Quantification of Lignosulfonates and Humic Components in Mixtures by ATR FTIR Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Reagents
2.2. IR Equipment and Measurements
2.3. Other Equipment
2.4. Procedures
2.4.1. General Procedure for Solutions
2.4.2. Model Mixtures of Lignosulfonate with Humate for Qualitative Analysis
2.4.3. Selection of Conditions for Centrifugation of Humate Solutions for Quantification of Lignosulfonates in the Presence of Humate
2.4.4. Calibration Solutions of Humate and Lignosulfonate
3. Results and Discussion
3.1. Band Identification of Humates and Lignosulfonates
Wavenumber, cm−1 | Substance | Assignment |
---|---|---|
3691 | HS * | OH stretching of structural hydroxyl groups of SiO2 |
3400–3300 | HS, LSNa | O–H stretching, N–H stretching (minor), hydrogen-bonded OH; O−H stretching |
2935–2925, 2850 | HS, LSNa | C–H stretching of CH2, C−H stretching of −OCH3 |
1725–1710 | HS, LSNa | asymmetric C=O stretching of –COOH |
1640–1600 | HS, LSNa | aromatic C=C skeletal vibrations, C=O stretching of amide groups (Amide I), C=O of quinone or H-bonded conjugated ketones, –COOH group stretch, C–C stretch, aromatic and nonaromatic |
1591 | LSNa | aromatic C=C ring breathing |
1570–1560 | HS | aromatic C=C skeletal stretching; C=O of quinone or H-bonded conjugated ketones; –COO− antisymmetric stretching |
1512 | LSNa | aromatic C=C ring breathing |
1460–1450 | HS, LSNa | C–H scissoring of CH3 groups |
1455 | LSNa | aromatic ring stretching, C–H deformation in –O–CH3 group |
1420–1410 | HS, LSNa | aromatic C=C ring breathing, aromatic skeleton vibrations combined with C–H in-plane deformations; O–H deformation and C–O stretching of phenolic OH |
1380 | HS, LSNa | Wagging C–H of CH2 and CH3 groups, –COO− symmetric stretching |
1370 | LSNa, HS (only dry) | methylene bridge, phenolic OH, C–H wagging in methyl groups |
1308 | HS | CO of phenols, CO and OH of carboxylic acids, aliphatic C–C |
1266 | LSNa | Ar−O stretching breathing, C–O in guaiacyl ring |
1192 | LSNa | S=O of SO32− |
1130 | LSNa | Ar–O stretching breathing |
1130–1110 | HS * | C–O stretching of secondary alcohols or ethers |
1093 | LSNa | C–O–C and OH of alcohols |
1080 | HS * | Si–O stretching |
1070–1050 | HS *, LSNa | alcoholic and polysaccharide CO stretch and OH deformation; CO and OH of polysaccharides and alcohols; Si–OH bend in silicates |
1042 | LSNa | R–SO3H, OH groups, or S=O stretching |
1015 | HS * | Si–O of silicates |
938 | HS * | OH deformation of the inner-surface hydroxyl group |
910 | HS * | OH deformation of inner hydroxyl groups |
875 | HS * | Si–O− or Si–O–Si bridge; carbonate; polyaromatic bend vibrations |
3.2. Selection of Quantification Conditions
3.3. Band Processing
3.4. Lignosulfonate Quantification in Neat Solutions
3.5. Lignosulfonate Quantification in Humate Mixtures
3.6. Humate Quantification in Lignosulfonate Mixtures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naseem, A.; Tabasum, S.; Zia, K.M.; Zuber, M.; Ali, M.; Noreen, A. Lignin-derivatives based polymers, blends and composites: A review. Int. J. Biol. Macromol. 2016, 93, 296–313. [Google Scholar] [CrossRef] [PubMed]
