Effect of a Soil-Applied Humic Ameliorative Amendment on the Yield Potential of Switchgrass Panicum virgatum L. Cultivated under Central European Continental Climate Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Trial Site, and Agronomy
2.2. Weather and Soil-Climate Data
2.3. Harvest and Laboratory Analyses
2.4. Statistical Methods
3. Results
3.1. DM Yield and the Main Effects
- 2018: 0.40—0.02—1.61 t ha−1;
- 2019: 5.42—0.73—17.45 t ha−1;
- 2022: 7.73—1.01—25.34 t ha−1;
- 2020: 12.44—2.64—34.02 t ha−1;
- 2021: 19.13—3.93—60.64 t ha−1.
3.2. Plant Height and DM Content
- 2018: height: 45—70—80 cm, DM content at harvest: 35.25—35.68—36.49%;
- 2019: height: 110—144—173 cm, DM content at harvest: 37.81—42.85—44.33%;
- 2020: height: 113—170—67 cm, DM content at harvest: 45.27—48.16—46.85%;
- 2021: height: 156—176—177 cm, DM content at harvest: 45.95—45.73—46.25%;
- 2022: height: 84—113—103 cm, DM content at harvest: 32.45—35.08—45.73%.
3.3. Weather and Soil-Climate Conditions
3.4. Main Chemical Properties and Nutrient Content of the Soil
4. Discussion
4.1. Switchgrass DM Yields
4.1.1. Maximal Yields
4.1.2. Usual Yields
4.2. Environmental Causes
4.3. Agronomic Causes
4.4. Plant Height and DM Content
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brodowska, M.S.; Muszyński, P.; Haliniarz, M.; Brodowski, R.; Kowalczyk-Juśko, A.; Sekutowski, T.; Kurzyna-Szklarek, M. Agronomic aspects of switchgrass cultivation and use for energy purposes. Appl. Ecol. Environ. Res. 2018, 16, 5715–5743. [Google Scholar] [CrossRef]
- McIntosh, D.W.; Bates, G.E.; Keyser, P.D.; Allen, F.L.; Harper, C.A.; Waller, J.C.; Birckhead, J.L.; Backus, W.M. The impact of harvest timing on biomass yield from native warm-season grass mixtures. Agron. J. 2015, 107, 2321–2326. [Google Scholar] [CrossRef]
- Ashworth, A.J.; Keyser, P.D.; Holcomb, E.D.; Harper, C.A. Yield and Stand Persistence of Switchgrass as Affected by Cutting Height and Variety. Forage Grazinglands 2013, 11, 1–7. [Google Scholar] [CrossRef]
- Christian, D.G.; Riche, A.B.; Yates, N.E. The yield and composition of switchgrass and coastal panic grass grown as a biofuel in Southern England. Bioresour. Technol. 2002, 83, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulou, E.; Zanetti, F.; Papazoglou, E.G.; Christou, M.; Papatheohari, Y.; Tsiotas, K.; Papamichael, I. Long-term studies on switchgrass grown on a marginal area in Greece under different varieties and nitrogen fertilization rates. Ind. Crop. Prod. 2017, 107, 446–452. [Google Scholar] [CrossRef]
- Tóth, Š. Special Crops 28; NPPC-VÚA: Michalovce, Slovakia, 2020; p. 149. ISBN 978-80-570-1661-8. (In Slovak) [Google Scholar]
- Foster, J.L.; Guretzky, J.A.; Huo, C.; Kering, M.K.; Butler, T.J. Effects of row spacing, seeding rate, and planting date on establishment of switchgrass. Crop Sci. 2013, 53, 309–314. [Google Scholar] [CrossRef]
