Successful Formulation and Application of Low-Temperature Bacterial Agents for Corn Stover Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Species and Medium
2.2. Fermentation of Bacteria
2.3. Preparation of Dry Powder Bacterial Agents
2.4. Lignocellulosic Enzyme Activity of Bacterial Agents
2.5. Degradation Effect of Bacterial Agents
2.5.1. Laboratory Soil Culture Test
2.5.2. Field Test
2.6. Storage Conditions of Bacterial Agents
2.7. Data Analysis
3. Results and Discussion
3.1. Formulation Analysis of Bacterial Agents
3.2. Lignocellulosic Enzyme Activity of Bacterial Agents
3.3. Validation of the Degradation Effect of the Bacterial Agent on Corn Stover
3.4. Analysis of Bacterial Agent Storage Conditions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CGMCC | China General Microbiological Culture Collection Center |
LB | Luria-Bertani |
OD | Optical density |
References
- Harrison, B.P.; Chopra, E.; Ryals, R.; Campbell, J.E. Quantifying the farmland application of compost to help meet California’s organic waste diversion law. Environ. Sci. Technol. 2020, 54, 4545–4553. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Z.; Liang, L.; Zhao, Y.; Yang, B.; Ding, R.; Wang, J.; Nie, J. Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crops Res. 2018, 218, 11–17. [Google Scholar] [CrossRef]
- Gong, X.; Zou, H.; Qian, C.; Yu, Y.; Hao, Y.; Li, L.; Wang, Q.; Jiang, Y.; Ma, J. Construction of in situ degradation bacteria of corn straw and analysis of its degradation efficiency. Ann. Microbiol. 2020, 70, 1–5. [Google Scholar] [CrossRef]
- Zheng, G.; Yin, T.; Lu, Z.; Boboua, S.Y.B.; Li, J.; Zhou, W. Degradation of rice straw at low temperature using a novel microbial consortium LTF-27 with efficient ability. Bioresour. Technol. 2020, 304, 123064. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Awasthi, M.K.; Liu, Y.; Cheng, Q.; Qu, J.; Sun, Y. Studies on the degradation of corn straw by combined bacterial cultures. Bioresour. Technol. 2021, 320, 124174. [Google Scholar] [CrossRef] [PubMed]
- Asgher, M.; Wahab, A.; Bilal, M.; Iqbal, H.M.N. Lignocellulose degradation and production of lignin modifying enzymes by Schizophyllum commune IBL-06 in solid-state fermentation. Biocatal. Agric. Biotechnol. 2016, 6, 195–201. [Google Scholar] [CrossRef]
- Vassilev, N.; Eichler-Löbermann, B.; Flor-Peregrin, E.; Martos, V.; Reyes, A.; Vassileva, M. Production of a potential liquid plant bio-stimulant by immobilized Piriformospora indica in repeated-batch fermentation process. AMB Express 2017, 7, 106. [Google Scholar] [CrossRef]
- Vassilev, N.; Vassileva, M.; Lopez, A.; Martos, V.; Reyes, A.; Maksimovic, I.; Eichler-Löbermann, B.; Malusà, E. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl. Microbiol. Biotechnol. 2015, 99, 4983–4996. [Google Scholar] [CrossRef]
- Hu, H.; Sun, J.; Gao, J.; Wang, Z.; Bao, H.C.; Hu, S.; Qing, G. Optimization of fermentation conditions for low-temperature and high-efficiency composite microbial system for corn stover degradation and preliminary development of microbial inocula. J. Agric. Environ. Sci. 2016, 35, 1602–1609. (In Chinese) [Google Scholar] [CrossRef]
- Cassán, F.; Diaz-Zorita, M. Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biol. Biochem. 2016, 103, 117–130. [Google Scholar] [CrossRef]
- Gotovtsev, P.M.; Yuzbasheva, E.Y.; Gorin, K.V.; Butylin, V.V.; Badranova, G.U.; Perkovskaya, N.I.; Mostova, E.B.; Namsaraev, Z.B.; Rudneva, N.I.; Komova, A.V.; et al. Immobilization of microbial cells for biotechnological production: Modern solutions and promising technologies. Appl. Biochem. Microbiol. 2015, 51, 792–803. [Google Scholar] [CrossRef]