- Adewole, J.K.; Muritala, K.B. Some applications of natural polymeric materials in oilfield operations: A review. J. Pet. Explor. Prod. Technol. 2019, 9, 2297–2307. [Google Scholar] [CrossRef]
- Tamilvanan, A. Preparation of Biomass Briquettes using Various Agro-Residues and Waste Papers. J. Biofuels 2013, 4, 47–55. [Google Scholar] [CrossRef]
- Berglin, N.; Tomani, P.; Salman, H.; Svärd, S.; Åmand, L.-E. Pilot-scale combustion studies with kraft lignin as a solid biofuel. TAPPI Press Eng. Pulping Environ. Conf. 2008, 2008, 4. [Google Scholar]
- Hu, S.; Hsieh, Y.L. Silver nanoparticle synthesis using lignin as reducing and capping agents: A kinetic and mechanistic study. Int. J. Biol. Macromol. 2016, 82, 856–862. [Google Scholar] [CrossRef]
- Hayashi, J.i.; Kazehaya, A.; Muroyama, K.; Watkinson, A.P. Preparation of activated carbon from lignin by chemical activation. Carbon 2000, 38, 1873–1878. [Google Scholar] [CrossRef]
- Suhas; Carrott, P.J.; Ribeiro Carrott, M.M. Lignin—from natural adsorbent to activated carbon: A review. Bioresour. Technol. 2007, 98, 2301–2312. [Google Scholar] [CrossRef]
- Lu, J.; Cheng, M.; Zhao, C.; Li, B.; Peng, H.; Zhang, Y.; Shao, Q.; Hassan, M. Application of lignin in preparation of slow-release fertilizer: Current status and future perspectives. Ind. Crops Prod. 2022, 176, 114267. [Google Scholar] [CrossRef]
- Savy, D.; Cozzolino, V. Novel fertilising products from lignin and its derivatives to enhance plant development and increase the sustainability of crop production. J. Clean. Prod. 2022, 366, 132832. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Greener synthesis of lignin nanoparticles and their applications. Green Chem. 2020, 22, 612–636. [Google Scholar] [CrossRef]
- Gao, W.; Kong, F.; Chen, J.; Fatehi, P. Chapter 13—Present and future prospective of lignin-based materials in biomedical fields. In Lignin-Based Materials for Biomedical Applications; Santos, H., Figueiredo, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 395–424. [Google Scholar]
- Nan, N.; Hu, W.; Wang, J. Lignin-Based Porous Biomaterials for Medical and Pharmaceutical Applications. Biomedicines 2022, 10, 747. [Google Scholar] [CrossRef]
- Ali, D.A.; Mehanna, M.M. Role of lignin-based nanoparticles in anticancer drug delivery and bioimaging: An up-to-date review. Int. J. Biol. Macromol. 2022, 221, 934–953. [Google Scholar] [CrossRef]
- Kjellin, M.; Johansson, I. Surfactants from Renewable Resources; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Megiatto, J.D., Jr.; Cerrutti, B.M.; Frollini, E. Sodium lignosulfonate as a renewable stabilizing agent for aqueous alumina suspensions. Int. J. Biol. Macromol. 2016, 82, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Hong, N.; Li, Y.; Zeng, W.; Zhang, M.; Peng, X.; Qiu, X. Ultrahigh molecular weight, lignosulfonate-based polymers: Preparation, self-assembly behaviours and dispersion property in coal–water slurry. RSC Adv. 2015, 5, 21588–21595. [Google Scholar] [CrossRef]
- Yang, D.; Qiu, X.; Zhou, M.; Lou, H. Properties of sodium lignosulfonate as dispersant of coal water slurry. Energy Convers. Manag. 2007, 48, 2433–2438. [Google Scholar] [CrossRef]
