Impacts of Partial Substitution of Chemical Fertilizer with Organic Manure on the Kinetic and Thermodynamic Characteristics of Soil β–Glucosidase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Soil Sampling
2.2. Determination of β–Glucosidase Activity
2.3. Kinetic and Thermodynamic Analysis of β–Glucosidase
2.3.1. Kinetics of the Enzymatic Reaction
2.3.2. Thermodynamics of the Enzymatic Reaction
2.4. Statistical Analysis
3. Results
3.1. Kinetic Characteristics of β–Glucosidase in Soil
3.2. Thermodynamic Characteristics of β–Glucosidase in Soil
3.3. Redundancy Analysis
4. Discussion
4.1. Kinetic Characteristics of Soil Enzymes
4.2. Thermodynamic Characteristics of Soil Enzymes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jin, S.; Zhou, F. Zero growth of chemical fertilizer and pesticide use: China’s objectives, progress and challenges. J. Resour. Ecol. 2018, 9, 50–58. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Pérez-Guzmán, L.; Johnson, J.M.F. Simultaneous determination of β-glucosidase, β-glucosaminidase, acid phosphomonoesterase, and arylsulfatase activities in a soil sample for a biogeochemical cycling index. Appl. Soil Ecol. 2019, 142, 72–80. [Google Scholar] [CrossRef]
- Lorenz, N.; McSpadden Gardener, B.B.; Lee, N.R.; Ramsier, C.; Dick, R.P. Soil Enzyme activities associated with differential outcomes of contrasting approaches to soil fertility management in corn and soybean fields. Appl. Ecol. Environ. Sci. 2020, 8, 517–525. [Google Scholar] [CrossRef]
- Khan, M.N.; Lan, Z.; Sial, T.A.; Zhao, Y.; Haseeb, A.; Jianguo, Z.; Hill, R.L. Straw and biochar effects on soil properties and tomato seedling growth under different moisture levels. Arch. Agron. Soil Sci. 2019, 65, 1704–1719. [Google Scholar] [CrossRef]
- Hayano, K.; Katami, A. Extraction of β-glucosidase activity from PEA field soil. Soil Biol. Biochem. 1977, 9, 349–351. [Google Scholar] [CrossRef]
- Günal, E.; Erdem, H.; Demirbaş, A. Effects of three biochar types on activity of β-glucosidase enzyme in two agricultural soils of different textures. Arch. Agron. Soil Sci. 2018, 64, 1963–1974. [Google Scholar] [CrossRef]
- Ahmadi, S.; Salehi, M.; Ausi, S. Kinetic and thermodynamic study of aspartic protease extracted from Withania coagulans. Int. Dairy J. 2021, 116, 104960. [Google Scholar] [CrossRef]
- Nisar, K.; Abdullah, R.; Kaleem, A.; Iqtedar, M.; Aftab, M.; Saleem, F. Purification, characterization and thermodynamic analysis of cellulases produced from Thermomyces dupontii and its industrial applications. Saudi J. Biol. Sci. 2022, 29, 103483. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, H.; Lei, M.; Megharaj, M.; Tan, X.; Wang, F.; Jia, H.; He, W. Soil enzyme kinetics indicate ecotoxicity of long-term arsenic pollution in the soil at field scale. Ecotoxicol. Environ. Saf. 2020, 191, 110215. [Google Scholar] [CrossRef]