- Arora, N.K.; Mishra, J. Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Appl. Soil Ecol. 2016, 107, 405–407. [Google Scholar] [CrossRef]
- Herrmann, L.; Lesueur, D. Challenges of formulation and quality of biofertilizers for successful inoculation. Appl. Microbiol. Biotechnol. 2013, 97, 8859–8873. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Atieno, M.; Herrmann, L.; Nakasathien, S.; Sarobol, E.; Wongkaew, A.; Nguyen, K.T.; Lesueur, D. Does inoculation with native rhizobia enhance nitrogen fixation and yield of cowpea through legume-based intercropping in the northern mountainous areas of Vietnam? Exp. Agric. 2020, 56, 825–836. [Google Scholar] [CrossRef]
- Biradar, B.J.P.; Santhosh, G.P. Cell protectants, adjuvants, surfactant and preservative and their role in increasing the shelf life of liquid inoculant formulations of Pseudomonas fluorescens. Int. J. Pure App. Biosci. 2018, 6, 116–122. [Google Scholar] [CrossRef]
- Xu, Z.; Lei, P.; Zhai, R.; Wen, Z.; Jin, M. Recent advances in lignin valorization with bacterial cultures: Microorganisms, metabolic pathways, and bio-products. Biotechnol. Biofuels. 2019, 12, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillet, S.; Aguedo, M.; Petitjean, L.; Morais, A.R.C.; da Costa Lopes, A.M.; Łukasik, R.M.; Anastas, P.T. Lignin transformations for high value applications: Towards targeted modifications using green chemistry. Green Chem. 2017, 19, 4200–4233. [Google Scholar] [CrossRef]
- Puentes-Téllez, P.E.; Salles, J.F. Dynamics of abundant and rare bacteria during degradation of lignocellulose from sugarcane biomass. Microb. Ecol. 2020, 79, 312–325. [Google Scholar] [CrossRef] [Green Version]
- Pilarska, A.A.; Pilarski, K.; Wolna-Maruwka, A. Cell immobilization on lignin-polyvinylpyrrolidone material for anaerobic digestion. Environ. Eng. Sci. 2019, 36, 478–490. [Google Scholar] [CrossRef]
- Tappiban, P.; Hu, Y.; Deng, J.; Zhao, J.; Ying, Y.; Zhang, Z.; Xu, F.; Bao, J. Relative importance of branching enzyme isoforms in determining starch fine structure and physicochemical properties of indica rice. Plant Mol. Biol. 2022, 108, 399–412. [Google Scholar] [CrossRef]
- Vassilev, N.; Vassileva, M.; Martos, V.; Garcia Del Moral, L.F.G.; Kowalska, J.; Tylkowski, B.; Malus, E. Formulation of microbial inoculants by encapsulation in natural polysaccharides: Focus on beneficial properties of carrier additives and derivatives. Front. Plant Sci. 2020, 11, 270. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, W.; Zhao, Y.; Zhou, Y.; Zhang, S.; Meng, L. Effects of compound bacterial agent on gaseous emissions and compost maturity during sewage sludge composting. J. Clean. Prod. 2022, 366, 133015. [Google Scholar] [CrossRef]
- Vassileva, M.; Malusà, E.; Sas-Paszt, L.; Trzcinski, P.; Galvez, A.; Flor-Peregrin, E.; Shilev, S.; Canfora, L.; Mocali, S.; Vassilev, N. Fermentation strategies to improve soil bio-inoculant production and quality. Microorganisms 2021, 9, 1254. [Google Scholar] [CrossRef]
- Grajek, W. Comparative studies on the production of cellulases by thermophilic fungi in submerged and solid-state fermentation. Appl. Microbiol. Biotechnol. 1987, 26, 126–129. [Google Scholar] [CrossRef]
- Archibald, F.S. A new assay for lignin-type peroxidases employing the dye azure B. Appl. Environ. Microbiol. 1992, 58, 3110–3116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wariishi, H.; Valli, K.; Gold, M.H. Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J. Biol. Chem. 1992, 267, 23688–23695. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Shen, X.; Gang, L.; Xu, H.; Wu, F.; Sheng, L. A novel lignin degradation bacteria-Bacillus amyloliquefaciens SL-7 used to degrade straw lignin efficiently. Bioresour. Technol. 2020, 310, 123445. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, S.B.; Park, H.D. Effect of air-blast drying and the presence of protectants on the viability of yeast entrapped in calcium alginate beads with an aim to improve the survival rate. Appl. Microbiol. Biotechnol. 2017, 101, 93–102. [Google Scholar] [CrossRef]