- Lemežienė, N.; Norkevičienė, E.; Liatukas, Ž.; Dabkevičienė, G.; Cecevičienė, J.; Butkutė, B. Switchgrass from North Dakota—An adaptable and promising energy crop for northern regions of Europe. Acta Agric. Scand. Sect. B Soil Plant Sci. 2015, 65, 118–124. [Google Scholar] [CrossRef]
- Interrante, S.M.; Hancock, D.; Butler, T.J. Switchgrass establishment and biomass yield responses to fungicide and insecticide seed treatments. Crop Forage Turfgrass Manag. 2015, 1, 1–6. [Google Scholar] [CrossRef]
- Tóth, Š.; Šoltysová, B.; Danilovič, M.; Kováč, L.; Hnát, A.; Kotorová, D.; Šariková, D.; Jakubová, J.; Balla, P.; Štyriak, I.; et al. The Meaning and Effect of Different Types of Soil Improvers in Conditions of Different Soil Management Practice, 1st ed.; Centrum výskumu rastlinnej výroby Piešťany: Michalovce, Slovakia, 2013; p. 108. ISBN 978-80-89417-46-9. (In Slovak) [Google Scholar]
- Holatko, J.; Hammerschmiedt, T.; Latal, O.; Kintl, A.; Mustafa, A.; Baltazar, T.; Malicek, O.; Brtnicky, M. Deciphering the Effectiveness of Humic Substances and Biochar Modified Digestates on Soil Quality and Plant Biomass Accumulation. Agronomy 2022, 12, 1587. [Google Scholar] [CrossRef]
- Nardi, S.; Schiavon, M.; Muscolo, A.; Pizzeghello, D.; Ertani, A.; Canellas, L.P.; Garcia-Mina, J.M. Editorial: Molecular characterization of humic substances and regulatory processes activated in plants. Front. Plant Sci. 2022, 139, 851451. [Google Scholar] [CrossRef]
- Tóth, Š.; Szanyi, G.; Vančo, P.; Schubert, J.; Porvaz, P.; Bujňák, P.; Šoltysova, B.; Danielovič, I. The influence of mineral nutrition and humic acids on the intensity of photosynthesis, as well as the yield and quality of seeds, roots, and aboveground phytomass of milk thistle Silybum marianum (L.) Gaertn. in marginal growing conditions. Eur. Pharm. J. 2022, 69, 27–36. [Google Scholar] [CrossRef]
- Baltazar, M.; Correia, S.; Guinan, K.J.; Sujeeth, N.; Bragança, R.; Gonçalves, B. Recent Advances in the Molecular Effects of Biostimulants in Plants: An Overview. Biomolecules 2021, 11, 1096. [Google Scholar] [CrossRef]
- Kołodziejczyk, M. Influence of humic acids, irrigation and fertilization on potato yielding in organic production. Agron. Res. 2021, 19, 520–530. [Google Scholar] [CrossRef]
- Holatko, J.; Hammerschmiedt, T.; Kintl, A.; Danish, S.; Skarpa, P.; Latal, O.; Baltazar, T.; Fahad, S.; Akça, H.; Taban, S.; et al. Effect of carbon-enriched digestate on the microbial soil activity. PLoS ONE 2021, 17, e0274148. [Google Scholar] [CrossRef] [PubMed]
- Wilczewski, E.; Szczepanek, M.; Wenda-Piesik, A. Response of sugar beet to humic substances and foliar fertilization with potassium. J. Cent. Eur. Agric. 2018, 19, 153–165. [Google Scholar] [CrossRef]
- Tóth, Š.; Rysak, W.; Šoltysová, B.; Karahuta, J. Effect of soil conditioner based on humic acids HUMAC Agro on soil and yield and sugar content of sugar beet in context of selected indicators of agriculture system sustainability. Listy Cukrov. A Reparske 2015, 131, 53–58. [Google Scholar]
