Physiological Responses of Common Bean Genotypes to Drought Stress
Abstract
:1. Introduction
2. Materials and Method
2.1. Common Bean Plant Material, Drought Stress, and Multivariate Analysis of Phenotypic Traits
2.2. Photosynthetic Performance
2.3. Protein Extraction and 2D-PAGE
2.4. Mass Spectrometry Identification of Selected Spots
2.5. Western Blot Analysis of Dehydrins and Small Heat Shock Proteins
3. Results
3.1. Principal Component Analysis of Phenotypic Traits of Common Bean Mutant Lines Subjected to Drought Stress
3.2. Photosynthetic Performance of Common Bean Lines during Drought Stress
3.3. Proteomics Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Broughton, W.J.; Hernández, G.; Blair, M.; Beebe, S.; Gepts, P.; Vanderleyden, J. Beans (Phaseolus spp.)—Model Food Legumes. Plant Soil 2003, 252, 55–128. [Google Scholar] [CrossRef] [Green Version]
- Rodiño, A.P.; Santalla, M.; González, A.M.; De Ron, A.M.; Singh, S.P. Novel Genetic Variation in Common Bean from the Iberian Peninsula. Crop. Sci. 2006, 46, 2540–2546. [Google Scholar] [CrossRef] [Green Version]
- Espinoza-García, N.; Martínez-Martínez, R.; Chávez-Servia, J.L.; Vera-Guzmán, A.M.; Carrillo-Rodríguez, J.C.; Heredia-García, E.; Velasco-Velasco, V.A. Mineral content in seeds of native populations of common bean (Phaseolus vulgaris L.). Rev. Fitotec. Mex. 2016, 39, 215–223. [Google Scholar]
- Budak, H.; Kantar, M.; Yucebilgili Kurtoglu, K. Drought Tolerance in Modern and Wild Wheat. Sci. World J. 2013, 2013, e548246. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.; Feleke, E. Future Climate Change Impacts on Common Bean (Phaseolus vulgaris L.) Phenology and Yield with Crop Management Options in Amhara Region, Ethiopia. CABI Agric. Biosci. 2022, 3, 229. [Google Scholar] [CrossRef]
- Asfaw, A.; Blair, M.W. Quantification of Drought Tolerance in Ethiopian Common Bean Varieties. Agric. Sci. 2014, 5, 124–139. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, A.A.; Mousavi, S.H.; Mousapour Gorji, A.I. Rao Effects of Water Stress on Leaves and Seeds of Bean (Phaseolus vulgaris L.). Turk. J. Field Crops 2013, 18, 73–77. [Google Scholar]
- Ambachew, D.; Mekbib, F.; Asfaw, A.; Beebe, S.E.; Blair, M.W. Trait Associations in Common Bean Genotypes Grown under Drought Stress and Field Infestation by BSM Bean Fly. Crop J. 2015, 3, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Manjeru, P.; Madanzi, T.; Makeredza, B.; Nciizah, A.; Sithole, M. Effects of Water Stress at Different Growth Stages on Components and Grain Yield of Common Bean (Phaseolus vulgaris L.). In Proceedings of the 8th African Crop Science Society Conference, El-Minia, Egypt, 27–31 October 2007; pp. 299–303. [Google Scholar] [CrossRef]
- Lizana, C.; Wentworth, M.; Martinez, J.P.; Villegas, D.; Meneses, R.; Murchie, E.H.; Pastenes, C.; Lercari, B.; Vernieri, P.; Horton, P.; et al. Differential Adaptation of Two Varieties of Common Bean to Abiotic Stress: I. Effects of Drought on Yield and Photosynthesis. J. Exp. Bot. 2006, 57, 685–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosales, M.A.; Ocampo, E.; Rodríguez-Valentín, R.; Olvera-Carrillo, Y.; Acosta-Gallegos, J.; Covarrubias, A.A. Physiological Analysis of Common Bean (Phaseolus vulgaris L.) Cultivars Uncovers Characteristics Related to Terminal Drought Resistance. Plant Physiol. Biochem. 2012, 56, 24–34. [Google Scholar] [CrossRef]