- Tao, K.; Tian, H.; Fan, J.; Li, D.; Liu, C.; Megharaj, M.; Li, H.; Hu, M.; Jia, H.; He, W. Kinetics and catalytic efficiency of soil fluorescein diacetate hydrolase under the pesticide parathion stress. Sci. Total Environ. 2021, 771, 144835. [Google Scholar] [CrossRef]
- Schad, P. The international soil classification system WRB, 2014. In Novel Methods for Monitoring and Managing Land and Water Resources in Siberia; Springer: Cham, Switzerland, 2016; pp. 563–571. [Google Scholar] [CrossRef]
- Moscatelli, M.C.; Lagomarsino, A.; Garzillo, A.M.V.; Pignataroa, A.; Grego, S. β-Glucosidase kinetic parameters as indicators of soil quality under conventional and organic cropping systems applying two analytical approaches. Ecol. Indic. 2012, 13, 322–327. [Google Scholar] [CrossRef]
- Ma, X.F.; Deng, S.P. Quantifying the activity of β-D-fucosidase in soil. Biol. Fertil. Soils 2020, 56, 1037–1046. [Google Scholar] [CrossRef]
- Yan, J.L.; Pan, G.X.; Ding, C.; Quan, G.X. Kinetic and thermodynamic parameters of beta-glucosidase immobilized on various colloidal particles from a paddy soil. Colloids Surf. B Biointerfaces 2010, 79, 298–303. [Google Scholar] [CrossRef]
- Song, X.N.; Razavi, B.S.; Ludwig, B.; Zamanian, K.; Gunina, A. Combined biochar and nitrogen application stimulates enzyme activity and root plasticity. Sci. Total Environ. 2020, 735, 139393. [Google Scholar] [CrossRef]
- Tan, X.; Machmuller, M.B.; Wang, Z.; Li, X.; He, W.; Cotrufo, M.F.; Shen, W. Temperature enhances the affinity of soil alkaline phosphatase to Cd. Chemosphere 2018, 196, 214–222. [Google Scholar] [CrossRef]
- Marx, M.C.; Wood, M.; Jarvis, S.C. A microplate fluorometric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 2001, 33, 1633–1640. [Google Scholar] [CrossRef]
- Marx, M.C.; Kandeler, E.; Wood, M.; Wermbter, N.; Jarvis, S.C. Exploring the enzymatic landscape: Distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biol. Biochem. 2005, 37, 35–48. [Google Scholar] [CrossRef]
- Quiquampoix, H.; Servagent-Noinville, S.; Baron, M. Enzyme adsorption on soil mineral surfaces and consequences for the catalytic activity. Books Soils Plants Environ. 2002, 84, 285–306. [Google Scholar] [CrossRef]
- Liu, F.; Li, X.; Sheng, A.; Wang, Z.; Liu, J. Kinetics and mechanisms of protein adsorption and conformational change on hematite particles. Environ. Sci. Technol. 2019, 53, 10157–10165. [Google Scholar] [CrossRef] [PubMed]
- Raiesi, F.; Khadem, A. Short-term effects of maize residue biochar on kinetic and thermodynamic parameters of soil β-glucosidase. Biochar 2019, 1, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Dong, H.; Coffin, E.; Myrold, D.; Kleber, M. The Important Role of Enzyme Adsorbing Capacity of Soil Minerals in Regulating β-Glucosidase Activity. Geophys. Res. Lett. 2022, 49, e2021GL097556. [Google Scholar] [CrossRef]
- Zang, Y.; Liu, F.; Li, X.; Sheng, A.; Zhai, J.; Liu, J. Adsorption kinetics, conformational change, and enzymatic activity of β-glucosidase on hematite (α-Fe2O3) surfaces. Colloids Surf. B Biointerfaces 2020, 193, 111115. [Google Scholar] [CrossRef] [PubMed]