- Muscolo, A.; Sidari, M.; Nardi, S. Humic substance: Re-lationship between structure and activity, deeper informationsuggests univocal findings. J. Geochem. Explor. 2013, 129, 57–63. [Google Scholar] [CrossRef]
- Trevisan, S.; Francioso, O.; Quaggiotti, S.; Nardi, S. Humic substances biological activity at the plant-soil interface: From environmental aspects to molecular factors. Plant Signal. Behav. 2010, 5, 635–643. [Google Scholar] [CrossRef]
- Nardi, S.; Carletti, P.; Pizzeghello, D.; Muscolo, A. Biological Activities of Humic Substances. In Bio-Physico-Chemical Processes Involving Natural Nonliving OrganicMatter in Environmental Systems; Wiley: Hoboken, NJ, USA, 2009; Chapter 8; pp. 305–339. [Google Scholar] [CrossRef]
- Šimanský, V.; Wójcik-Gront, E.; Horváthová, J.; Pikuła, D.; Lošák, T.; Parzych, A.; Lukac, M.; Aydın, E. Changes in Relationships between Humic Substances and Soil Structure Following Different Mineral Fertilization of Vitis vinifera L. in Slovakia. Agronomy 2022, 12, 1460. [Google Scholar] [CrossRef]
- Ma, Y.; An, Y.; Shui, J.; Sun, Z. Adaptability evaluation of switchgrass (Panicum virgatum L.) cultivars on the Loess Plateau of China. Plant Sci. 2011, 181, 638–643. [Google Scholar] [CrossRef]
- Sladden, S.E.; Bransby, D.I.; Aiken, G.E. Biomass yield, composition and production costs for eight switchgrass varieties in Alabama. Biomass Bioenergy 1991, 1, 119–122. [Google Scholar] [CrossRef]
- Liu, Y.; Hastings, A.; Chen, S.; Faaij, A. The development of a new crop growth model SwitchFor for yield mapping of switchgrass. GCB Bioenergy 2022, 14, 1281–1302. [Google Scholar] [CrossRef]
- Duchemin, M.; Jégo, G.; Morissette, R. Simulating switchgrass aboveground biomass and production costs in eastern Canada with the integrated farm system model. Can. J. Plant Sci. 2019, 99, 785–800. [Google Scholar] [CrossRef]
- Bekewe, P.E.; Castillo, M.S.; Rivera, R. Defoliation management affects productivity, leaf/stem ratio, and tiller counts of ‘performer’ switchgrass. Agron. J. 2018, 110, 1467–1472. [Google Scholar] [CrossRef]
- Brown, C.; Griggs, T.; Keene, T.; Marra, M.; Skousen, J. Switchgrass Biofuel Production on Reclaimed Surface Mines: I. Soil Quality and Dry Matter Yield. Bioenergy Res. 2016, 9, 31–391. [Google Scholar] [CrossRef]
- Brown, C.; Griggs, T.; Holaskova, I.; Skousen, J. Switchgrass Biofuel Production on Reclaimed Surface Mines: II. Feedstock Quality and Theoretical Ethanol Production. Bioenergy Res. 2016, 9, 40–49. [Google Scholar] [CrossRef]
- Baute, K.; Van Eerd, L.L.; Robinson, D.E.; Sikkema, P.H.; Mushtaq, M.; Gilroyed, B.H. Comparing the biomass yield and biogas potential of phragmites australis with miscanthus X giganteus and panicum virgatum grown in Canada. Energies 2018, 11, 2198. [Google Scholar] [CrossRef]