- Mladenov, P.; Zasheva, D.; Planchon, S.; Leclercq, C.C.; Falconet, D.; Moyet, L.; Brugière, S.; Moyankova, D.; Tchorbadjieva, M.; Ferro, M.; et al. Proteomics Evidence of a Systemic Response to Desiccation in the Resurrection Plant Haberlea Rhodopensis. Int. J. Mol. Sci. 2022, 23, 8520. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Mishra, M.; Dhankher, O.P.; Singla-Pareek, S.L.; Pareek, A. Molecular Chaperones: Key Players of Abiotic Stress Response in Plants. In Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol. I.; Rajpal, V.R., Sehgal, D., Kumar, A., Raina, S.N., Eds.; Sustainable Development and Biodiversity; Springer International Publishing: Cham, Switzerland, 2019; pp. 125–165. ISBN 978-3-319-91956-0. [Google Scholar]
- Raina, A.; Laskar, R.A.; Khursheed, S.; Amin, R.; Tantray, Y.R.; Parveen, K.; Khan, S. Role of Mutation Breeding in Crop Improvement- Past, Present and Future. Asian Res. J. Agric. 2016, 2, 1–13. [Google Scholar] [CrossRef]
- Raina, A.; Laskar, R.A.; Wani, M.R.; Jan, B.L.; Ali, S.; Khan, S. Comparative Mutagenic Effectiveness and Efficiency of Gamma Rays and Sodium Azide in Inducing Chlorophyll and Morphological Mutants of Cowpea. Plants 2022, 11, 1322. [Google Scholar] [CrossRef] [PubMed]
- Raina, A.; Laskar, R.A.; Tantray, Y.R.; Khursheed, S.; Wani, M.R.; Khan, S. Characterization of Induced High Yielding Cowpea Mutant Lines Using Physiological, Biochemical and Molecular Markers. Sci. Rep. 2020, 10, 3687. [Google Scholar] [CrossRef] [Green Version]
- Goyal, S.; Wani, M.R.; Raina, A.; Laskar, R.A.; Khan, S. Quantitative Assessments on Induced High Yielding Mutant Lines in Urdbean [Vigna mungo (L.) Hepper]. Legume Sci. 2022, 4, e125. [Google Scholar] [CrossRef]
- Khursheed, S.; Raina, A.; Laskar, R.A.; Khan, S. Effect of Gamma Radiation and EMS on Mutation Rate: Their Effectiveness and Efficiency in Faba Bean (Vicia faba L.). Caryologia 2018, 71, 397–404. [Google Scholar] [CrossRef]
- Laskar, R.A.; Laskar, A.A.; Raina, A.; Khan, S.; Younus, H. Induced Mutation Analysis with Biochemical and Molecular Characterization of High Yielding Lentil Mutant Lines. Int. J. Biol. Macromol. 2018, 109, 167–179. [Google Scholar] [CrossRef]
- Tomlekova, N. Genetic diversity of bulgarian Phaseolus vulgaris L. germplasm collection through phaseolin and isozyme markers. In The Molecular Basis of Plant Genetic Diversity; IntechOpen: London, UK, 2012; pp. 181–230. [Google Scholar] [CrossRef]
- Sofkova-Bobcheva, S.; Pantchev, I.; Kiryakov, I.; Chavdarov, P.; Muhovski, Y.; Sarsu, F.; Tomlekova, N. Induced mutagenesis for improvement of bean (Phaseolus vulgaris L.) production in bulgaria. In Mutation Breeding, Genetic Diversity and Crop Adaptation to Climate Change; CABI: Wallingford, UK, 2021; pp. 178–193. [Google Scholar] [CrossRef]
- Dintcheva, T.; Boteva, H.; Tomlekova, N.; Kalapchieva, S. Selection of perspective early mutant lines of bean (Phaseolus vulgaris L.) in drought conditions. Agric. Sci. 2021, 13, 46–52. [Google Scholar] [CrossRef]
- González, L.; González-Vilar, M. Determination of Relative Water Content. In Handbook of Plant Ecophysiology Techniques; Reigosa Roger, M.J., Ed.; Springer: Dordrecht, The Netherlands, 2001; pp. 207–212. ISBN 978-0-306-48057-7. [Google Scholar]