- Breilly, D.; Fadlallah, S.; Froidevaux, V.; Colas, A.; Allais, F. Origin and industrial applications of lignosulfonates with a focus on their use as superplasticizers in concrete. Constr. Build. Mater. 2021, 301, 124065. [Google Scholar] [CrossRef]
- Pereira, A.d.E.S.; Luiz de Oliveira, J.; Maira Savassa, S.; Barbara Rogério, C.; Araujo de Medeiros, G.; Fraceto, L.F. Lignin nanoparticles: New insights for a sustainable agriculture. J. Clean. Prod. 2022, 345, 131145. [Google Scholar] [CrossRef]
- Garguiak, J.D.; Lebo, S.E. Commercial Use of Lignin-Based Materials. In Lignin: Historical, Biological, and Materials Perspectives; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1999; Volume 742, pp. 304–320. [Google Scholar]
- Zhang, T.; Yang, Y.L.; Liu, S.Y. Application of biomass by-product lignin stabilized soils as sustainable Geomaterials: A review. Sci. Total. Environ. 2020, 728, 138830. [Google Scholar] [CrossRef] [PubMed]
- Novák, F.; Šestauberová, M.; Hrabal, R. Structural features of lignohumic acids. J. Mol. Struct. 2015, 1093, 179–185. [Google Scholar] [CrossRef]
- Lupoi, J.S.; Singh, S.; Parthasarathi, R.; Simmons, B.A.; Henry, R.J. Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew. Sustain. Energy Rev. 2015, 49, 871–906. [Google Scholar] [CrossRef]
- van Erven, G.; de Visser, R.; Merkx, D.W.H.; Strolenberg, W.; de Gijsel, P.; Gruppen, H.; Kabel, M.A. Quantification of Lignin and Its Structural Features in Plant Biomass Using 13C Lignin as Internal Standard for Pyrolysis-GC-SIM-MS. Anal. Chem. 2017, 89, 10907–10916. [Google Scholar] [CrossRef] [PubMed]
- Sluiter, J.B.; Ruiz, R.O.; Scarlata, C.J.; Sluiter, A.D.; Templeton, D.W. Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods. J. Agric. Food Chem. 2010, 58, 9043–9053. [Google Scholar] [CrossRef]
- Fukushima, R. Can Lignin Be Accurately Measured? Crop. Sci. 2005, 45, 832–839. [Google Scholar] [CrossRef]
- Dence, C.W. Determination of Carboxyl Groups. In Methods in Lignin Chemistry; Lin, S.Y., Dence, C.W., Eds.; Springer Series in Wood Science; Springer: Berlin/Heidelberg, Germany, 1992; pp. 458–464. [Google Scholar]
- El Mansouri, N.-E.; Salvadó, J. Analytical methods for determining functional groups in various technical lignins. Ind. Crops Prod. 2007, 26, 116–124. [Google Scholar] [CrossRef]
- Haars, A.; Lohner, S.; Hüttermann, A. Quantitative Determination of Lignosulfonates from Sulfite Spend Liquors Using Precipitation with Polyethyleneimine. Holzforschung 1981, 35, 59–66. [Google Scholar] [CrossRef]
- Carney, L.L.; Skelly, W.G.; Gullickson, R. Quantitative Determination Of Lignosulfonates in Drilling Fluids By Ultraviolet Absorption Analysis. J. Pet. Technol. 1972, 24, 651–656. [Google Scholar] [CrossRef]
- Edvardsson, K.; Ekblad, J.; Magnusson, R. Methods for Quantification of Lignosulphonate and Chloride in Gravel Wearing Courses. Road Mater. Pavement Des. 2011, 11, 171–185. [Google Scholar] [CrossRef]
- Lucarini, M.; Durazzo, A.; Kiefer, J.; Santini, A.; Lombardi-Boccia, G.; Souto, E.B.; Romani, A.; Lampe, A.; Ferrari Nicoli, S.; Gabrielli, P.; et al. Grape Seeds: Chromatographic Profile of Fatty Acids and Phenolic Compounds and Qualitative Analysis by FTIR-ATR Spectroscopy. Foods 2020, 9, 10. [Google Scholar] [CrossRef]
