Geochemical Characteristics of Typical Karst Soil Profiles in Anhui Province, Southeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and pre-Processing
2.3. Chemical Analysis
2.4. Quality Control
2.5. Data Processing and Statistical Analysis
3. Results and Discussion
3.1. Physical and Chemical Properties of Understudied Soils
3.2. Geochemical Anomalies of Cd and other HM
Sample | Cd | Cu | Ni | Pb | Zn | Cr | Hg | As | Co | V | References |
---|---|---|---|---|---|---|---|---|---|---|---|
Terra rossa (n = 90, from profiles) | 0.38 ± 0.35 | 33.35 ± 20.72 | 40.48 ± 15.07 | 38.27 ± 33.34 | 120.18 ± 50.11 | 75.08 ± 28.88 | 0.073 ± 0.05 | 28.6 ± 18.21 | 15.1 ± 3.53 | 117.58 ± 31.41 | This study |
(0.04–1.53) | (0.03–112) | (13–103) | (8.8–179) | (63.1–263) | (27–246) | (0.02–0.22) | (8.07–96.8) | (5.49–22.9) | (74.2–211) | ||
Carbonate rock in Shitai County in Anhui | 0.12 | 19.84 | 2.84 | 14.9 | 38.41 | 382.22 | 0.08 | 10.64 | [31] | ||
Topsoils in Shitai County | 0.30 | 42.69 | 42.94 | 29.62 | 112.58 | 103.91 | 0.13 | 19.33 | [31] | ||
Deep soils in Shitai County | 0.50 | 46.24 | 35.81 | 31.2 | 93.54 | 82.3 | 0.09 | 21.17 | 203.71 | [31] | |
Background soil (Anhui) | 0.134 | 26 | 28 | 27 | 64 | 70 | 0.048 | 9.5 | 14.3 | 85 | [31] |
World carbonate rock | 0.035 | 4.0 | 20.0 | 9.0 | 20.0 | 11.0 | 0.16 | 1 | 0.1 | 45 | [38] |
Background soil (China) | 0.097 | 22.6 | 26.9 | 26.0 | 74.2 | 61.0 | 0.07 | 11.2 | 12.7 | 82.4 | [33] |
Background soil (Guangxi) | 0.27 | 27.8 | 26.6 | 24.0 | 75.6 | 82.1 | [4] | ||||
World soil | 0.35 | 30.0 | 20.0 | 19.0 | 90.0 | 40.0 | [39] | ||||
Chinese soil | 0.23 | 27.1 | 29.6 | 31.2 | 79.0 | 68.5 | [40] | ||||
Chinese soil (first environmental soil background values) | 0.127 | 24 | 29 | 27 | 67 | 68 | 0.05 | 10.8 | 13 | 87 | [41] |
Carbonate rock in Guangxi | 0.374 | 1.89 | 5.15 | 3.86 | 10.7 | 11.9 | 0.01 | 0.94 | [9] | ||
Enrichment factors * | 3.92 | 1.47 | 1.50 | 1.47 | 1.62 | 1.23 | 1.12 | 2.55 | 1.19 | 1.43 |
3.3. Geographical and Soil Type-Dependent Distributions of HM in Terra Rossa
3.4. Soil Type-Dependent Distributions of HM in the Soil Profile
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vingiani, S.; Iorio, E.D.; Colombo, C.; Terribile, F. Integrated study of Red Mediterranean soils from Southern Italy. Catena 2018, 168, 129–140. [Google Scholar] [CrossRef]
- Zupancic, N.; Turniski, R.; Miler, M.; Grcman, H. Geochemical fingerprint of insoluble material in soil on different limestone formations. Catena 2018, 170, 10–24. [Google Scholar] [CrossRef]
- Wen, Y.B.; Yang, Z.F.; Zhuo, X.X.; Guan, D.X.; Song, Y.X.; Guo, C.; Ji, J.F. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, Southwestern China. Environ. Pollut. 2020, 258, 113645. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.B.; Li, W.; Yang, Z.F.; Zhang, Q.Z.; Ji, J.F. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere 2020, 245, 125620. [Google Scholar] [CrossRef]
- Ministry of Nature Resources of the Republic of China (MNR); Ministry of Environmental Protection (MEP). A National Soil Pollution Survey Bulletin. 2014. Available online: http://www.gov.cn/xinwen/2014-04/17/content_2661765.htm (accessed on 11 February 2023).
- Ministry of Nature Resources of the Republic of China. Report on Geochemical Survey of Cultivated Land in China; Ministry of Nature Resources of the Republic of China: Beijing, China, 2015. Available online: https://www.cgs.gov.cn/xwl/ddyw/201603/t20160309302254.html (accessed on 11 February 2023).