- Alexopoulou, E.; Zanetti, F.; Scordia, D.; Zegada-Lizarazu, W.; Christou, M.; Testa, G.; Cosentino, S.L.; Monti, A. Long-Term Yields of Switchgrass, Giant Reed, and Miscanthus in the Mediterranean Basin. Bioenergy Res. 2015, 8, 1492–1499. [Google Scholar] [CrossRef]
- Muir, J.P.; Foster, J.L.; Bow, J.R. Establishment-year native perennial bunchgrass biomass yields. Crop Sci. 2016, 56, 2827–2832. [Google Scholar] [CrossRef]
- Shinners, K.J.; Boettcher, G.C.; Muck, R.E.; Weimer, P.J.; Casler, M.D. Harvest and storage of two perennial grasses as biomass feedstocks. Trans. ASABE 2010, 53, 359–370. [Google Scholar] [CrossRef]
- Stroup, J.A.; Sanderson, M.A.; Muir, J.P.; McFarland, M.J.; Reed, R.L. Comparison of growth and performance in upland and lowland switchgrass types to water and nitrogen stress. Bioresour. Technol. 2003, 86, 65–72. [Google Scholar] [CrossRef]
- Knoll, J.E.; Anderson, W.F.; Strickland, T.C.; Hubbard, R.K.; Malik, R. Low-Input Production of Biomass from Perennial Grasses in the Coastal Plain of Georgia, USA. Bioenergy Res. 2012, 5, 206–214. [Google Scholar] [CrossRef]
- Virgilio Di, N.; Monti, A.; Venturi, G. Spatial variability of switchgrass (Panicum virgatum L.) yield as related to soil parameters in a small field. Field Crop. Res. 2007, 101, 232–239. [Google Scholar] [CrossRef]
- Rivera-Chacon, R.; Castillo, M.S.; Gannon, T.W.; Bekewe, P.E. Harvest frequency and harvest timing following a freeze event effects on yield and composition of switchgrass. Agron. J. 2022, 115, 222–229. [Google Scholar] [CrossRef]
- Hoagland, K.C.; Ruark, M.D.; Renz, M.J.; Jackson, R.D. Agricultural Management of Switchgrass for Fuel Quality and Thermal Energy Yield on Highly Erodible Land in the Driftless Area of Southwest Wisconsin. Bioenergy Res. 2013, 6, 1012–1021. [Google Scholar] [CrossRef]
- Kering, M.K.; Butler, T.J.; Biermacher, J.T.; Mosali, J.; Guretzky, J.A. Effect of Potassium and Nitrogen Fertilizer on Switchgrass Productivity and Nutrient Removal Rates under Two Harvest Systems on a Low Potassium Soil. Bioenergy Res. 2013, 6, 329–335. [Google Scholar] [CrossRef]
- Madakadze, I.C.; Stewart, K.; Peterson, P.R.; Coulman, B.E.; Smith, D.L.; Zhou, X. Switchgrass biomass and chemical composition for biofuel in eastern Canada. Agron. J. 1999, 91, 696–701. [Google Scholar] [CrossRef]
- Slovak Law No. 151/2016, Law Digest, Decree of the MPRV SR Establishing Details on Agrochemical Testing of Soils and on the Storage and Use of Fertilizers. Available online: https://www.slov-lex.sk/pravne-predpisy/SK/ZZ/2016/151/ (accessed on 15 February 2023).
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Hraško, J.; Červenka, L.; Facek, Z.; Komár, J.; Němeček, J.; Pospíšil, F.; Sirový, V. Soil Analyses, 1st ed.; Slovak Publish. Pedol. Lit.: Bratislava, Slovakia, 1962; p. 342. [Google Scholar]
- ISO 14235; Soil Quality–Determination of Organic Carbon by Sulfochromic Oxidation. 1st ed. IOS: Geneva, Switzerland, 1998; p. 5.