- Allison, G.G.; Thain, S.C.; Morris, P.; Morris, C.; Hawkins, S.; Hauck, B.; Barraclough, T.; Yates, N.; Shield, I.; Bridgwater, A.V.; et al. Quantification of hydroxycinnamic acids and lignin in perennial forage and energy grasses by Fourier-transform infrared spectroscopy and partial least squares regression. Bioresour. Technol. 2009, 100, 1252–1261. [Google Scholar] [CrossRef]
- Tamaki, Y.; Mazza, G. Rapid Determination of Lignin Content of Straw Using Fourier Transform Mid-Infrared Spectroscopy. J. Agric. Food Chem. 2011, 59, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Dao Thi, H.; Van Aelst, K.; Van den Bosch, S.; Katahira, R.; Beckham, G.T.; Sels, B.F.; Van Geem, K.M. Identification and quantification of lignin monomers and oligomers from reductive catalytic fractionation of pine wood with GC × GC − FID/MS. Green Chem. 2022, 24, 191–206. [Google Scholar] [CrossRef]
- Khaliliyan, H.; Schuster, C.; Sumerskii, I.; Guggenberger, M.; Oberlerchner, J.T.; Rosenau, T.; Potthast, A.; Böhmdorfer, S. Direct Quantification of Lignin in Liquors by High Performance Thin Layer Chromatography-Densitometry and Multivariate Calibration. ACS Sustain. Chem. Eng. 2020, 8, 16766–16774. [Google Scholar] [CrossRef]
- Kumada, K. Chapter 3 Spectroscopic Characteristics of Humic Acids and Fulvic Acids. In Chemistry of Soil Organic Matter; Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 1987; Volume 17, pp. 34–56. [Google Scholar]
- Giovanela, M.; Crespo, J.S.; Antunes, M.; Adamatti, D.S.; Fernandes, A.N.; Barison, A.; da Silva, C.W.P.; Guégan, R.; Motelica-Heino, M.; Sierra, M.M.D. Chemical and spectroscopic characterization of humic acids extracted from the bottom sediments of a Brazilian subtropical microbasin. J. Mol. Struct. 2010, 981, 111–119. [Google Scholar] [CrossRef]
- Lamar, R.T.; Olk, D.C.; Mayhew, L.; Bloom, P.R. A new standardized method for quantification of humic and fulvic acids in humic ores and commercial products. J. AOAC Int. 2014, 97, 721–730. [Google Scholar] [CrossRef]
- Ouyang, X.P.; Zhang, P.; Tan, C.M.; Deng, Y.H.; Yang, D.J.; Qiu, X.Q. Isolation of lignosulfonate with low polydispersity index. Chin. Chem. Lett. 2010, 21, 1479–1481. [Google Scholar] [CrossRef]
- Sumerskii, I.; Korntner, P.; Zinovyev, G.; Rosenau, T.; Potthast, A. Fast track for quantitative isolation of lignosulfonates from spent sulfite liquors. RSC Adv. 2015, 5, 92732–92742. [Google Scholar] [CrossRef]
- Chakrabarty, K.; Krishna, K.V.; Saha, P.; Ghoshal, A.K. Extraction and recovery of lignosulfonate from its aqueous solution using bulk liquid membrane. J. Membr. Sci. 2009, 330, 135–144. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, D.; Zhu, J.Y. Molecular Structure of Sodium Lignosulfonate from Different Sources and their Properties as Dispersant of TiO2Slurry. J. Dispers. Sci. Technol. 2015, 37, 296–303. [Google Scholar] [CrossRef]
- Li, P.-Q.; Lu, J.; Yang, R.; Liu, Y.-J. Comparison of structures and properties of lignosulfonate in different pulping waste liquors. In Advanced Materials and Energy Sustainability; World Scientific: Singapore, 2017. [Google Scholar]
