Rice Yield and Greenhouse Gas Emissions Due to Biochar and Straw Application under Optimal Reduced N Fertilizers in a Double Season Rice Cropping System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Used Material
2.2. Experimental Design and Field Management
2.3. Measured Responses
2.3.1. Emissions of CH4 and N2O
2.3.2. Calculation of GWP and GHGI
2.3.3. Soil Sampling and Analysis
2.4. Statistical Analysis
3. Results
3.1. CH4 Emissions
3.2. N2O Emissions
3.3. GWP, Yield, and GHGI
3.4. Soil Physicochemical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Yang, T.; Chen, J.; Bell, S.M.; Wu, S.; Jiang, Y.; Sun, Y.; Zeng, Y.; Zeng, Y.; Pan, X.; et al. Effects of free-air temperature increase on grain yield and greenhouse gas emissions in a double rice cropping system. Field Crops Res. 2022, 281, 108489. [Google Scholar] [CrossRef]
- Wu, M.; Su, Q.; Song, Z.; Jiang, H.; Li, Y.; Wei, X.; Cui, J.; Yang, M.; Wu, Z. Effects of Water–Nitrogen Interaction Coupled with Straw Addition on Rice Paddy Field Grain Yield and Greenhouse Gas Emissions. Int. J. Plant Prod. 2022, 16, 275–285. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Zhou, T.; Wang, K.; Wang, C.; Wang, T.; Yuan, L.; An, K.; Zhou, C.; Lu, G. Mitigation of China’s carbon neutrality to global warming. Nat. Commun. 2022, 13, 5315. [Google Scholar] [CrossRef]
- Liang, H.; Xu, J.; Hou, H.; Qi, Z.; Yang, S.; Li, Y.; Hu, K. Modeling CH4 and N2O emissions for continuous and noncontinuous flooding rice systems. Agric. Syst. 2022, 203, 103528. [Google Scholar] [CrossRef]
- Wu, Q.; He, Y.; Qi, Z.; Jiang, Q. Drainage in paddy systems maintains rice yield and reduces total greenhouse gas emissions on the global scale. J. Clean. Prod. 2022, 370, 133515. [Google Scholar] [CrossRef]
- Emran, S.A.; Krupnik, T.J.; Aravindakshan, S.; Kumar, V.; Pittelkow, C.M. Impact of cropping system diversification on productivity and resource use efficiencies of smallholder farmers in south-central Bangladesh: A multi-criteria analysis. Agron. Sustain. Dev. 2022, 42, 78. [Google Scholar] [CrossRef] [PubMed]
- Yong, Z.; Xiao-yuan, Y.A.N.; Song-ling, G.; Cheng-wei, L.I.; Rong, Z.H.U.; Bo, Z.H.U.; Zhang-yong, L.I.U.; Xiao-long, W.; Peng, C.A.O. Changes in paddy cropping system enhanced economic profit and ecological sustainability in central China. J. Integr. Agric. 2022, 21, 566–577. [Google Scholar] [CrossRef]
- Qin, X.; Li, Y.e.; Wang, H.; Liu, C.; Li, J.; Wan, Y.; Gao, Q.; Fan, F.; Liao, Y. Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China. Sci. Total Environ. 2016, 569–570, 1390–1401. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, K.; Bao, Y.; Saifullah; Bibi, S.; Dahlawi, S.; Yaseen, M.; Abrar, M.M.; Srivastava, P.; Fahad, S.; Faraj, T.K. Contributions of Open Biomass Burning and Crop Straw Burning to Air Quality: Current Research Paradigm and Future Outlooks. Front. Environ. Sci. 2022, 10, 852492. [Google Scholar] [CrossRef]
- Wang, J.; Akiyama, H.; Yagi, K.; Yan, X. Controlling variables and emission factors of methane from global rice fields. Atmos. Chem. Phys. 2018, 18, 10419–10431. [Google Scholar] [CrossRef]
- Wang, H.; Shen, M.; Hui, D.; Chen, J.; Sun, G.; Wang, X.; Lu, C.; Sheng, J.; Chen, L.; Luo, Y.; et al. Straw incorporation influences soil organic carbon sequestration, greenhouse gas emission, and crop yields in a Chinese rice (Oryza sativa L.) –wheat (Triticum aestivum L.) cropping system. Soil Tillage Res. 2019, 195, 104377. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Chang. Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef]