- ISO 10390; Soil Quality–Determination of pH. 2nd ed. IOS: Geneva, Switzerland, 2005; p. 7.
- Sotáková, S. Organic Matter and Soil Fertility; Príroda: Bratislava, Slovakia, 1982; p. 234. (In Slovak) [Google Scholar]
- Sobocká, J. Morphogenetic Classification System of Soils of Slovakia, 1st ed.; Basal reference taxonomy; Research Institute of Soil Science and Soil Conservation: Bratislava, Slovakia, 2000; p. 76. ISBN 80-85361-70-1. [Google Scholar]
- Kandra, B.; Tall, A.; Gomboš, M.; Pavelková, D. Quantification of Evapotranspiration by Calculations and Measurements Using a Lysimeter. Water 2023, 15, 373. [Google Scholar] [CrossRef]
- Tall, A.; Kandra, B.; Gomboš, M.; Pavelková, D. The influence of soil texture on the course of volume changes of soil. Soil Water Res. 2019, 14, 57–66. [Google Scholar] [CrossRef]
- Gomboš, M.; Tall, A.; Kandra, B.; Balejčíková, L.; Pavelková, D. Geometric factor as the characteristics of the three-dimensional process of volume changes of heavy soils. Environments 2018, 5, 45. [Google Scholar] [CrossRef]
- Olaetxea, M.; De Hita, D.; Garcia, C.A.; Fuentes, M.; Baigorri, R.; Mora, V.; Garnica, M.; Urrutia, O.; Erro, J.; Zamarreño, A.M.; et al. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root- and shoot- growth. Appl. Soil Ecol. 2018, 123, 521–537. [Google Scholar] [CrossRef]
Treatment/Parameter | HA | NPK | UC |
---|---|---|---|
1st fraction, % | 17.41 | 15.77 | 16.96 |
2nd fraction, % | 30.52 | 32.03 | 31.77 |
3rd fraction, % | 23.77 | 25.95 | 25.02 |
4th fraction, % | 23.23 | 23.38 | 20.97 |
5th fraction, % | 5.07 | 2.87 | 5.31 |
content of first category particles, % | 47.94 | 47.80 | 48.70 |
soil type | clay-loamy soil, heavy soil | clay-loamy soil, heavy soil | clay-loamy soil, heavy soil |
Treatment | Nt, mg kg−1 | P, mg kg−1 | K, mg kg−1 | Ca, mg kg−1 | Mg, mg kg−1 | pH/KCl | C-ox, % | Humus, % | C/N, No. |
---|---|---|---|---|---|---|---|---|---|
HA | 0.106 | 61.0 | 300.3 | 3733.9 | 328.6 | 6.96 | 1.343 | 2.314 | 12.67 |
suitable | middle | middle | middle | neutral | middle | * low | |||
NPK | 0.103 | 53.0 | 239.6 | 3434.4 | 315.0 | 6.99 | 1.208 | 2.081 | 11.73 |
suitable | suitable | middle | middle | neutral | middle | * low | |||
UC | 0.101 | 61.7 | 278.8 | 3372.2 | 334.0 | 7.11 | 1.152 | 1.984 | 11.41 |
suitable | middle | middle | middle | neutral | low | * low |
Treatment | N | P | K | ∑NPK | HA |
---|---|---|---|---|---|
2018—pre-sowing treatment | |||||
HA | 0.0 | 0.0 | 0.0 | 0.0 | 1000.0 |
NPK | 70.0 | 50.0 | 100.0 | 220.0 | 0.0 |
UC | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2018, 2019, 2020, 2021, 2022—annual treatment at the vegetation start | |||||
HA | 70.0 | 0.0 | 0.0 | 70.0 | 0.0 |
NPK | 70.0 | 0.0 | 0.0 | 70.0 | 0.0 |
UC | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Site/Year | Weather | Topsoil, Depth of 20 cm | Undersoil, Depth of 50 cm | ||||||