- Zhong, J.; Ma, Y.; Jiang, S.; Dai, G.; Liu, Z.; Shu, Y. The adsorption affinity of n-doped biochar plays a crucial role in peroxydisulfate activation and bisphenol A oxidative degradation. Environ. Sci. Pollut. Res. 2022, 29, 88630–88643. [Google Scholar] [CrossRef]
- Chen, B.; Yuan, M.; Qian, L. Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers. J. Soil Sediments 2012, 12, 1350–1359. [Google Scholar] [CrossRef]
- Tapia-Olivares, V.R.; Vazquez-Bello, E.A.; Aguilar-Garnica, E.; Escalante, F.M.E. Valorization of lignin as an immobilizing agent for bioinoculant production using Azospirillum brasilense as a model bacteria. Molecules 2019, 24, 4613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, B.A.; Hebbar, K.P.; Strem, M.; Lumsden, R.D.; Darlington, L.C.; Connick, W.J., Jr.; Daigle, D.J. Formulations of Fusarium oxysporum f.sp. erythroxyli for biocontrol of Erythroxylum coca var. coca. Weed Sci. 1998, 46, 682–689. [Google Scholar] [CrossRef]
- Cheng, Z.; Lu, L.; Kennes, C.; Ye, J.; Yu, J.; Chen, D.; Chen, J. A composite microbial agent containing bacterial and fungal species: Optimization of the preparation process, analysis of characteristics, and use in the purification for volatile organic compounds. Bioresour. Technol. 2016, 218, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Zhang, J.; Gu, X.; Yu, H.; Chen, S. A comprehensive study of the promoting effect of manganese on white rot fungal treatment for enzymatic hydrolysis of woody and grass lignocellulose. Biotechnol. Biofuels 2021, 14, 176. [Google Scholar] [CrossRef]
- Jiang, C.; Cheng, Y.; Zang, H.L.; Chen, X.; Wang, Y.; Zhang, Y.T.; Wang, J.M.; Shen, X.H.; Li, C.Y. Biodegradation of lignin and the associated degradation pathway by psychrotrophic Arthrobacter sp. C2 from the cold region of China. Cellulose 2020, 27, 1423–1440. [Google Scholar] [CrossRef]
- Munk, L.; Sitarz, A.K.; Kalyani, D.C.; Mikkelsen, J.D.; Meyer, A.S. Can laccases catalyze bond cleavage in lignin? Biotechnol. Adv. 2015, 33, 13–24. [Google Scholar] [CrossRef]
- Zhu, N.; Zhu, Y.; Li, B.; Jin, H.; Dong, Y. Increased enzyme activities and fungal degraders by Gloeophyllum trabeum inoculation improve lignocellulose degradation efficiency during manure-straw composting. Bioresour. Technol. 2021, 337, 125427. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, Z.; Shi, J.; Yang, C.; Fang, Y.; Chen, G.; Chen, H.; Tian, C. Enzymatic hydrolysis of corn stover lignin by laccase, lignin peroxidase, and manganese peroxidase. Bioresour. Technol. 2022, 361, 127699. [Google Scholar] [CrossRef]
- de Lima Brossi, M.J.; Jiménez, D.J.; Cortes-Tolalpa, L.; van Elsa, J.D. Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation. Microb. Ecol. 2016, 71, 616–627. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Wang, X.; Cao, L.; Xu, M. Lignin catabolic pathways reveal unique characteristics of dye-decolorizing peroxidases in Pseudomonas putida. Environ. Microbiol. 2019, 21, 1847–1863. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xiao, J.; Wang, G.; Chen, G. Enzymatic hydrolysis of lignin by ligninolytic enzymes and analysis of the hydrolyzed lignin products. Bioresour. Technol. 2020, 304, 122975. [Google Scholar] [CrossRef] [PubMed]