- Yao, Z.; Zheng, X.; Wang, R.; Xie, B.; Butterbach-Bahl, K.; Zhu, J. Nitrous oxide and methane fluxes from a rice–wheat crop rotation under wheat residue incorporation and no-tillage practices. Atmos. Environ. 2013, 79, 641–649. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.G.; Jeong, S.T.; Gwon, H.S.; Kim, P.J.; Kim, G.W. Straw recycling in rice paddy: Trade-off between greenhouse gas emission and soil carbon stock increase. Soil Tillage Res. 2020, 199, 104598. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, T.; Jiang, S.; Cao, C.; Li, C.; Chen, B.; Liu, J. Combined Effects of Straw Returning and Chemical N Fertilization on Greenhouse Gas Emissions and Yield from Paddy Fields in Northwest Hubei Province, China. J. Soil Sci. Plant Nutr. 2020, 20, 392–406. [Google Scholar] [CrossRef]
- Zhang, J.; Hang, X.; Lamine, S.M.; Jiang, Y.; Afreh, D.; Qian, H.; Feng, X.; Zheng, C.; Deng, A.; Song, Z.; et al. Interactive effects of straw incorporation and tillage on crop yield and greenhouse gas emissions in double rice cropping system. Agric. Ecosyst. Environ. 2017, 250, 37–43. [Google Scholar] [CrossRef]
- Abhishek, K.; Shrivastava, A.; Vimal, V.; Gupta, A.K.; Bhujbal, S.K.; Biswas, J.K.; Singh, L.; Ghosh, P.; Pandey, A.; Sharma, P.; et al. Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review. Sci. Total Environ. 2022, 853, 158562. [Google Scholar] [CrossRef]
- Chen, T.; Liu, C.; Zhang, F.; Han, H.; Wang, Z.; Yi, B.; Tang, L.; Meng, J.; Chi, D.; Wilson, L.T.; et al. Acid-modified biochar increases grain yield and reduces reactive gaseous N losses and N-related global warming potential in alternate wetting and drying paddy production system. J. Clean. Prod. 2022, 377, 134451. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; Kammann, C.; Abalos, D. Biochar effects on methane emissions from soils: A meta-analysis. Soil Biol. Biochem. 2016, 101, 251–258. [Google Scholar] [CrossRef]
- Sriphirom, P.; Towprayoon, S.; Yagi, K.; Rossopa, B.; Chidthaisong, A. Changes in methane production and oxidation in rice paddy soils induced by biochar addition. Appl. Soil Ecol. 2022, 179, 104585. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Zhang, X.; Duan, P.; Shen, H.; Gunina, A.; Yan, X.; Xiong, Z. Biochar amendment mitigated N2O emissions from paddy field during the wheat growing season. Environ. Pollut. 2021, 281, 117026. [Google Scholar] [CrossRef]
- Dong, Y.; Yuan, J.; Zhang, G.; Ma, J.; Hilario, P.; Liu, X.; Lu, S. Optimization of nitrogen fertilizer rate under integrated rice management in a hilly area of Southwest China. Pedosphere 2020, 30, 759–768. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, K.; Liao, S.; Ren, T.; Li, X.; Cong, R.; Lu, J. Differences in responses of ammonia volatilization and greenhouse gas emissions to straw return and paddy-upland rotations. Environ. Sci. Pollut. Res. 2022, 29, 25296–25307. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhou, W.; Jiang, M.; Khan, I.; Wu, T.; Zhou, M.; Zhu, B.; Hu, R. Methane emission from rice cultivation regulated by soil hydrothermal condition and available carbon and nitrogen under a rice–wheat rotation system. Plant Soil 2022, 480, 283–294. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Z.; Liu, C.; Islam, A.R.M.T.; Chen, S.; Zhang, X.; Zhou, Y. Responses of CO2 and N2O emissions from soil-plant systems to simulated warming and acid rain in cropland. J. Soils Sediments 2021, 21, 1109–1126. [Google Scholar] [CrossRef]
