Retrofitting and Testing of a Pull-Type Small-Grain Combine Harvester
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Combine
2.1.1. Structure of the Combine
2.1.2. Conditions of the Combine
2.1.3. Design Constraints and Requirements
2.2. The Auger Redesign
2.2.1. Design Principles
2.2.2. Design Details
2.2.3. Prototyping
2.3. The Feeder House Redesign
2.3.1. Design Principles
2.3.2. Design Details
2.3.3. Prototyping
2.4. Testing and Analysis
2.4.1. Testing Set-Up and Procedures
2.4.2. Experimental Design
2.4.3. Data Analysis
3. Results and Discussions
3.1. Auger Redesign Results
3.2. Feeder House Redesign Results
3.3. Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manandhar, A.; Zhu, H.; Ozkan, E.; Shah, A. Techno-economic impacts of using a laser-guided variable-rate spraying system to retrofit conventional constant-rate sprayers. Precis. Agric. 2020, 21, 1156–1171. [Google Scholar] [CrossRef]
- Lorencowicz, E.; Uziak, J. Repair cost of tractors and agricultural machines in family farms. Agric. Agric. Sci. Procedia 2015, 7, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Perez-Ruiz, M.; Slaughter, D.C.; Gliever, C.; Upadhyaya, S.K. Tractor-based real-time kinematic-global positioning system (RTK-GPS) guidance system for geospatial mapping of row crop transplant. Biosyst. Eng. 2012, 111, 64–71. [Google Scholar] [CrossRef]
- Annamalai, P.; Lee, W.S. Citrus yield mapping system using machine vision. In Proceedings of the ASAE Annual International Meeting, Las Vegas, NV, USA, 27–30 July 2003. [Google Scholar]
- Wang, B.; Wang, Y.; Wang, H.; Mao, H.; Zhou, L. Research on accurate perception and control system of fertilization amount for corn fertilization planter. Front. Plant Sci. 2022, 13, 1074945. [Google Scholar] [CrossRef]
- Prisyazhnaya, I.M.; Sinegovskaya, V.T.; Prisyazhnaya, S.P.; O Sinegovskii, M. Harvester and transporting device development for high-quality soybean seeds obtaining. IOP Conf. Ser. Earth Environ. Sci. 2020, 548, 062078. [Google Scholar] [CrossRef]
- Lin, S.; Jiang, Y.; Chen, X.; Biswas, A.; Li, S.; Yuan, Z.; Wang, H.; Qi, L. Automatic detection of plant rows for a transplanter in paddy field using Faster R-CNN. IEEE Access 2020, 8, 147231–147240. [Google Scholar] [CrossRef]
- Šotnar, M.; Pospíšil, J.; Mareček, J.; Dokukilová, T.; Novotný, V. Influence of the combine harvester parameter settings on harvest losses. Acta Technol. Agric. 2018, 21, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Zhao, X.; Ji, J.; Jin, X.; Li, B. Design and performance analysis of tangential-axial flow threshing device for oat harvester. Int. J. Agric. Biol. Eng. 2021, 14, 61–67. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Tian, L.; Wang, J.; Tang, H. Study on the throwing mechanism and loss characteristics of three-dimensional disturbance comb. Comput. Electron. Agric. 2022, 201, 107283. [Google Scholar] [CrossRef]
- Klinner, W.E.; Neale, M.A.; Arnold, R.E.; Geikie, A.A.; Hobson, R.N. A new concept in combine harvester headers. J. Agric. Eng. Res. 1987, 38, 37–45. [Google Scholar] [CrossRef]
- Wilkins, D.E.; Douglas, C.L., Jr.; Pikul, J.L., Jr. Header loss for shelbourne reynolds stripper-header harvesting wheat. Appl. Eng. Agric. 1995, 12, 159–162. [Google Scholar] [CrossRef]
- Tado, C.J.M.; Wacker, P.; Kutzbach, H.D.; Suministrado, D.C. Development of stripper harvesters: A review. J. Agric. Eng. Res. 1998, 71, 103–112. [Google Scholar] [CrossRef]
- Strakšas, A. Development of a stripper-header for grain harvesting. Agron. Res. 2006, 4, 79–89. [Google Scholar]
- Kalsirisilp, R.; Singh, G. PM—Power and machinery: Adoption of a stripper header for a thai-made rice combine harvester. J. Agric. Eng. Res. 2001, 80, 163–172. [Google Scholar] [CrossRef]
- Chegini, G.R.; Mirnezami, S.V. Experimental comparison of combine performance with two harvesting methods: Stripper header and conventional header. Agric. Eng. Int. CIGR J. 2016, 18, 192–200. [Google Scholar]
- Sugár, E.; Fodor, N.; Sándor, R.; Bónis, P.; Vida, G.; Árendás, T. Spelt wheat: An alternative for sustainable plant production at low N-levels. Sustainability 2019, 11, 6726. [Google Scholar] [CrossRef] [Green Version]
- Cooper, R. Re-discovering ancient wheat varieties as functional foods. J. Tradit. Complement. Med. 2015, 5, 138–143. [Google Scholar] [CrossRef] [Green Version]