---|---|---|---|---|---|---|---|---|---|
Parameter | AT, °C | SP, mm | HTk, No. | M, % VWC | T, °C | EC, mS cm−1 | M, % VWC | T, °C | EC, mS cm−1 |
2018 | 20.0 | 221 | 0.61 | 25.5 | 17.7 | 0.097 | 33.0 | 17.0 | 0.133 |
2019 | 18.4 | 445 | 1.34 | 22.6 | 17.4 | 0.076 | 31.2 | 16.7 | 0.101 |
2020 | 17.3 | 388 | 1.25 | 18.8 | 16.5 | 0.063 | 29.0 | 15.9 | 0.070 |
2021 | 17.3 | 372 | 1.19 | 19.1 | 16.2 | 0.059 | 28.1 | 15.7 | 0.059 |
2022 | 18.3 | 288 | 0.87 | 17.8 | 17.2 | 0.047 | 25.1 | 16.7 | 0.059 |
average | 18.3 | 343 | 1.04 | 20.8 | 17.0 | 0.068 | 29.3 | 16.4 | 0.084 |
Year | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|
harvest day | 20 September | 30 September | 24 September | 29 September | 29 September |
IO | Source of Variability | Sum of Squares | DF | F-Ratio | p-Value | Homogenous Groups | LS Mean | LS Sigma | |
---|---|---|---|---|---|---|---|---|---|
4. | replication | 0.0731313 | 3 | 0.00 | 1.0000 | A | IV. | 9.00736 | 0.61670 |
A | III. | 9.02069 | 0.61670 | ||||||
A | I. | 9.02325 | 0.61670 | ||||||
A | II. | 9.04420 | 0.61670 | ||||||
1. | years | 17,034.4 | 4 | 106.64 | 0.0000 | A | 2018 | 0.39996 | 0.68949 |
B | 2019 | 5.41884 | 0.68949 | ||||||
B | 2022 | 7.73239 | 0.68949 | ||||||
C | 2020 | 12.4411 | 0.68949 | ||||||
D | 2021 | 19.1271 | 0.68949 | ||||||
3. | cultivars | 13,625.9 | 6 | 56.87 | 0.0000 | A | NJ Ecotype | 2.88582 | 1.70902 |
AB | Carthage | 4.4737 | 1.70902 | ||||||
AB | Alamo | 6.33768 | 1.70902 | ||||||
BC | Kanlow | 7.70034 | 1.70902 | ||||||
BC | EG 1102 | 8.13976 | 1.70902 | ||||||
C | BO Master | 12.4808 | 1.70902 | ||||||
D | EG 1101 | 21.149 | 1.70902 | ||||||
2. | nutrition | 6311.46 | 2 | 79.03 | 0.0000 | A | UC | 4.19447 | 0.53408 |
B | NPK | 9.19167 | 0.53408 | ||||||
C | HA | 13.6855 | 0.53408 | ||||||
residual | 16,132.9 | 404 | * 43.81 | ||||||
total | 53,104.6 | 419 |
Cultivar | Year | Plant Height, cm | DM Content at Harvest, % | ||||
---|---|---|---|---|---|---|---|
Treatment | HA | NPK | UC | HA | NPK | UC | |
BO Master | 2018 | 82 ± 4 | 82 ± 6 | 42 ± 3 | 35.45 | 35.13 | 36.76 |
2019 | 193 ± 11 | 162 ± 9 | 102 ± 7 | 41.08 | 40.71 | 31.85 | |
2020 | 171 ± 10 | 192 ± 11 | 113 ± 7 | 45.33 | 46.66 | 39.90 | |
2021 | 192 ± 11 | 205 ± 12 | 172 ± 10 | 46.84 | 45.44 | 45.54 | |
2022 | 112 ± 7 | 118 ± 7 | 76 ± 5 | 45.44 | 34.05 | 28.09 | |
NJ Ecotype | 2018 | 39 ± 3 | 71 ± 5 | 42 ± 3 | 31.92 | 37.76 | 41.01 |
2019 | 112 ± 7 | 115 ± 7 | 95 ± 6 | 45.40 | 49.84 | 44.35 | |
2020 | 122 ± 8 | 151 ± 9 | 103 ± 7 | 57.10 | 56.87 | 50.19 | |
2021 | 139 ± 8 | 132 ± 8 | 111 ± 7 | 45.30 | 46.54 | 44.34 | |
2022 | 79 ± 5 | 79 ± 5 | 66 ± 5 | 46.54 | 46.71 | 41.01 | |
Alamo | 2018 | 91 ± 6 | 83 ± 6 | 51 ± 4 | 40.13 | 36.68 | 31.17 |
2019 | 191 ± 11 | 147 ± 8 | 132 ± 8 | 44.71 | 43.38 | 38.26 | |
2020 | 162 ± 9 | 158 ± 9 | 152 ± 9 | 42.03 | 46.98 | 44.58 | |
2021 | 141 ± 8 | 165 ± 9 | 164 ± 9 | 47.98 | 47.32 | 43.64 | |