- Luo, Y.M.; Teng, Y. Regional Difference in Soil Pollution and Strategy of Soil Zonal Governance and Remediation in China. Bull. Chin. Acad. Sci. 2018, 33, 145–152. [Google Scholar]
- Ji, W.B.; Yang, Z.F.; Yu, T.; Yang, Q.; Wen, Y.B.; Wu, T.S. Potential ecological risk assessment of heavy metals in the Fe–Mn nodules in the karst area of Guangxi, Southwestern China. Bull. Environ. Contam. Toxicol. 2021, 106, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Yang, Z.F.; Zhang, Q.Z.; Liu, X.; Zhuo, X.X.; Wu, T.S.; Wang, L.; Wei, X.J.; Ji, J.F. Ecological risk assessment of Cd and other heavy metals in soil-rice system in the karst areas with high geochemical background of Guangxi, China. Sci. China Earth Sci. 2021, 51, 1317–1331. [Google Scholar] [CrossRef]
- Baize, D.; Sterckeman, T. Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements. Sci. Total Environ. 2001, 264, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.B.; Bi, Z.G.; Li, Z.K.; Chen, X.Y.; Xia, G.S. Regional Geology of Anhui Province; Geological Press: Beijing, China, 1987; pp. 209–214. [Google Scholar]
- Gu, Y.P. Classification reference of carbonate developed soils in Anhui Province. Soil Bull. 1999, 4, 53–56. [Google Scholar]
- Zhou, J.; Zhu, J.; Cha, S.X.; Han, Z.Y.; Qin, Y. Relationship between soil trace element status and geological background in Anhui Province. J. Anhui Agric. Univ. 2001, 24, 59–64. [Google Scholar]
- Zhang, W. Soil Heavy Metal Enrichment Characteristics and Ecological Risk Assessment in Carbonate Background Area of Qingyang, Anhui Province. Master’s Thesis, China University of Geosciences, Beijing, China, 2020. [Google Scholar]
- Atteia, O.; Thélin, P.; Pfeifer, H.R.; Dubois, J.P.; Hunziker, J.C. A search for the origin of cadmium in the soil of the Swiss Jura. Geoderma 1995, 68, 149–172. [Google Scholar] [CrossRef]
- Dubois, J.P.; Okopnik, F.; Benitez, N.; Védy, J.C. Origin and spatial variability of cadmium in some soils of the Swiss Jura. In Proceedings of the 16th World Congress Soil Science, Montepellier, France, 20–26 August 1998. [Google Scholar]
- Lalor, G.C. Review of cadmium transfers from soil to humans and its health effects in the Jamaican environment. Sci. Total Environ. 2008, 400, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, S.-I.; Takeda, A.; Nunohara, K.; Tsuchiya, N. Red soils derived from limestone contain higher amounts of trace elements than those derived from various other parent materials. Soil Sci. Plant Nutr. 2013, 59, 692–699. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Xu, W.X.; Lin, X.N.; Yan, H.L.; Ma, M.; He, Z.Y. Assessment of heavy metals pollution of soybean grains in North Anhui of China. Sci. Total Environ. 2019, 646, 914–922. [Google Scholar] [CrossRef] [PubMed]
- China NBoSo. China Statistical Yearbook; China Statistics Press: Beijing, China, 2011. [Google Scholar]
- Li, H.; Luo, N.; Li, Y.W.; Cai, Q.Y.; Li, H.Y.; Mo, C.H.; Wong, M.H. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures. Environ. Pollut. 2017, 224, 622–630. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. Technical Provisions for the Analysis and Testing Method of Soil Samples for National Soil Pollution Status Detailed Investigation; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2017. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Gong, Z.T. Classification of Chinese Soil Systems; Science Press: Beijing, China, 1999; pp. 903–907. [Google Scholar]
- Ji, W.B.; Yang, Z.F.; Yin, A.J.; Lu, Y.Y.; Ying, R.R.; Yang, Q.; Liu, X.; Li, B.; Duan, Y.R.; Wang, J. Geochemical characteristics of Fe-Mn nodules with different sizes in soils of high geological background areas. Chin. J. Ecol. 2021, 40, 2289–2301. [Google Scholar]