- Volkov, D.; Rogova, O.; Proskurnin, M. Temperature Dependences of IR Spectra of Humic Substances of Brown Coal. Agronomy 2021, 11, 1822. [Google Scholar] [CrossRef]
- Karpukhina, E.; Mikheev, I.; Perminova, I.; Volkov, D.; Proskurnin, M. Rapid quantification of humic components in concentrated humate fertilizer solutions by FTIR spectroscopy. J. Soils Sed. 2018, 19, 2729–2739. [Google Scholar] [CrossRef]
- Artz, R.R.E.; Chapman, S.J.; Jean Robertson, A.H.; Potts, J.M.; Laggoun-Défarge, F.; Gogo, S.; Comont, L.; Disnar, J.-R.; Francez, A.-J. FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands. Soil Biol. Biochem. 2008, 40, 515–527. [Google Scholar] [CrossRef]
- Artz, R.; Chapman, S.; Campbell, C. Substrate utilisation profiles of microbial communities in peat are depth dependent and correlate with whole soil FTIR profiles. Soil Biol. Biochem. 2006, 38, 2958–2962. [Google Scholar] [CrossRef]
- Fernandes, A.N.; Giovanela, M.; Esteves, V.I.; Sierra, M.M.d.S. Elemental and spectral properties of peat and soil samples and their respective humic substances. J. Mol. Struct. 2010, 971, 33–38. [Google Scholar] [CrossRef]
- Xing, Z.; Tian, K.; Du, C.; Li, C.; Zhou, J.; Chen, Z. Agricultural soil characterization by FTIR spectroscopy at micrometer scales: Depth profiling by photoacoustic spectroscopy. Geoderma 2019, 335, 94–103. [Google Scholar] [CrossRef]
- Vaudour, E.; Cerovic, Z.G.; Ebengo, D.M.; Latouche, G. Predicting Key Agronomic Soil Properties with UV-Vis Fluorescence Measurements Combined with Vis-NIR-SWIR Reflectance Spectroscopy: A Farm-Scale Study in a Mediterranean Viticultural Agroecosystem. Sensors 2018, 18, 1157. [Google Scholar] [CrossRef]
- Yeasmin, S.; Singh, B.; Johnston, C.T.; Sparks, D.L. Organic carbon characteristics in density fractions of soils with contrasting mineralogies. Geochim. Cosmochim. Acta 2017, 218, 215–236. [Google Scholar] [CrossRef]
- Raphael, L. Application of FTIR Spectroscopy to Agricultural Soils Analysis. In Fourier Transforms—New Analytical Approaches and FTIR Strategies; Nikolic, G., Ed.; InTech: London, UK, 2011; pp. 385–404. [Google Scholar]
- Stevenson, F.J.; Goh, K.M. Infrared spectra of humic acids and related substances. Geochim. Cosmochim. Acta 1971, 35, 471–483. [Google Scholar] [CrossRef]
- MacCarthy, P.; Mark, H.B.; Griffiths, P.R. Direct measurement of the infrared spectra of humic substances in water by Fourier transform infrared spectroscopy. J. Agric. Food Chem. 2002, 23, 600–602. [Google Scholar] [CrossRef]
- Baes, A.U.; Bloom, P.R. Diffuse Reflectance and Transmission Fourier Transform Infrared (DRIFT) Spectroscopy of Humic and Fulvic Acids. Soil Sci. Soc. Am. J. 1989, 53, 695–700. [Google Scholar] [CrossRef]
- Morra, M.J.; Marshall, D.B.; Lee, C.M. FT-IR analysis of aldrich humic acid in water using cylindrical internal reflectance. Commun. Soil Sci. Plant Anal. 2008, 20, 851–867. [Google Scholar] [CrossRef]
- Senesi, N.; Miano, T.M.; Provenzano, M.R.; Brunetti, G. Spectroscopic and compositional comparative characterization of I.H.S.S. reference and standard fulvic and humic acids of various origin. Sci. Total Environ. 1989, 81, 143–156. [Google Scholar] [CrossRef]