- Hamer, U.; Meyer, M.U.T.; Meyer, U.N.; Radermacher, A.; Götze, P.; Koch, H.J.; Scherber, C. Soil microbial biomass and enzyme kinetics for the assessment of temporal diversification in agroecosystems. Basic Appl. Ecol. 2021, 53, 143–153. [Google Scholar] [CrossRef]
- Tian, P.; Razavi, B.S.; Zhang, X.; Wang, Q.; Blagodatskaya, E. Microbial growth and enzyme kinetics in rhizosphere hotspots are modulated by soil organics and nutrient availability. Soil Biol. Biochem. 2020, 141, 107662. [Google Scholar] [CrossRef]
- Fontaine, S.; Barot, S. Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation. Ecol. Lett. 2005, 8, 1075–1087. [Google Scholar] [CrossRef]
- Zhang, X.; Kuzyakov, Y.; Zang, H.; Dippold, M.A.; Shi, L.; Spielvogel, S.; Razavi, B.S. Rhizosphere hotspots: Root hairs and warming control microbial efficiency, carbon utilization and energy production. Soil Biol. Biochem. 2020, 148, 107872. [Google Scholar] [CrossRef]
- Knight, T.R.; Dick, R.P. Differentiating microbial and stabilized β-glucosidase activity relative to soil quality. Soil Biol. Biochem. 2004, 36, 2089–2096. [Google Scholar] [CrossRef]
- Zago, L.M.S.; De Melo Carvalho, M.T.; Bailão, E.F.L.C.; De Almeida, L.M.; Caramori, S.S. Kinetic modeling indicates changes in the soil quality of agroecosystems in the Brazilian Cerrado. Geoderma Reg. 2022, 28, e00472. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, H.; Wu, Y.; Wang, J.; Zhao, Z.; Li, Y.; Xue, S. Direct and indirect influences of long-term fertilization on microbial carbon and nitrogen cycles in an alpine grassland. Soil Biol. Biochem. 2020, 149, 107922. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, Y.H.; Liao, Y.L.; Zhu, Q.D.; Cheng, H.D.; Nie, X.; Cao, W.D.; Nie, J. Substitution of chemical fertilizer by Chinese milk vetch improves the sustainability of yield and accumulation of soil organic carbon in a double-rice cropping system. J. Integr. Agric. 2019, 18, 2381–2392. [Google Scholar] [CrossRef]
- Busto, M.D.; Perez-Mateos, M. Extraction of humic-β-glucosidase fractions from soil. Biol. Fertil. Soils 1995, 20, 77–82. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, H.; Tan, X.; Wang, F.; Jia, H.; Megharaj, M.; He, W. Long-term As contamination alters soil enzyme functional stability in response to additional heat disturbance. Chemosphere 2019, 229, 471–480. [Google Scholar] [CrossRef]
- Menšík, L.; Hlisnikovský, L.; Pospíšilová, L.; Kunzová, E. The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment. J. Soils Sediments 2018, 18, 2813–2822. [Google Scholar] [CrossRef]
- Tian, H.; Zhao, Y.; Megharaj, M.; He, W. Arsenate inhibition on kinetic characteristics of alkaline phosphatase as influenced by pH. Ecol. Indic. 2018, 85, 1101–1106. [Google Scholar] [CrossRef]
