. [Google Scholar] [CrossRef]
- Stumpf, F.; Keller, A.; Schmidt, K.; Mayr, A.; Gubler, A.; Schaepman, M. Spatio-temporal land use dynamics and soil organic carbon in Swiss agroecosystems. Agric. Ecosyst. Environ. 2018, 258, 129–142. [Google Scholar] [CrossRef]
- Schulp, C.; Verburg, P. Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region. Agric. Ecosyst. Environ. 2009, 133, 86–97. [Google Scholar] [CrossRef]
- Li, Y.; Duan, X.; Li, Y.; Li, Y.; Zhang, L. Interactive effects of land use and soil erosion on soil organic carbon in the dry-hot valley region of southern China. Catena 2021, 201, 105187. [Google Scholar] [CrossRef]
- Fang, X.; Xue, Z.; Li, B.; An, S. Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau, China. Catena 2012, 88, 6–13. [Google Scholar] [CrossRef]
- Zhou, Y.; Hartemink, A.E.; Shi, Z.; Liang, Z.; Lu, Y. Land use and climate change effects on soil organic carbon in North and Northeast China. Sci. Total. Environ. 2019, 647, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, B.M.; Sitaula, B.K.; Singh, B.R.; Bajracharya, R.M. Soil organic carbon stocks in soil aggregates under different land use systems in Nepal. Nutr. Cycl. Agroecosyst. 2004, 70, 201–213. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Deng, L.; Zhu, G.-Y.; Tang, Z.-S.; Shangguan, Z.-P. Global patterns of the effects of land-use changes on soil carbon stocks. Glob. Ecol. Conserv. 2016, 5, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Laganiãre, J.; Angers, D.A.; Parã, D. Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Glob. Chang. Biol. 2010, 16, 439–453. [Google Scholar] [CrossRef]
- Martens, D.A.; Reedy, T.E.; Lewis, D.T. Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements. Glob. Chang. Biol. 2004, 10, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Gregorich, E.; Greer, K.; Anderson, D.; Liang, B. Carbon distribution and losses: Erosion and deposition effects. Soil Tillage Res. 1998, 47, 291–302. [Google Scholar] [CrossRef]
- Evans, M.; Lindsay, J. Impact of gully erosion on carbon sequestration in blanket peatlands. Clim. Res. 2010, 45, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Grünzweig, J.M.; Sparrow, S.D.; Yakir, D.; Chapin, F.S. Impact of Agricultural Land-use Change on Carbon Storage in Boreal Alaska. Glob. Chang. Biol. 2004, 10, 452–472. [Google Scholar] [CrossRef]
- Melillo, J.M.; Houghton, R.A.; Kicklighter, D.W.; McGuire, A.D. Tropical deforestation and the global carbon budget. Annu. Rev. Energy Environ. 1996, 21, 293–310. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.-B.; Zhang, R.-D. Dynamics of Soil Organic Carbon Under Uncertain Climate Change and Elevated Atmospheric CO2. Pedosphere 2012, 22, 489–496. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, R. Effects of climate change and elevated atmospheric CO2 on soil organic carbon: A response equation. Clim. Chang. 2012, 113, 107–120. [Google Scholar] [CrossRef]
- Kool, D.M.; Chung, H.; Tate, K.R.; Ross, D.J.; Newton, P.C.D.; Six, J. Hierarchical saturation of soil carbon pools near a natural CO2spring. Glob. Chang. Biol. 2007, 13, 1282–1293. [Google Scholar] [CrossRef]
- Chen, D.; Yu, H.Y.; Zou, L.Y.; Teng, Y.; Zhu, C.W. Effects of elevated atmospheric CO2 concentration on the stability of soil organic carbon in different layers of a paddy soil. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2018, 29, 2559–2565. [Google Scholar]