- Lynch, B.M.; Smith-Palmer, T. Interpretation of FTIR spectral features in the 1000-1200 cm−1 region in humic acids—Contributions from particulate silica in different sampling media. Can. J. Appl. Spectrosc. 1992, 37, 126–131. [Google Scholar]
- Orlov, D.S. Humic Substances of Soils and General Theory of Humification; Taylor & Francis: New York, NY, USA, 1995. [Google Scholar]
- Madejová, J. Baseline Studies of the Clay Minerals Society Source Clays: Infrared Methods. Clay Clay Min. 2001, 49, 410–432. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Ok, S.S.; Garrigues, S.; de la Guardia, M. Ftir Tentative Characterization of Humic Acids Extracted from Organic Materials. Spectr. Lett. 2001, 34, 179–190. [Google Scholar] [CrossRef]
- Tanaka, T.; Nagao, S.; Ogawa, H. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy of Functional Groups of Humic Acid Dissolving in Aqueous Solution. Anal. Sci. Suppl. 2002, 17, i1081–i1084. [Google Scholar] [CrossRef]
- Palamarchuk, I.; Brovko, O.; Bogolitsyn, K.; Boitsova, T.; Ladesov, A.; Ivakhnov, A. Relationship of the structure and ion-exchange properties of polyelectrolyte complexes based on biopolymers. Russ. J. Appl. Chem. 2015, 88, 103–109. [Google Scholar] [CrossRef]
- Farad, S.; Manan, M.A.; Ismail, N.; Nsamba, H.K.; Galiwango, E.; Kabenge, I. Formulation of Surfactants from Coconut Coir Containing Lignosulfonate for Surfactant-Polymer Flooding; The National Research Repository of Uganda: Kampala, Uganda, 2016. [Google Scholar]
- Xu, H.; Yu, G.; Mu, X.; Zhang, C.; DeRoussel, P.; Liu, C.; Li, B.; Wang, H. Effect and characterization of sodium lignosulfonate on alkali pretreatment for enhancing enzymatic saccharification of corn stover. Ind. Crops Prod. 2015, 76, 638–646. [Google Scholar] [CrossRef]
- Ertani, A.; Francioso, O.; Tugnoli, V.; Righi, V.; Nardi, S. Effect of commercial lignosulfonate-humate on Zea mays L. metabolism. J. Agric. Food Chem. 2011, 59, 11940–11948. [Google Scholar] [CrossRef]
- Hejzlar, J.; Szpakowska, B.; Wershaw, R.L. Comparison of humic substances isolated from peatbog water by sorption on DEAE-cellulose and amberlite XAD-2. Water Res. 1994, 28, 1961–1970. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions, Second Edition (Stevenson, F.J.). J. Chem. Educ. 1995, 72, A93. [Google Scholar] [CrossRef]
- Senesi, N.; D’Orazio, V.; Ricca, G. Humic acids in the first generation of EUROSOILS. Geoderma 2003, 116, 325–344. [Google Scholar] [CrossRef]
- Madejová, J. FTIR techniques in clay mineral studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Karpukhina, E.A.; Vlasova, E.A.; Volkov, D.S.; Proskurnin, M.A. Comparative Study of Sample-Preparation Techniques for Quantitative Analysis of the Mineral Composition of Humic Substances by Inductively Coupled Plasma Atomic Emission Spectroscopy. Agronomy 2021, 11, 2453. [Google Scholar] [CrossRef]
- Li, B.; Ouyang, X.P. Structure and Properties of Lignosulfonate with Different Molecular Weight Isolated by Gel Column Chromatography. Adv. Mater. Res. 2012, 554, 2024–2030. [Google Scholar] [CrossRef]
- Han, H.; Li, J.; Wang, H.; Han, Y.; Chen, Y.; Li, J.; Zhang, Y.; Wang, Y.; Wang, B. One-Step Valorization of Calcium Lignosulfonate To Produce Phenolics with the Addition of Solid Base Oxides in the Hydrothermal Reaction System. Energy Fuels 2019, 33, 4302–4309. [Google Scholar] [CrossRef]