- Zaman, U.; Khan, S.U.; Hendi, A.A.; Ur Rehman, K.; Badshah, S.; Refat, M.S.; Wahab, A. Kinetic and thermodynamic studies of novel acid phosphatase isolated and purified from Carthamus oxyacantha seedlings. Int. J. Biol. Macromol. 2023, 224, 20–31. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, X.P.; Wang, Y.Y.; Guo, Z.M.; He, D.; Fu, S.L.; Wan, S.Q.; Ye, Q.; Zhang, W.; Liu, W.; et al. Responses of litter, organic and mineral soil enzyme kinetics to 6 years of canopy and understory nitrogen additions in a temperate forest. Sci. Total Environ. 2020, 712, 136383. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Ghosh, A.; Zhang, Y.; Dalal, R.C.; Kopittke, P.M.; Jones, A.; Menzies, N.W. Land use affects temperature sensitivity of soil organic carbon decomposition in macroaggregates but not in bulk soils in subtropical Oxisols of Queensland, Australia. Soil Tillage Res. 2020, 198, 104566. [Google Scholar] [CrossRef]
- Yang, Z.; Liao, Y.; Fu, X.; Zaporski, J.; Peters, S.; Jamison, M.; Gu, B. Temperature sensitivity of mineral-enzyme interactions on the hydrolysis of cellobiose and indican by β-glucosidase. Sci. Total Environ. 2019, 686, 1194–1201. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, H.; Li, J.; Yao, X.; Chen, X.; Zeng, H.; Wang, W. The effect of soil depth on temperature sensitivity of extracellular enzyme activity decreased with elevation: Evidence from mountain grassland belts. Sci. Total Environ. 2021, 777, 146136. [Google Scholar] [CrossRef]
- Alvarez, G.; Shahzad, T.; Andanson, L.; Bahn, M.; Wallenstein, M.D.; Fontaine, S. Catalytic power of enzymes decreases with temperature: New insights for understanding soil C cycling and microbial ecology under warming. Glob. Chang. Biol. 2018, 24, 4238–4250. [Google Scholar] [CrossRef]
- Megan, S.J.; Sindhu, J.; Joshua, F.; Mayes, M.A.; Mormile, M.R. Activation energy of extracellular enzymes in soils from different biomes. PLoS ONE 2013, 8, e59943. [Google Scholar] [CrossRef]
- Di Nardo, C.; Cinquegrana, A.; Papa, S.; Fuggi, A.; Fioretto, A. Laccase and peroxidase isoenzymes during leaf litter decomposition of Quercus ilex in a Mediterranean ecosystem. Soil Biol. Biochem. 2011, 36, 1539–1544. [Google Scholar] [CrossRef]
- Paul, R.; Datta, S.C.; Bera, T.; Math, M.K.; Bhattacharyya, R.; Dahuja, A. Interaction of phosphatase with soil nanoclays: Kinetics, thermodynamics and activities. Geoderma 2022, 409, 115654. [Google Scholar] [CrossRef]
- Khadem, A.; Raiesi, F. Response of soil alkaline phosphatase to biochar amendments: Changes in kinetic and thermodynamic characteristics. Geoderma 2019, 337, 44–54. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, H.; Sun, W.; Zhao, Q.; Liang, M.; Chen, W.; Xue, S. Temperature sensitivity of soil enzyme kinetics under N and P fertilization in an alpine grassland, China. Sci. Total Environ. 2022, 838, 156042. [Google Scholar] [CrossRef]
- Frankenbergerjr, W.; Tabatabai, M.A. I-glutaminase activity of soil. Soil Biol. Biochem. 1991, 23, 869–874. [Google Scholar] [CrossRef]