- Ji, W.B.; Yang, Z.F.; Yin, A.J.; Lu, Y.Y.; Ying, R.R.; Yang, Q.; Liu, X.; Li, B.; Duan, Y.R.; Wang, J. Study on the formation mechanism of iron-manganese nodules in soils with high geological background-taking the central part of Guangxi as an example. Chin. J. Ecol. 2021, 40, 2302–2314. [Google Scholar]
- Zhong, C.; Li, X.J.; He, Y.Y.; Qiu, W.W.; Li, J.; Zhang, X.Y.; Hu, B.Q. Spatial variability of soil organic matter in Guangxi and its influencing factors. Geoscience 2020, 40, 478–484. [Google Scholar]
- Zhang, C.L.; Lu, L.M.; Yang, H.; Huang, F. Spatial variation analysis of soil organic matter in karst area. Carsologica Sin. 2022, 41, 228–232. [Google Scholar]
- Tang, S.Q.; Liu, X.J.; Yang, K.; Guo, F.; Yang, Z.; Ma, H.H.; Liu, F.; Peng, M.; Li, K. Migration, Transformation Characteristics, and Ecological Risk Evaluation of Heavy Metal Fractions in Cultivated Soil Profiles in a Typical Carbonate-Covered Area. Environ. Sci. 2021, 42, 3913–3923. [Google Scholar]
- Wang, Q.Y. Study on the Characteristics of Heavy Metal Migration and Enrichment and Environmental Risk Assessment during the Weathering of Carbonate Rocks. Master’s Thesis, Guizhou University, Guizhou, China, 2021. [Google Scholar]
- Lu, C.M. Geochemical characteristics of rocks and soils in the Dashan area of Shitai, Anhui Province. Anhui Geol. 2010, 20, 120–125. [Google Scholar]
- Zhou, J.; Hu, L.J.; Zhu, J.; Qin, Y. Geological background of agriculture in Qingyang and surrounding areas in southern Anhui. Anhui Geol. 1999, 9, 156–160. [Google Scholar]
- China National Environmental Monitoring Centre (CNEMC). Elemental Background Values of Soils in China; Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Yang, Q.; Yang, Z.F.; Filippelli, G.M.; Ji, J.F.; Ji, W.B.; Liu, X.; Wang, L.; Yu, T.; Wu, T.S.; Zhuo, X.X.; et al. Distribution and secondary enrichment of heavy metal elements in karstic soils with high geochemical background in Guangxi, China. Chem. Geol. 2021, 567, 120081. [Google Scholar] [CrossRef]
- Xie, X.J. Geochemical Atlas of China; GPH: Springfield, MO, USA, 2012. [Google Scholar]
- Quezada-Hinojosa, R.P.; Föllmi, K.B.; Verrecchia, E. Speciation and multivariable analyses of geogenic cadmium in soils at Le Gurnigel, Swiss Jura Mountains. Catena 2015, 125, 10–32. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, T.; Perkins, R.B.; Zhu, J.; Zhu, Z.; Xiong, Y.; Ning, Z. Geogenic cadmium pollution and potential health risks, with emphasis on black shale. J. Geochem. Explor. 2017, 176, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Salomons, W.; Forstner, U. Metals in the Hydrocycle; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Adriano, D.C. Trace Elements in the Terrestrial Environment; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512–513, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Xi, X.H.; Hou, Q.Y.; Yang, Z.F.; Ye, J.Y.; Yu, T.; Xia, X.Q.; Cheng, H.X.; Zhou, G.H.; Yao, L. Big data based studies of the variation features of Chinese soil’s background value versus reference value: A paper written on the occasion of Soil Geochemical Parameters of China’s publication. Ceophys. Geochem. Explor. 2021, 45, 1095–1108. [Google Scholar]
- Georges, S.; Vera, M.; Florias, M. Interpretation of Micromorphological Features of Soils and Regoliths, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Li, M.; Xi, X.H.; Xiao, G.; Cheng, H.X.; Yang, Z.F.; Zhou, G.; Ye, J.Y.; Li, Z. National multipurpose regional geochemical survey in China. J. Geochem. Explor. 2014, 139, 21–30. [Google Scholar] [CrossRef]