- Anas, A.K.; Prakoso, N.I.; Sasvita, D. The Initial Comparison Study of Sodium Lignosulfonate, Sodium Dodecyl Benzene Sulfonate, and Sodium p-Toluene Sulfonate Surfactant for Enhanced Oil Recovery. IOP Conf. Ser. Mater. Sci. Eng. 2018, 349, 012005. [Google Scholar] [CrossRef]
- Chen, R.; Wu, Q. Modified lignosulfonate as adhesive. J. Appl. Polym. Sci. 1994, 52, 437–443. [Google Scholar] [CrossRef]
- Mansouri, N.; Yuan, Q.; Huang, F. Characterization of alkaline lignins for use in penol-formaldehyde and epoxy resins. Bioresources 2011, 6, 2647–2662. [Google Scholar] [CrossRef]
- Lucas, S.; Tognonvi, M.T.; Gelet, J.L.; Soro, J.; Rossignol, S. Interactions between silica sand and sodium silicate solution during consolidation process. J. Non Cryst. Solids 2011, 357, 1310–1318. [Google Scholar] [CrossRef]
- Bleken, B.T.; Mino, L.; Giordanino, F.; Beato, P.; Svelle, S.; Lillerud, K.P.; Bordiga, S. Probing the surface of nanosheet H-ZSM-5 with FTIR spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 13363–13370. [Google Scholar] [CrossRef]
- Russell, J.D.; Fraser, A.R. Infrared methods. In Clay Mineralogy: Spectroscopic and Chemical Determinative Methods; Wilson, M.J., Ed.; Springer: Dordrecht, The Netherlands, 1994; pp. 11–67. [Google Scholar]
- De Benedetto, G.E.; Laviano, R.; Sabbatini, L.; Zambonin, P.G. Infrared spectroscopy in the mineralogical characterization of ancient pottery. J. Cult. Herit. 2002, 3, 177–186. [Google Scholar] [CrossRef]
- Roeges, N.P.G. A Guide to the Complete Interpretation of Infrared Spectral of Organic Structures; Wiley: Hoboken, NJ, USA, 1994. [Google Scholar]
- Kubo, S.; Kadla, J.F. Hydrogen bonding in lignin: A Fourier transform infrared model compound study. Biomacromolecules 2005, 6, 2815–2821. [Google Scholar] [CrossRef] [PubMed]
- Sutton, R.; Sposito, G. Molecular structure in soil humic substances: The new view. Environ. Sci Technol 2005, 39, 9009–9015. [Google Scholar] [CrossRef] [PubMed]
Added, g/L | Method 1a | Method 1b | Method 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LSNa | Powhumus | 1266 | 1192 | 1093 | 1042 | 1266 | 1192 | 1093 | 1042 | 1266 | 1192 | 1093 | 1042 |
Found LS, g/L | |||||||||||||
10 | 20 | 24 | 15 | 15 | 16 | 5.0 | 6.5 | 9.2 | 14 | 7.7 | 8.3 | 10 | 10 |
20 | 20 | 32 | 24 | 25 | 30 | 13 | 15 | 19 | 28 | 17 | 18 | 21 | 21 |
40 | 20 | 54 | 45 | 47 | 56 | 36 | 37 | 40 | 56 | 38 | 38 | 41 | 41 |
80 | 20 | 91 | 84 | 89 | 109 | 74 | 76 | 80 | 111 | 76 | 78 | 80 | 81 |
25 | 50 | 61 | 39 | 37 | 42 | 17 | 19 | 25 | 35 | 23 | 23 | 26 | 25 |
50 | 50 | 85 | 63 | 64 | 75 | 41 | 43 | 50 | 70 | 46 | 47 | 51 | 51 |
75 | 50 | 109 | 87 | 90 | 108 | 66 | 68 | 75 | 104 | 71 | 71 | 76 | 76 |
100 | 50 | 132 | 111 | 116 | 140 | 89 | 92 | 100 | 138 | 94 | 96 | 100 | 101 |
Error, % | |||||||||||||
10 | 20 | 140 | 53 | 46 | 63 | −50 | −35 | −8 | 39 | −23 | −17 | 1.3 | 0.2 |
20 | 20 | 62 | 20 | 26 | 49 | −33 | −23 | −3 | 41 | −13 | −10 | 4 | 5 |
40 | 20 | 35 | 13 | 18 | 41 | −11 | −8 | 0.4 | 40 | −5 | −4 | 2 | 1.6 |
80 | 20 | 14 | 5 | 11 | 36 | −8 | −5 | −0.2 | 39 | −5 | −3 | 0.5 | 0.9 |