- Chen, J.; Sun, X.; Zheng, J.; Zhang, X.; Liu, X.; Bian, R.; Li, L.; Cheng, K.; Zheng, J.; Pan, G. Biochar amendment changes temperature sensitivity of soil respiration and composition of microbial communities 3 years after incorporation in an organic carbon-poor dry cropland soil. Biol. Fertil. Soils 2018, 54, 175–188. [Google Scholar] [CrossRef]
- Silva, J.D.C.; Lopes De Franca, P.R.; Converti, A.; Souza Porto, T. Kinetic and thermodynamic characterization of a novel Aspergillus aculeatus URM4953 polygalacturonase. Comparison of free and calcium alginate-immobilized enzyme. Process Biochem. 2018, 74, 61–70. [Google Scholar] [CrossRef]
- Lu, C.; Li, F.; Yan, X.; Mao, S.; Zhang, T. Effect of pulsed electric field on soybean isoflavone glycosides hydrolysis byβ-glucosidase: Investigation on enzyme characteristics and assisted reaction. Food Chem. 2022, 378, 132032. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.M.; Khalaf, Y.H. Kinetic and thermodynamic study of ALP enzyme in the presence and absence MWCNTs and Pt-NPs nanocomposites. Results Chem. 2023, 5, 100844. [Google Scholar] [CrossRef]
- Wahba, M.I. Calcium pectinate-agar beads as improved carriers for β-d-galactosidase and their thermodynamics investigation. 3 Biotech 2020, 10, 356. [Google Scholar] [CrossRef]
pH | Organic Matter (g kg−1) | Total Nitrogen (g kg−1) | Available Nitrogen (mg kg−1) | Available Phosphorus (mg kg−1) | Available Potassium (mg kg−1) |
---|---|---|---|---|---|
5.67 | 41.2 | 2.20 | 189 | 23 | 201 |
Treatment | Vmax [μmol (kg h)−1] | Km(mmol L−1) | Vmax/Km [10−3 L (kg h)−1] | |||
---|---|---|---|---|---|---|
Jointing Stage | Booting Stage | Jointing Stage | Booting Stage | Jointing Stage | Booting Stage | |
CK | 924.39 ± 26.50 b | 998.16 ± 3.19 ab | 2.88 ± 0.12 b | 2.99 ± 0.17 b | 320.3 ± 3.95 a | 334.38 ± 19.72 c |
F | 825.84 ± 12.98 c | 950.61 ± 45.96 b | 2.87 ± 0.04 b | 3.63 ± 0.33 a | 287.69 ± 5.7 a | 262.63 ± 11.02 d |
25% OF | 1061.4 ± 56.47 a | 840.58 ± 12.54 c | 3.63 ± 0.4 a | 2.33 ± 0.05 c | 293.7 ± 17.54 a | 361.31 ± 4.87 b |
50% OF | 609.67 ± 19.13 d | 834.71 ± 2.38 c | 2.02 ± 0.34 c | 2.31 ± 0.05 c | 307.03 ± 44.95 a | 361.53 ± 7.66 b |
OF | 906.53 ± 4.43 b | 1055.57 ± 55.56 a | 2.99 ± 0.10 b | 2.69 ± 0.20 b | 303.07 ± 8.98 a | 393.42 ± 7.93 a |
Determination Stage | Treatment | t (°C) | Ea | Q10 | Mean | ∆G | Mean | ∆H | Mean | ∆S | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
kJ mol−1 | kJ mol−1 | kJ mol−1 | J (mol K)−1 | ||||||||
Jointing stage | CK | 10 °C | 53.56 | 2.212 | 2.058 | 56.77 | 57.03 | 51.26 | 51.14 | −19.47 | −19.76 |
20 °C | 2.099 | 56.85 | 51.18 | −19.38 | |||||||
30 °C | 2.002 | 57.16 | 51.09 | −20.03 | |||||||
40 °C | 1.918 | 57.33 | 51.01 | −20.17 | |||||||
F | 10 °C | 50.91 | 2.127 | 1.986 | 56.90 | 57.57 | 48.60 | 48.48 | −29.32 | −30.48 | |
20 °C | 2.024 | 57.75 | 48.52 | −31.49 | |||||||
30 °C | 1.935 | 57.72 | 48.44 | −30.64 | |||||||
40 °C | 1.857 | 57.89 | 48.36 | −30.46 | |||||||
25% OF | 10 °C | 45.69 | 1.967 | 1.850 | 56.26 | 57.00 | 43.38 | 43.26 | −45.49 | −46.08 | |