- Chappell, A.; Webb, N.P.; Butler, H.J.; Strong, C.L.; McTainsh, G.H.; Leys, J.F.; Rossel, R.A.V. Soil organic carbon dust emission: An omitted global source of atmospheric CO2. Glob. Chang. Biol. 2013, 19, 3238–3244. [Google Scholar] [CrossRef]
- Deng, L.; Liu, G.-B.; Shangguan, Z.-P. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: A synthesis. Glob. Chang. Biol. 2014, 20, 3544–3556. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Arrúe, J.L.; Cantero-Martinez, C.; Fanlo, R.; Iglesias, A.; Álvaro-Fuentes, J. Carbon management in dryland agricultural systems. A review. Agron. Sustain. Dev. 2015, 35, 1319–1334. [Google Scholar] [CrossRef] [Green Version]
- McCarty, G.; Ritchie, J. Impact of soil movement on carbon sequestration in agricultural ecosystems. Environ. Pollut. 2002, 116, 423–430. [Google Scholar] [CrossRef]
- Chen, L.; Gong, J.; Fu, B.; Huang, Z.; Huang, Y.; Gui, L. Effect of land use conversion on soil organic carbon sequestration in the loess hilly area, loess plateau of China. Ecol. Res. 2007, 22, 641–648. [Google Scholar] [CrossRef]
- You, M.; Zhu-Barker, X.; Hao, X.-X.; Li, L.-J. Profile distribution of soil organic carbon and its isotopic value following long term land-use changes. Catena 2021, 207, 105623. [Google Scholar] [CrossRef]
- Poeplau, C. Grassland soil organic carbon stocks along management intensity and warming gradients. Grass Forage Sci. 2021, 76, 186–195. [Google Scholar] [CrossRef]
- Heman, L.; Lihua, C.; Changchang, X.; Hong, Y.; Baoguo, L. Distribution characteristics of soil organic carbon and nitrogen in farmland and adjacent natural grassland in Tibet. Int. J. Agric. Biol. Eng. 2016, 9, 135–145. [Google Scholar] [CrossRef]
- Hu, P.-L.; Liu, S.-J.; Ye, Y.-Y.; Zhang, W.; Wang, K.-L.; Su, Y.-R. Effects of environmental factors on soil organic carbon under natural or managed vegetation restoration. Land Degrad. Dev. 2018, 29, 387–397. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Chang. Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Mays, N.; Brye, K.; Rom, C.R.; Savin, M.; Garcia, M. Groundcover Management and Nutrient Source Effects on Soil Carbon and Nitrogen Sequestration in an Organically Managed Apple Orchard in the Ozark Highlands. Hortscience 2014, 49, 637–644. [Google Scholar] [CrossRef] [Green Version]
- Panzacchi, P.; Tonon, G.; Ceccon, C.; Scandellari, F.; Ventura, M.; Zibordi, M.; Tagliavini, M. Belowground carbon allocation and net primary and ecosystem productivities in apple trees (Malus domestica) as affected by soil water availability. Plant Soil 2012, 360, 229–241. [Google Scholar] [CrossRef]
- Shi, Z.; Li, X.; Zhang, L.; Wang, Y. Impacts of farmland conversion to apple (Malus domestica) orchard on soil organic carbon stocks and enzyme activities in a semiarid loess region. J. Plant Nutr. Soil Sci. 2015, 178, 440–451. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Jiang, J.; Zhang, J.; Zhang, Z.; Zhang, M. Application of soil quality index to determine the effects of different vegetation types on soil quality in the Yellow River Delta wetland. Ecol. Indic. 2022, 141, 109116. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, B.; Zou, Y.; Dong, H.; Wang, H.; Zou, H. Influence of bacterial community diversity, functionality, and soil factors on polycyclic aromatic hydrocarbons under various vegetation types in mangrove wetlands. Environ. Pollut. 2022, 308, 119622. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ai, J.; Sun, Q.; Li, Z.; Hou, L.; Song, L.; Tang, G.; Li, L.; Shao, G. Soil organic carbon and total nitrogen stocks as affected by vegetation types and altitude across the mountainous regions in the Yunnan Province, south-western China. Catena 2021, 196, 104872. [Google Scholar] [CrossRef]