25 | 50 | 146 | 55 | 48 | 66 | −31 | −26 | −0.4 | 40 | −9 | −9 | 3 | 1.3 |
50 | 50 | 70 | 26 | 27 | 49 | −18 | −14 | 0.6 | 39 | −8 | −6 | 1.5 | 1.3 |
75 | 50 | 46 | 16 | 20 | 43 | −12 | −10 | 0.7 | 39 | −6 | −5 | 1 | 1 |
100 | 50 | 32 | 11 | 16 | 40 | −11 | −8 | 0.1 | 38 | −6 | −4 | 0.5 | 0.7 |
Wavenumber, cm−1 | Slope, L/g × 105 | Correlation Coefficient | LOD, g/L |
---|---|---|---|
1642 | 3.7 ± 0.2 | 0.9898 | 5 |
1591 | 5.8 ± 0.3 | 0.9974 | 3 |
1512 | 9.5 ± 0.3 | 0.9991 | 4 |
1466 | 6.7 ± 0.2 | 0.9992 | 4 |
1455 | 6.7 ± 0.2 | 0.9986 | 5 |
1420 | 7.3 ± 0.1 | 0.9994 | 4 |
1266 | 12.3 ± 0.5 | 0.9998 | 2 |
1192 | 21.4 ± 0.6 | 0.9999 | 1 |
1093 | 25.1 ± 0.6 | 0.9999 | 0.5 |
1042 | 32.5 ± 0.7 | 0.9999 | 0.4 |
Added LS, g/L | Error of Calculation of LS Concentration, g/L | |||
---|---|---|---|---|
1266 cm−1 | 1192 cm−1 | 1093 cm−1 | 1042 cm−1 | |
20 | −3.0 | −3.0 | −1.0 | 1.0 |
50 | 0.1 | −0.1 | 0.6 | 0.7 |
100 | −0.7 | −0.5 | 0.02 | 0.8 |
Added, g/L | Found, g/L | ||||
---|---|---|---|---|---|
LSNa | Life Force | 1266 cm−1 | 1192 cm−1 | 1093 cm−1 | 1042 cm−1 |
Found, g/L | |||||
10 | 20 | 5.1 | 6.4 | 8.0 | 8.2 |
20 | 20 | 15 | 16 | 18 | 18 |
40 | 20 | 32 | 34 | 37 | 37 |
80 | 20 | 68 | 71 | 75 | 75 |
25 | 50 | 19 | 20 | 22 | 22 |
50 | 50 | 42 | 42 | 45 | 46 |
75 | 50 | 59 | 64 | 69 | 69 |
100 | 50 | 74 | 83 | 90 | 91 |
Error, % | |||||
10 | 20 | −49 | −36 | −20 | −18 |
20 | 20 | −24 | −21 | −12 | −11 |
40 | 20 | −20 | −15 | −8 | −8 |
80 | 20 | −15 | −11 | −6 | −6 |
25 | 50 | −24 | −21 | −14 | −14 |
50 | 50 | −15 | −15 | −9 | −9 |
75 | 50 | −21 | −15 | −9 | −8 |
100 | 50 | −26 | −17 | −10 | −9 |
Wavenumber, cm−1 | Slope, L/g × 105 | Correlation Coefficient | LODs, g/L |
---|---|---|---|
1570 | 2.9 ± 0.1 | 0.9823 | 0.7 |
1383 | 5.8 ± 0.4 | 0.9984 | 1 |
Added, g/L | 1570 cm−1 | 1383 cm−1 | |
---|---|---|---|
Powhumus | LSNa | ||
Found, g/L | |||
20 | 10 | 20 | 19 |
20 | 20 | 20 | 19 |
20 | 40 | 19 | 19 |
20 | 80 | 19 | 18 |
50 | 25 | 50 | 49 |
50 | 50 | 49 | 48 |
50 | 75 | 48 | 47 |
50 | 100 | 47 | 47 |
Error, % | |||
20 | 10 | −1 | −3 |
20 | 20 | −1 | −3 |
20 | 40 | −3 | −5 |
20 | 80 | −7 | −10 |
50 | 25 | 0 | −3 |
50 | 50 | −3 | −4 |
50 | 75 | −4 | −5 |
50 | 100 | −6 | −7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpukhina, E.A.; Volkov, D.S.; Proskurnin, M.A. Quantification of Lignosulfonates and Humic Components in Mixtures by ATR FTIR Spectroscopy. Agronomy 2023, 13, 1141. https://doi.org/10.3390/agronomy13041141
Karpukhina EA, Volkov DS, Proskurnin MA. Quantification of Lignosulfonates and Humic Components in Mixtures by ATR FTIR Spectroscopy. Agronomy. 2023; 13(4):1141. https://doi.org/10.3390/agronomy13041141
Chicago/Turabian StyleKarpukhina, Evgeniya A., Dmitry S. Volkov, and Mikhail A. Proskurnin. 2023. "Quantification of Lignosulfonates and Humic Components in Mixtures by ATR FTIR Spectroscopy" Agronomy 13, no. 4: 1141. https://doi.org/10.3390/agronomy13041141
APA StyleKarpukhina, E. A., Volkov, D. S., & Proskurnin, M. A. (2023). Quantification of Lignosulfonates and Humic Components in Mixtures by ATR FTIR Spectroscopy. Agronomy, 13(4), 1141. https://doi.org/10.3390/agronomy13041141