20 °C | 1.883 | 56.82 | 43.30 | −46.14 | |||||||
30 °C | 1.808 | 57.28 | 43.22 | −46.38 | |||||||
40 °C | 1.743 | 57.63 | 43.14 | −46.30 | |||||||
50% OF | 10 °C | 55.67 | 2.283 | 2.118 | 58.24 | 58.47 | 53.37 | 53.25 | −17.20 | −17.50 | |
20 °C | 2.162 | 58.33 | 53.29 | −17.19 | |||||||
30 °C | 2.058 | 58.55 | 53.21 | −17.62 | |||||||
40 °C | 1.968 | 58.75 | 53.13 | −17.97 | |||||||
OF | 10 °C | 58.27 | 2.372 | 2.193 | 57.25 | 57.25 | 55.97 | 55.84 | −4.53 | −4.705 | |
20 °C | 2.241 | 57.14 | 55.88 | −4.29 | |||||||
30 °C | 2.128 | 57.21 | 55.80 | −4.65 | |||||||
40 °C | 2.031 | 57.39 | 55.72 | −5.35 | |||||||
Booting stage | CK | 10 °C | 56.96 | 2.327 | 2.155 | 57.04 | 57.18 | 54.66 | 54.54 | −8.39 | −8.848 |
20 °C | 2.201 | 57.25 | 54.58 | −9.13 | |||||||
30 °C | 2.093 | 57.00 | 54.50 | −8.26 | |||||||
40 °C | 1.999 | 57.42 | 54.42 | −9.61 | |||||||
F | 10 °C | 52.70 | 2.185 | 2.035 | 56.86 | 57.20 | 50.40 | 50.28 | −22.82 | −23.21 | |
20 °C | 2.075 | 57.17 | 50.32 | −23.40 | |||||||
30 °C | 1.980 | 57.09 | 50.24 | −22.60 | |||||||
40 °C | 1.898 | 57.67 | 50.16 | −24.02 | |||||||
25% OF | 10 °C | 55.99 | 2.294 | 2.127 | 57.16 | 57.42 | 53.69 | 53.57 | −12.26 | −12.92 | |
20 °C | 2.171 | 57.60 | 53.61 | −13.61 | |||||||
30 °C | 2.066 | 57.20 | 53.53 | −12.12 | |||||||
40 °C | 1.976 | 57.73 | 53.45 | −13.68 | |||||||
50% OF | 10 °C | 53.54 | 2.212 | 2.058 | 57.21 | 57.50 | 51.23 | 51.11 | −21.13 | −21.41 | |
20 °C | 2.099 | 57.31 | 51.15 | −21.01 | |||||||
30 °C | 2.002 | 57.63 | 51.07 | −21.64 | |||||||
40 °C | 1.917 | 57.83 | 50.99 | −21.84 | |||||||
OF | 10 °C | 51.30 | 2.140 | 1.996 | 56.77 | 57.08 | 49.00 | 48.88 | −27.48 | −27.52 | |
20 °C | 2.035 | 56.78 | 48.92 | −26.84 | |||||||
30 °C | 1.944 | 57.19 | 48.83 | −27.58 | |||||||
40 °C | 1.866 | 57.57 | 48.75 | −28.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, R.; Abdelkerim-Ouba, D.; Liu, D.; Ma, X.; Wang, S. Impacts of Partial Substitution of Chemical Fertilizer with Organic Manure on the Kinetic and Thermodynamic Characteristics of Soil β–Glucosidase. Agronomy 2023, 13, 1065. https://doi.org/10.3390/agronomy13041065
Dong R, Abdelkerim-Ouba D, Liu D, Ma X, Wang S. Impacts of Partial Substitution of Chemical Fertilizer with Organic Manure on the Kinetic and Thermodynamic Characteristics of Soil β–Glucosidase. Agronomy. 2023; 13(4):1065. https://doi.org/10.3390/agronomy13041065
Chicago/Turabian StyleDong, Ruixiao, Djido Abdelkerim-Ouba, Danyang Liu, Xianfa Ma, and Shuang Wang. 2023. "Impacts of Partial Substitution of Chemical Fertilizer with Organic Manure on the Kinetic and Thermodynamic Characteristics of Soil β–Glucosidase" Agronomy 13, no. 4: 1065. https://doi.org/10.3390/agronomy13041065
APA StyleDong, R., Abdelkerim-Ouba, D., Liu, D., Ma, X., & Wang, S. (2023). Impacts of Partial Substitution of Chemical Fertilizer with Organic Manure on the Kinetic and Thermodynamic Characteristics of Soil β–Glucosidase. Agronomy, 13(4), 1065. https://doi.org/10.3390/agronomy13041065