- Wang, W.; Vignani, R.; Scali, M.; Cresti, M.A. Universal and Rapid Protocol for Protein Extraction from Recalcitrant Plant Tissues for Proteomic Analysis. Electrophoresis 2006, 27, 2782–2786. [Google Scholar] [CrossRef]
- Mladenov, P.; Finazzi, G.; Bligny, R.; Moyankova, D.; Zasheva, D.; Boisson, A.-M.; Brugière, S.; Krasteva, V.; Alipieva, K.; Simova, S.; et al. In Vivo Spectroscopy and NMR Metabolite Fingerprinting Approaches to Connect the Dynamics of Photosynthetic and Metabolic Phenotypes in Resurrection Plant Haberlea Rhodopensis during Desiccation and Recovery. Front. Plant Sci. 2015, 6, 564. [Google Scholar] [CrossRef] [Green Version]
- Karimzadeh Soureshjani, H.; Nezami, A.; Kafi, M.; Tadayon, M. Responses of Two Common Bean (Phaseolus vulgaris L.) Genotypes to Deficit Irrigation. Agric. Water Manag. 2018, 213, 270–279. [Google Scholar] [CrossRef]
- Zlatev, Z.; Lidon, F.C. An Overview On Drought Induced Changes In Plant Growth, Water Relations And Photosynthesis. Emir. J. Food Agric. 2012, 24, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Pettigrew, W.T. Physiological Consequences of Moisture Deficit Stress in Cotton. Crop. Sci. 2004, 44, 1265–1272. [Google Scholar] [CrossRef] [Green Version]
- Bonhomme, L.; Monclus, R.; Vincent, D.; Carpin, S.; Claverol, S.; Lomenech, A.M.; Labas, V.; Plomion, C.; Brignolas, F.; Morabito, D. Genetic Variation and Drought Response in Two Populus × euramericana Genotypes through 2-DE Proteomic Analysis of Leaves from Field and Glasshouse Cultivated Plants. Phytochemistry 2009, 70, 988–1002. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, H.M.; Bosa, K.; Kościelniak, J.; Hossain, Z. Chlorophyll a Fluorescence--A Useful Tool for the Early Detection of Temperature Stress in Spring Barley (Hordeum vulgare L.). Omics 2011, 15, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Ashaf, M.; Harris, P.J.C. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Afshar Mohamadian, M.; Omidipour, M.; Jamal Omidi, F. Effect of Different Drought Stress Levels on Chlorophyll Fluorescence Indices of Two Bean Cultivars. J. Plant Res. (Iran. J. Biol.) 2018, 31, 511–525. [Google Scholar]
- Zlatev, Z.S. Drought-induced changes and recovery of photosynthesis in two bean cultivars (Phaseolus vulgaris L.). Emir. J. Food Agric. 2013, 25, 1014–1023. [Google Scholar] [CrossRef] [Green Version]
- Baker, N.R.; Rosenqvist, E. Applications of Chlorophyll Fluorescence Can Improve Crop Production Strategies: An Examination of Future Possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef] [Green Version]
- Zadražnik, T.; Hollung, K.; Egge-Jacobsen, W.; Meglič, V.; Šuštar-Vozlič, J. Differential Proteomic Analysis of Drought Stress Response in Leaves of Common Bean (Phaseolus vulgaris L.). J Proteom. 2013, 78, 254–272. [Google Scholar] [CrossRef] [Green Version]
- Perdomo, J.A.; Capó-Bauçà, S.; Carmo-Silva, E.; Galmés, J. Rubisco and Rubisco Activase Play an Important Role in the Biochemical Limitations of Photosynthesis in Rice, Wheat, and Maize under High Temperature and Water Deficit. Front. Plant Sci. 2017, 8, 490. [Google Scholar] [CrossRef] [Green Version]
- Parry, M.A.J.; Andralojca, P.J.; Khan, S.; Lea, P.J.; Keys, A.J. Rubisco Activity: Effects of Drought Stress. Ann. Bot. 2002, 89, 833–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doron, L.; Xu, L.; Rachmilevitch, S.; Stern, D.B. Transgenic Overexpression of Rubisco Subunits and the Assembly Factor RAF1 Are Beneficial to Recovery from Drought Stress in Maize. Environ. Exp. Bot. 2020, 177, 104126. [Google Scholar] [CrossRef]