- Ji, H.B.; Wang, S.J.; Ouyang, Z.Y. Geochemistry of red residua underlying dolomites in karst terrains of Yunnan–Guizhou Plateau: I. The formation of the Pingba profile. Chem. Geol. 2004, 203, 1–27. [Google Scholar] [CrossRef]
- Ji, H.B.; Wang, S.J.; Ouyang, Z.Y. Geochemistry of red residua underlying dolomites in karst terrains of Yunnan–Guizhou Plateau II. The mobility of rare earth elements during weathering. Chem. Geol. 2004, 203, 29–50. [Google Scholar] [CrossRef]
- Ji, W.B.; Ying, R.R.; Yang, Z.F.; Yang, Q.; Liu, X.; Yu, T.; Wang, L.; Qin, J.X.; Wu, T.S. Arsenic Concentration, Fraction, and Environmental Implication in Fe–Mn Nodules in the Karst Area of Guangxi. Water 2022, 14, 3021. [Google Scholar] [CrossRef]
- Ji, W.B.; Lu, Y.Y.; Zhao, C.Y.; Zhang, X.Y.; Wang, H.; Hu, Z.W.; Yu, T.; Wen, Y.B.; Ying, R.R.; Yang, Z.F. Mineral Composition and Environmental Importance of Fe–Mn Nodules in Soils in Karst Areas of Guangxi, China. Sustainability 2022, 14, 12457. [Google Scholar] [CrossRef]
- Suda, A.; Makino, T. Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review. Geoderma 2016, 270, 68–75. [Google Scholar] [CrossRef]
- Ettler, V.; Tomášová, Z.; Komárek, M.; Mihaljevič, M.; Šebek, O.; Michálková, Z. The pH–dependent long–term stability of an amorphous manganese oxide in smelter–polluted soils: Implication for chemical stabilization of metals and metalloids. J. Hazard. Mater. 2015, 286, 386–394. [Google Scholar] [CrossRef]
- Ettler, V.; Chren, M.; Mihaljevič, M.; Drahota, P.; Kříbek, B.; Veselovský, F.; Sracek, O.; Vaněk, A.; Penížek, V.; Komárek, M.; et al. Characterization of Fe–Mn concentric nodules from Luvisol irrigated by mine water in a semi–arid agricultural area. Geoderma 2017, 299, 32–42. [Google Scholar] [CrossRef]
- Li, C.; Zhang, C.S.; Yu, T.; Ma, X.D.; Yang, Y.Y.; Liu, X.; Hou, Q.Y.; Li, B.; Lin, K.; Yang, Z.F.; et al. Identification of soil parent materials in naturally high background areas based on machine learning. Sci. Total Environ. 2023, 875, 162684. [Google Scholar] [CrossRef] [PubMed]
- Sipos, P.; Kovács, I.; Balázs, R.; Tóth, A.; Barna, G.; Makó, A. Micro-analytical study of the distribution of iron phases in ferromanganese nodules. Geoderma 2022, 405, 115445. [Google Scholar] [CrossRef]
Items | Number of Samples | Min | Max | Average | Med | Std | CV (a) | |
---|---|---|---|---|---|---|---|---|
pH | / | 90 | 4.08 | 8.44 | 6.50 | 6.83 | 1.30 | 0.20 |
SOM | % | 90 | 0.27 | 9.17 | 2.86 | 2.32 | 2.05 | 0.72 |
CEC | Cmol (+)/kg | 90 | 6.68 | 47.7 | 26.55 | 23.7 | 9.53 | 0.36 |
BD | g/cm3 | 64 (b) | 0.62 | 1.71 | 1.25 | 1.27 | 0.60 | 0.48 |
Carbonate | % | 90 (c) | Nd | 84.9 | 2.44 | Nd | 9.50 | 3.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, W.; Lu, Y.; Yang, M.; Wang, J.; Zhang, X.; Zhao, C.; Xia, B.; Wu, Y.; Ying, R. Geochemical Characteristics of Typical Karst Soil Profiles in Anhui Province, Southeastern China. Agronomy 2023, 13, 1067. https://doi.org/10.3390/agronomy13041067
Ji W, Lu Y, Yang M, Wang J, Zhang X, Zhao C, Xia B, Wu Y, Ying R. Geochemical Characteristics of Typical Karst Soil Profiles in Anhui Province, Southeastern China. Agronomy. 2023; 13(4):1067. https://doi.org/10.3390/agronomy13041067
Chicago/Turabian StyleJi, Wenbing, Yuanyuan Lu, Min Yang, Jian Wang, Xiaoyu Zhang, Caiyi Zhao, Bing Xia, Yunjin Wu, and Rongrong Ying. 2023. "Geochemical Characteristics of Typical Karst Soil Profiles in Anhui Province, Southeastern China" Agronomy 13, no. 4: 1067. https://doi.org/10.3390/agronomy13041067
APA StyleJi, W., Lu, Y., Yang, M., Wang, J., Zhang, X., Zhao, C., Xia, B., Wu, Y., & Ying, R. (2023). Geochemical Characteristics of Typical Karst Soil Profiles in Anhui Province, Southeastern China. Agronomy, 13(4), 1067. https://doi.org/10.3390/agronomy13041067