2022 | 112 ± 7 | 119 ± 7 | 95 ± 6 | 47.32 | 32.10 | 29.89 | |
Kanlow | 2018 | 103 ± 7 | 85 ± 6 | 52 ± 4 | 40.88 | 32.15 | 32.74 |
2019 | 192 ± 11 | 145 ± 8 | 124 ± 8 | 48.12 | 41.72 | 36.26 | |
2020 | 201 ± 12 | 159 ± 9 | 155 ± 9 | 46.56 | 44.66 | 45.23 | |
2021 | 195 ± 11 | 163 ± 9 | 172 ± 10 | 48.90 | 43.28 | 47.26 | |
2022 | 117 ± 7 | 124 ± 8 | 92 ± 6 | 43.28 | 33.03 | 28.54 | |
Carthage | 2018 | 65 ± 5 | 21 ± 11 | 35 ± 3 | 34.73 | 36.62 | 34.94 |
2019 | 183 ± 10 | 99 ± 6 | 112 ± 7 | 45.82 | 38.59 | 38.41 | |
2020 | 169 ± 9 | 173 ± 10 | 162 ± 9 | 52.90 | 51.21 | 47.32 | |
2021 | 164 ± 9 | 157 ± 9 | 139 ± 8 | 42.40 | 44.49 | 46.36 | |
2022 | 92 ± 6 | 109 ± 7 | 85 ± 6 | 44.49 | 36.50 | 38.7 | |
EG 1101 | 2018 | 93 ± 6 | 95 ± 6 | 64 ± 5 | 34.43 | 40.78 | 35.15 |
2019 | 172 ± 10 | 201 ± 12 | 124 ± 8 | 39.56 | 46.22 | 40.41 | |
2020 | 182 ± 10 | 192 ± 11 | 163 ± 9 | 42.47 | 44.76 | 47.33 | |
2021 | 221 ± 14 | 223 ± 14 | 192 ± 11 | 47.94 | 46.36 | 46.36 | |
2022 | 118 ± 7 | 131 ± 8 | 95 ± 6 | 46.36 | 30.17 | 34.61 | |
EG 1102 | 2018 | 87 ± 6 | 54 ± 4 | 31 ± 3 | 37.87 | 30.65 | 35.00 |
2019 | 165 ± 9 | 142 ± 8 | 81 ± 6 | 45.62 | 39.46 | 35.14 | |
2020 | 159 ± 9 | 168 ± 9 | 109 ± 7 | 41.57 | 45.95 | 42.35 | |
2021 | 187 ± 10 | 189 ± 10 | 142 ± 8 | 44.41 | 46.65 | 48.17 | |
2022 | 115 ± 7 | 113 ± 7 | 77 ± 5 | 46.65 | 32.97 | 26.33 |
Treatment | Nt, mg kg−1 | P, mg kg−1 | K, mg kg−1 | Ca, mg kg−1 | Mg, mg kg−1 | pH/KCl | C-ox, % | Humus, % | C/N, No. |
---|---|---|---|---|---|---|---|---|---|
HA | 0.037 | −10.84 | −67.60 | −198.8 | −37.3 | −0.26 | −0.056 | −0.027 | −3.67 |
NPK | 0.037 | −0.44 | −0.80 | −421.3 | −9.1 | −0.65 | −0.001 | −0.001 | −3.11 |
UC | 0.039 | −12.37 | −59.60 | −128.7 | −19.1 | −0.59 | 0.037 | 0.065 | −0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tóth, Š.; Dupľák, Š. Effect of a Soil-Applied Humic Ameliorative Amendment on the Yield Potential of Switchgrass Panicum virgatum L. Cultivated under Central European Continental Climate Conditions. Agronomy 2023, 13, 1095. https://doi.org/10.3390/agronomy13041095
Tóth Š, Dupľák Š. Effect of a Soil-Applied Humic Ameliorative Amendment on the Yield Potential of Switchgrass Panicum virgatum L. Cultivated under Central European Continental Climate Conditions. Agronomy. 2023; 13(4):1095. https://doi.org/10.3390/agronomy13041095
Chicago/Turabian StyleTóth, Štefan, and Štefan Dupľák. 2023. "Effect of a Soil-Applied Humic Ameliorative Amendment on the Yield Potential of Switchgrass Panicum virgatum L. Cultivated under Central European Continental Climate Conditions" Agronomy 13, no. 4: 1095. https://doi.org/10.3390/agronomy13041095
APA StyleTóth, Š., & Dupľák, Š. (2023). Effect of a Soil-Applied Humic Ameliorative Amendment on the Yield Potential of Switchgrass Panicum virgatum L. Cultivated under Central European Continental Climate Conditions. Agronomy, 13(4), 1095. https://doi.org/10.3390/agronomy13041095