- Liffourrena, A.S.; Lucchesi, G.I. Alginate-perlite encapsulated Pseudomonas putida A (ATCC 12633) cells: Preparation, characterization and potential use as plant inoculants. J. Biotechnol. 2018, 278, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Basiru, S.; Mwanza, H.P.; Hijri, M. Analysis of arbuscular mycorrhizal fungal inoculant benchmarks. Microorganisms 2020, 9, 81. [Google Scholar] [CrossRef]
- Liu, D.; Ma, X.; Huang, J.; Shu, Z.; Chu, X.; Li, Y.; Jin, Y. Enhancing the fermentation of acidified food waste using a self-formulated thermophilic and acid-resistant bacterial agent. J. Environ. Chem. Eng. 2022, 10, 107350. [Google Scholar] [CrossRef]
- Mejri, D.; Gamalero, E.; Souissi, T. Formulation development of the deleterious rhizobacterium Pseudomonas trivialis X33d for biocontrol of brome (Bromus diandrus) in durum wheat. J. Appl. Microbiol. 2013, 114, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Mansur, A.R.; Song, E.J.; Cho, Y.S.; Nam, Y.D.; Choi, Y.S.; Kim, D.O.; Seo, D.H.; Nam, T.G. Comparative evaluation of spoilage-related bacterial diversity and metabolite profiles in chilled beef stored under air and vacuum packaging. Food Microbiol. 2019, 77, 166–172. [Google Scholar] [CrossRef] [PubMed]
Years | Available N (mg/g) | Available P (mg/g) | Available K (mg/g) | Organic Matter (g/kg) |
---|---|---|---|---|
2020 | 55.36 | 6.67 | 96.54 | 16.96 |
2021 | 56.62 | 6.82 | 97.01 | 18.23 |
Number of Additive Types | Precipitates:Additives | χ2 | p | ||
---|---|---|---|---|---|
1:8 | 1:6 | 1:4 | |||
One (n = 27) | 2.2 (2.0, 3.6) | 1.9 (1.7, 13.7) | 3.5 (2.3, 6.5) | 1.966 | 0.374 |
Two (n = 135) | 3.3 (1.3, 4.3) b | 2.9 (1.2, 6.5) a | 4.3 (2.6, 9.6) a | 8.706 | 0.013 * |
Three (n = 75) | 2.1 (1.4, 3.3) b | 3.0 (1.2, 4.2) a | 4.9 (3.1, 7.2) a | 16.630 | 0.000 ** |
Number of Additive Types | Types of Additives | χ2 | p | ||
---|---|---|---|---|---|
One (n = 27) | Corn stalk husk powder | Starch | Bran | ||
2.0 (1.7, 2.4) b | 3.9 (2.0, 6.5) a | 3.5 (2.1, 13.7) a | 7.430 | 0.024 * | |
Two (n = 135) | Corn stalk husk powder + starch | Corn stalk husk powder + bran | Starch + bran | ||
2.9 (1.5, 4.6) | 3.3 (1.4, 9.2) | 3.5 (2.4, 5.7) | 1.608 | 0.447 |
Number of Additive Types | Adsorbent:Protective Agents | χ2 | p | ||||
---|---|---|---|---|---|---|---|
1:1 | 1:2 | 1:3 | 3:1 | 2:1 | |||
Three (n = 75) | 3.0 (1.8, 5.5) | 3.4 (1.0, 4.7) | 4.3 (2.4, 11.2) | 2.7 (1.7, 4.5) | 2.7 (1.1, 4.4) | 4.617 | 0.329 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Han, S.; Yu, X.; Gao, J.; Hu, S.; Borjigin, N.; Borjigin, Q.; Guo, J.; Bai, J.; Zhang, B.; et al. Successful Formulation and Application of Low-Temperature Bacterial Agents for Corn Stover Degradation. Agronomy 2023, 13, 1032. https://doi.org/10.3390/agronomy13041032
Zhang S, Han S, Yu X, Gao J, Hu S, Borjigin N, Borjigin Q, Guo J, Bai J, Zhang B, et al. Successful Formulation and Application of Low-Temperature Bacterial Agents for Corn Stover Degradation. Agronomy. 2023; 13(4):1032. https://doi.org/10.3390/agronomy13041032
Chicago/Turabian StyleZhang, Sainan, Shengcai Han, Xiaofang Yu, Julin Gao, Shuping Hu, Naoganchaolu Borjigin, Qinggeer Borjigin, Jiangan Guo, Jianfei Bai, Bizhou Zhang, and et al. 2023. "Successful Formulation and Application of Low-Temperature Bacterial Agents for Corn Stover Degradation" Agronomy 13, no. 4: 1032. https://doi.org/10.3390/agronomy13041032
APA StyleZhang, S., Han, S., Yu, X., Gao, J., Hu, S., Borjigin, N., Borjigin, Q., Guo, J., Bai, J., Zhang, B., Huang, Z., & Lei, Y. (2023). Successful Formulation and Application of Low-Temperature Bacterial Agents for Corn Stover Degradation. Agronomy, 13(4), 1032. https://doi.org/10.3390/agronomy13041032