- Guo, R.; Zhang, X.; Tang, Z.; Zhang, Y.; Huang, K. Effects of Rice Straw Combined with Inorganic Fertilizer on Grain Filling and Yield of Common Buckwheat. Agronomy 2022, 12, 1287. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, B.; Shen, J.; Zhu, X.; Yi, W.; Li, Y.; Wu, J. Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems. Agric. Ecosyst. Environ. 2021, 311, 107286. [Google Scholar] [CrossRef]
- Tian, X.; Li, Z.; Liu, Z.; Wang, Y.; Li, B.; Zhang, K.; Xu, Q.; Wang, L. Combined effect of biochar and nitrogen fertilizer reduction on rapeseed productivity and nitrogen use efficiency. Arch. Agron. Soil Sci. 2022, 68, 1159–1174. [Google Scholar] [CrossRef]
- Li, W.; Xie, H.; Ren, Z.; Li, T.; Wen, X.; Han, J.; Liao, Y. Response of N2O emissions to N fertilizer reduction combined with biochar application in a rain-fed winter wheat ecosystem. Agric. Ecosyst. Environ. 2022, 333, 107968. [Google Scholar] [CrossRef]
- Sun, L.; Deng, J.; Fan, C.; Li, J.; Liu, Y. Combined effects of nitrogen fertilizer and biochar on greenhouse gas emissions and net ecosystem economic budget from a coastal saline rice field in southeastern China. Environ. Sci. Pollut. Res. 2020, 27, 17013–17022. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Z.; Liu, C.; Wu, Z.; Chen, S. Methane emissions in japonica rice paddy fields under different elevated CO2 concentrations. Nutr. Cycl. Agroecosyst. 2022, 122, 173–189. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Dash, P.K.; Swain, C.K.; Padhy, S.R.; Roy, K.S.; Neogi, S.; Berliner, J.; Adak, T.; Pokhare, S.S.; Baig, M.J.; et al. Mechanism of plant mediated methane emission in tropical lowland rice. Sci. Total Environ. 2019, 651, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Pump, J.; Pratscher, J.; Conrad, R. Colonization of rice roots with methanogenic archaea controls photosynthesis-derived methane emission. Environ. Microbiol. 2015, 17, 2254–2260. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.; Wu, X.; Yu, Y.; Luo, S.; Hu, R.; Lu, G. Effects of mild alternate wetting and drying irrigation and mid-season drainage on CH4 and N2O emissions in rice cultivation. Sci. Total Environ. 2020, 698, 134212. [Google Scholar] [CrossRef] [PubMed]
- Barton, L.; Hoyle, F.C.; Stefanova, K.T.; Murphy, D.V. Incorporating organic matter alters soil greenhouse gas emissions and increases grain yield in a semi-arid climate. Agric. Ecosyst. Environ. 2016, 231, 320–330. [Google Scholar] [CrossRef]
- Ye, R.; Doane, T.A.; Morris, J.; Horwath, W.R. The effect of rice straw on the priming of soil organic matter and methane production in peat soils. Soil Biol. Biochem. 2015, 81, 98–107. [Google Scholar] [CrossRef]
- Shen, J.; Tang, H.; Liu, J.; Wang, C.; Li, Y.; Ge, T.; Jones, D.L.; Wu, J. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems. Agric. Ecosyst. Environ. 2014, 188, 264–274. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, H.; Fan, X.; Yang, Y.; Ma, J.; Xu, H. Drainage and tillage practices in the winter fallow season mitigate CH4 and N2O emissions from a double-rice field in China. Atmos. Chem. Phys. 2016, 16, 11853–11866. [Google Scholar] [CrossRef]
- Tang, H.; Xiao, X.; Tang, W.; Wang, K.; Sun, J.; Li, W.; Yang, G. Effects of winter covering crop residue incorporation on CH4 and N2O emission from double-cropped paddy fields in southern China. Environ. Sci. Pollut. Res. 2015, 22, 12689–12698. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, X.; Dong, Y.; Xu, X.; Xiong, Z. Microbial explanations for field-aged biochar mitigating greenhouse gas emissions during a rice-growing season. Environ. Sci. Pollut. Res. 2018, 25, 31307–31317. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Towfiqul Islam, A.R.M.; Chen, S.; Hu, B.; Shen, S.; Wu, Y.; Wang, Y. Effects of warming and reduced precipitation on soil respiration and N2O fluxes from winter wheat-soybean cropping systems. Geoderma 2019, 337, 956–964. [Google Scholar] [CrossRef]