- Raza, S.T.; Zhu, Y.; Wu, J.; Rene, E.R.; Ali, Z.; Feyissa, A.; Khan, S.; Anjum, R.; Bazai, N.A.; Chen, Z. Different ratios of Canna indica and maize–vermicompost as biofertilizers to improve soil fertility and plant growth: A case study from southwest China. Environ. Res. 2022, 215, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Ai, W.; Guo, T.; Lay, K.D.; Ou, K.; Cai, K.; Ding, Y.; Liu, J.; Cao, Y. Isolation of soybean-specific plant growth-promoting rhizobacteria using soybean agglutin and evaluation of their effects to improve soybean growth, yield, and soil nutritional status. Microbiol. Res. 2022, 261, 127076. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Song, X.; Chang, S.X.; Peng, C.; Xiao, W.; Zhang, J.; Xiang, W.; Li, Y.; Wang, W. Nitrogen depositions increase soil respiration and decrease temperature sensitivity in a Moso bamboo forest. Agric. For. Meteorol. 2019, 268, 48–54. [Google Scholar] [CrossRef]
- Wen, Z.; Chen, Y.; Liu, Z.; Meng, J. Biochar and arbuscular mycorrhizal fungi stimulate rice root growth strategy and soil nutrient availability. Eur. J. Soil Biol. 2022, 113, 103448. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Z.; Chen, R.; Jiang, W.; Yin, C.; Mao, Z.; Wang, Y. Biochar promotes the growth of apple seedlings by adsorbing phloridzin. Sci. Hortic. 2022, 303, 111187. [Google Scholar] [CrossRef]
- Liu, M.; Ke, X.; Joseph, S.; Siddique, K.H.; Pan, G.; Solaiman, Z.M. Interaction of rhizobia with native AM fungi shaped biochar effect on soybean growth. Ind. Crop. Prod. 2022, 187, 115508. [Google Scholar] [CrossRef]
Planting Practices | Multiple Linear Regression | Adj. R-Square |
---|---|---|
TR | Y1 = 3.14 − 0.00215 X1 − 0.0099 X2 − 0.00878 X4 | 0.73238 ** |
CR | Y2 = 3.08 − 0.00193 X1 − 0.02046 X2 | 0.31909 ** |
PT | Y3 = 3.08 − 0.00157 X1 − 0.02683 X2 | 0.31753 ** |
MT | Y4 = 3.14 − 0.00371 X1 − 0.05032 X2 | 0.34534 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Gao, J.; Zhang, Y.; Ahmad, R.; Gao, Z.; Zhou, F. Effects of Planting Practices on Soil Organic Carbon during Old Apple Orchards’ Reconstruction on the Loess Plateau. Agronomy 2023, 13, 897. https://doi.org/10.3390/agronomy13030897
Li W, Gao J, Zhang Y, Ahmad R, Gao Z, Zhou F. Effects of Planting Practices on Soil Organic Carbon during Old Apple Orchards’ Reconstruction on the Loess Plateau. Agronomy. 2023; 13(3):897. https://doi.org/10.3390/agronomy13030897
Chicago/Turabian StyleLi, Wenzheng, Jianen Gao, Yuanyuan Zhang, Rafiq Ahmad, Zhe Gao, and Fanfan Zhou. 2023. "Effects of Planting Practices on Soil Organic Carbon during Old Apple Orchards’ Reconstruction on the Loess Plateau" Agronomy 13, no. 3: 897. https://doi.org/10.3390/agronomy13030897
APA StyleLi, W., Gao, J., Zhang, Y., Ahmad, R., Gao, Z., & Zhou, F. (2023). Effects of Planting Practices on Soil Organic Carbon during Old Apple Orchards’ Reconstruction on the Loess Plateau. Agronomy, 13(3), 897. https://doi.org/10.3390/agronomy13030897