- Zhou, Y.; Lam, H.M.; Zhang, J. Inhibition of Photosynthesis and Energy Dissipation Induced by Water and High Light Stresses in Rice. J. Exp. Bot. 2007, 58, 1207–1217. [Google Scholar] [CrossRef]
- Papathanasiou, F.; Ninou, E.; Mylonas, I.; Baxevanos, D.; Papadopoulou, F.; Avdikos, I.; Sistanis, I.; Koskosidis, A.; Vlachostergios, D.N.; Stefanou, S.; et al. The Evaluation of Common Bean (Phaseolus vulgaris L.) Genotypes under Water Stress Based on Physiological and Agronomic Parameters. Plants 2022, 11, 2432. [Google Scholar] [CrossRef] [PubMed]
- Mathobo, R.; Marais, D.; Steyn, J.M. The Effect of Drought Stress on Yield, Leaf Gaseous Exchange and Chlorophyll Fluorescence of Dry Beans (Phaseolus vulgaris L.). Agric. Water Manag. 2017, 180, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Castañeda-Saucedo, M.C.; Córdova-Téllez, L.; Tapia-Campos, E.; Delgado-Alvarado, A.; González-Hernández, V.A.; Santacruz-Varela, A.; Loza-Tavera, H.; García-de-los-Santos, G.; Vargas-Suárez, M. Dehydrins Patterns in Common Bean Exposed to Drought and Watered Conditions. Rev. Fitotec. Mex. 2014, 37, 59. [Google Scholar] [CrossRef]
- Sun, Z.; Li, S.; Chen, W.; Zhang, J.; Zhang, L.; Sun, W.; Wang, Z. Plant Dehydrins: Expression, Regulatory Networks, and Protective Roles in Plants Challenged by Abiotic Stress. Int. J. Mol. Sci. 2021, 22, 12619. [Google Scholar] [CrossRef]
- Schmutz, J.; McClean, P.E.; Mamidi, S.; Wu, G.A.; Cannon, S.B.; Grimwood, J.; Jenkins, J.; Shu, S.; Song, Q.; Chavarro, C.; et al. A Reference Genome for Common Bean and Genome-Wide Analysis of Dual Domestications. Nat. Genet. 2014, 46, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under Drought and Salt Stress: Regulation Mechanisms from Whole Plant to Cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Vaseva, I.; Akiscan, Y.; Demirevska, K.; Anders, I.; Feller, U. Drought Stress Tolerance of Red and White Clover–Comparative Analysis of Some Chaperonins and Dehydrins. Sci. Hortic. 2011, 130, 653–659. [Google Scholar] [CrossRef]
- Wu, J.; Tian, G.; Jianing, H.; Lei, Z.; Chang, Y.; Fang, M. Research Advances in Function and Regulation Mechanisms of Plant Small Heat Shock Proteins (sHSPs) under Environmental Stresses. Sci. Total Environ. 2022, 825, 154054. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mladenov, P.; Aziz, S.; Topalova, E.; Renaut, J.; Planchon, S.; Raina, A.; Tomlekova, N. Physiological Responses of Common Bean Genotypes to Drought Stress. Agronomy 2023, 13, 1022. https://doi.org/10.3390/agronomy13041022
Mladenov P, Aziz S, Topalova E, Renaut J, Planchon S, Raina A, Tomlekova N. Physiological Responses of Common Bean Genotypes to Drought Stress. Agronomy. 2023; 13(4):1022. https://doi.org/10.3390/agronomy13041022
Chicago/Turabian StyleMladenov, Petko, Sibel Aziz, Elena Topalova, Jenny Renaut, Sébastien Planchon, Aamir Raina, and Nasya Tomlekova. 2023. "Physiological Responses of Common Bean Genotypes to Drought Stress" Agronomy 13, no. 4: 1022. https://doi.org/10.3390/agronomy13041022
APA StyleMladenov, P., Aziz, S., Topalova, E., Renaut, J., Planchon, S., Raina, A., & Tomlekova, N. (2023). Physiological Responses of Common Bean Genotypes to Drought Stress. Agronomy, 13(4), 1022. https://doi.org/10.3390/agronomy13041022