- Song, H.; Wang, J.; Zhang, K.; Zhang, M.; Hui, R.; Sui, T.; Yang, L.; Du, W.; Dong, Z. A 4-year field measurement of N2O emissions from a maize-wheat rotation system as influenced by partial organic substitution for synthetic fertilizer. J. Environ. Manag. 2020, 263, 110384. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.; Diaz-Pines, E.; Stoll, E.; Schloter, M.; Schulz, S.; Duffner, C.; Li, K.; Moore, K.; Ingrisch, J.; Reinthaler, D.; et al. Denitrifying pathways dominate nitrous oxide emissions from managed grassland during drought and rewetting. Sci. Adv. 2021, 7, eabb7118. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Chang, N.; Zhang, J.; Li, G.; Zhang, J.; Ju, X.; Zhang, G.; Li, H. Optimized fertigation mitigates N2O and NO emissions and enhances NH3 volatilizations in an intensified greenhouse vegetable system. Agric. Water Manag. 2022, 272, 107797. [Google Scholar] [CrossRef]
- Yangjin, D.; Wu, X.; Bai, H.; Gu, J. A meta-analysis of management practices for simultaneously mitigating N2O and NO emissions from agricultural soils. Soil Tillage Res. 2021, 213, 105142. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, E.; Lan, Y.; He, T.; Chen, W.; Meng, J. Effect of Biochar on Urea Hydrolysis Rate and Soil ureC Gene Copy Numbers. J. Soil Sci. Plant Nutr. 2021, 21, 3122–3131. [Google Scholar] [CrossRef]
- Bolan, N.; Sarmah, A.K.; Bordoloi, S.; Bolan, S.; Padhye, L.P.; Van Zwieten, L.; Sooriyakumar, P.; Khan, B.A.; Ahmad, M.; Solaiman, Z.M.; et al. Soil acidification and the liming potential of biochar. Environ. Pollut. 2023, 317, 120632. [Google Scholar] [CrossRef]
- Dong, W.; Guo, J.; Xu, L.; Song, Z.; Zhang, J.; Tang, A.; Zhang, X.; Leng, C.; Liu, Y.; Wang, L.; et al. Water regime-nitrogen fertilizer incorporation interaction: Field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China. J. Environ. Sci. 2018, 64, 289–297. [Google Scholar] [CrossRef]
- Haque, M.M.; Biswas, J.C.; Maniruzzaman, M.; Hossain, M.B.; Islam, M.R. Water management and soil amendment for reducing emission factor and global warming potential but improving rice yield. Paddy Water Environ. 2021, 19, 515–527. [Google Scholar] [CrossRef]
- Zheng, J.; Han, J.; Liu, Z.; Xia, W.; Zhang, X.; Li, L.; Liu, X.; Bian, R.; Cheng, K.; Zheng, J.; et al. Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production. Agric. Ecosyst. Environ. 2017, 241, 70–78. [Google Scholar] [CrossRef]
- Lychuk, T.E.; Izaurralde, R.C.; Hill, R.L.; McGill, W.B.; Williams, J.R. Biochar as a global change adaptation: Predicting biochar impacts on crop productivity and soil quality for a tropical soil with the Environmental Policy Integrated Climate (EPIC) model. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 1437–1458. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, J.; Wang, S.; Xing, G. Successive straw biochar application as a strategy to sequester carbon and improve fertility: A pot experiment with two rice/wheat rotations in paddy soil. Plant Soil 2014, 378, 279–294. [Google Scholar] [CrossRef]
- Liu, X.; Mao, P.; Li, L.; Ma, J. Impact of biochar application on yield-scaled greenhouse gas intensity: A meta-analysis. Sci. Total Environ. 2019, 656, 969–976. [Google Scholar] [CrossRef] [PubMed]