- Jouzi, Z.; Azadi, H.; Taheri, F.; Zarafshani, K.; Gebrehiwot, K.; Van Passel, S.; Lebailly, P. Organic farming and small-scale farmers: Main opportunities and challenges. Ecol. Econ. 2017, 132, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Guanter, J.; Agüera, P.; Agüera, J.; Pérez-Ruiz, M. Spray and economics assessment of a UAV-based ultra-low-volume application in olive and citrus orchards. Precis. Agric. 2019, 21, 226–243. [Google Scholar] [CrossRef]
- Celenta, G.; De Simone, M.C. Retrofitting techniques for agricultural machines. In New Technologies, Development and Application III; Karabegović, I., Ed.; Springer: Cham, Switzerland, 2020; Volume 128. [Google Scholar]
- Douthwaite, B.; Keatinge, J.D.H.; Park, J.R. Why promising technologies fail: The neglected role of user innovation during adoption. Res. Policy 2001, 30, 819–836. [Google Scholar] [CrossRef]
- Liang, Z.; Li, Y.; De Baerdemaeker, J.; Xu, L.; Saeys, W. Development and testing of a multi-duct cleaning device for tangential-longitudinal flow rice combine harvesters. Biosyst. Eng. 2019, 182, 95–106. [Google Scholar] [CrossRef]
- Kovaleva, E.V. Assessing the quality of production equipment. In Towards an Increased Security: Green Innovations, Intellectual Property Protection and Information Security; Popkova, E.G., Polukhin, A.A., Ragulina, J.V., Eds.; Springer: Cham, Switzerland, 2022; Volume 372, pp. 825–833. [Google Scholar]
- Chico-Santamarta, L.; Masebu, H.; White, D.R.; Godwin, R.J.; Crook, M. The development of an improved stripping mechanism for sorghum harvesting. In Proceedings of the ASAE Annual International Meeting, Kansas City, MO, USA, 21–24 July 2013. [Google Scholar]
- Na, M.; Qiao, J.; Li, H.; Dong, X.; Wang, J.; Sun, W. Harvesting loss on a stripping header of non-air-suction stripping combine harvester for rice. Int. Agric. Eng. J. 2019, 28, 1–15. [Google Scholar]
- Price, J.S. Evaluation of an approach to early separation of grain threshed by a stripping rotor. J. Agric. Eng. Res. 1993, 56, 65–79. [Google Scholar] [CrossRef]
- Neale, M.A.; Hobson, R.N.; Price, J.S.; Bruce, D.M. Effectiveness of three types of grain separator for crop matter harvested with a stripping header. Biosyst. Eng. 2003, 84, 177–191. [Google Scholar] [CrossRef]
- ASABE Standard D497.7; Agriculture Machinery Management Data. American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2011.
- 2022 State Agriculture Overview. Available online: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOver-view.php?state=WISCONSIN (accessed on 1 March 2023).
- Yuan, J.; Lan, Y. Development of an improved cereal stripping harvester. Int. Comm. Agric. Eng. 2007, 9, 1–12. [Google Scholar]
- Chegini, G.R. Determine of optimum operating conditions of combine harvester with stripper-header. World Appl. Sci. J. 2013, 23, 1399–1407. [Google Scholar]
- McMaster, G.S.; Aiken, R.M.; Nielsen, D.C. Optimizing wheat harvest cutting height for harvest efficiency and soil and water conservation. Agron. J. 2000, 92, 1104–1108. [Google Scholar] [CrossRef]
- Zobeck, T.M.; Schillinger, W.F. Soil and Water Conservation Advances in the United States—Review and Assessment; Soil Science Society of America: Madison, WI, USA, 2010. [Google Scholar]
- Schillinger, W.F.; Wuest, S.B. Wheat stubble height effects on soil water capture and retention during long fallow. Agric. Water Manag. 2021, 256, 107117. [Google Scholar] [CrossRef]
- Jiang, Y.; Du, C.; Xu, J. Study on the performance of stripping rotor with air suction. Proc. Int. Conf. Agric. Eng. 1992, 1, 176–179. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Leis, K.; Zeng, Z. Retrofitting and Testing of a Pull-Type Small-Grain Combine Harvester. Agronomy 2023, 13, 1057. https://doi.org/10.3390/agronomy13041057
Tian Y, Leis K, Zeng Z. Retrofitting and Testing of a Pull-Type Small-Grain Combine Harvester. Agronomy. 2023; 13(4):1057. https://doi.org/10.3390/agronomy13041057
Chicago/Turabian StyleTian, Yuyuan, Kyle Leis, and Zhiwei Zeng. 2023. "Retrofitting and Testing of a Pull-Type Small-Grain Combine Harvester" Agronomy 13, no. 4: 1057. https://doi.org/10.3390/agronomy13041057
APA StyleTian, Y., Leis, K., & Zeng, Z. (2023). Retrofitting and Testing of a Pull-Type Small-Grain Combine Harvester. Agronomy, 13(4), 1057. https://doi.org/10.3390/agronomy13041057