Transplanting Seedlings, Applying Basal Fertilizer | Applying Tillering Fertilizer | Field Sunning | Irrigation and Rehydration | Applying Panicle Fertilizer | Harvesting of Rice | |
---|---|---|---|---|---|---|
Early rice | 8 June 2020 | 8 July 2020 | 15 July 2020 | 23 July 2020 | 16 August 2020 | 28 September 2022 |
Late rice | 13 June 2021 | 6 July 2021 | 18 July 2021 | 25 July 2021 | 18 August 2021 | 3 October 2021 |
Treatments | CO2–e (CH4) | CO2–e (N2O) | Total GWP | Yield | GHGI | |
---|---|---|---|---|---|---|
Early rice season | CF | 7480.2 ± 293.5 c | 322.7 ± 33.4 a | 7802.9 ± 302.1 c | 6897.2 ± 176.5 c | 1.13 ± 0.10 b |
CF + S | 8638.4 ± 395.1 a | 298.8 ± 20.3 b | 8937.2 ± 413.0 a | 7102.5 ± 293.4 ab | 1.26 ± 0.12 a | |
CF + B | 5558.4 ± 249.4 e | 224.5 ± 18.5 f | 5782.9 ± 260.7 e | 7193.1 ± 224.8 a | 0.80 ± 0.09 d | |
OF | 6987.2 ± 363.0 d | 260.5 ± 19.6 c | 7247.6 ± 359.6 d | 6925.9 ± 193.5 c | 1.05 ± 010 c | |
OF + S | 8023.3 ± 321.8 b | 250.7 ± 26.4 d | 8274.0 ± 331.9 b | 7072.4 ± 201.5 b | 1.17 ± 0.11 ab | |
OF + B | 5227.9 ± 212.2 f | 232.9 ± 21.3 e | 5460.8 ± 226.1 f | 7129.5 ± 221.8 a | 0.77 ± 0.08 d | |
Late rice season | CF | 8499.7 ± 321.5 b | 356.7 ± 31.2 a | 8856.4 ± 346.8 b | 7234.4 ± 198.8 c | 1.22 ± 0.13 ab |
CF + S | 9227.2 ± 414.8 a | 290.4 ± 24.1 b | 9517.6 ± 433.1 a | 7389.1 ± 173.4 b | 1.29 ± 0.16 a | |
CF + B | 5979.1 ± 339.5 f | 244.1 ± 22.3 d | 6223.2 ± 361.7 f | 7429.4 ± 176.4 ab | 0.84 ± 0.07 d | |
OF | 7910.3 ± 386.4 d | 242.1 ± 17.5 d | 8152.3 ± 411.0 d | 7183.3 ± 173.9 d | 1.13 ± 0.09 c | |
OF + S | 8330.4 ± 403.4 c | 275.5 ± 26.3 c | 8605.9 ± 421.8 c | 7486.4 ± 187.5 a | 1.15 ± 0.10 bc | |
OF + B | 6204.0 ± 173.1 e | 224.5 ± 16.8 e | 6428.4 ± 203.8 e | 7466.5 ± 201.9 a | 0.86 ± 0.11 d | |
Total seasons | CF | 15,978.0 ± 538.4 c | 679.4 ± 32.3 a | 16,659.3 ± 631.5 b | 14,131.6 ± 317.0 c | 1.18 ± 0.17 b |
CF + S | 17,865.6 ± 764.1 a | 589.2 ± 29.9 b | 18,454.8 ± 742.5 a | 14,491.6 ± 420.8 b | 1.27 ± 0.16 a | |
CF + B | 11,537.5 ± 499.2 e | 468.5 ± 19.7 e | 12,006.1 ± 531.7 d | 14,622.5 ± 297.5 a | 0.82 ± 0.11 d | |
OF | 14,897.4 ± 631.0 d | 502.6 ± 32.4 d | 15,400.0 ± 589.1 c | 14,109.2 ± 316.3 c | 1.09 ± 0.10 c | |
OF + S | 16,355.4 ± 511.8 b | 526.2 ± 27.5 c | 16,881.6 ± 530.8 b | 14,558.7 ± 329.6 ab | 1.16 ± 0.13 bc | |
OF + B | 11,431.8 ± 331.7 e | 457.4 ± 21.9 f | 11,889.2 ± 349.3 d | 14,595.9 ± 376.9 a | 0.81 ± 0.09 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; He, H.; Zhou, G.; He, Q.; Yang, S. Rice Yield and Greenhouse Gas Emissions Due to Biochar and Straw Application under Optimal Reduced N Fertilizers in a Double Season Rice Cropping System. Agronomy 2023, 13, 1023. https://doi.org/10.3390/agronomy13041023
Li D, He H, Zhou G, He Q, Yang S. Rice Yield and Greenhouse Gas Emissions Due to Biochar and Straw Application under Optimal Reduced N Fertilizers in a Double Season Rice Cropping System. Agronomy. 2023; 13(4):1023. https://doi.org/10.3390/agronomy13041023
Chicago/Turabian StyleLi, Dandan, Hao He, Guoli Zhou, Qianhao He, and Shuyun Yang. 2023. "Rice Yield and Greenhouse Gas Emissions Due to Biochar and Straw Application under Optimal Reduced N Fertilizers in a Double Season Rice Cropping System" Agronomy 13, no. 4: 1023. https://doi.org/10.3390/agronomy13041023
APA StyleLi, D., He, H., Zhou, G., He, Q., & Yang, S. (2023). Rice Yield and Greenhouse Gas Emissions Due to Biochar and Straw Application under Optimal Reduced N Fertilizers in a Double Season Rice Cropping System. Agronomy, 13(4), 1023. https://doi.org/10.3390/agronomy13041023