Environmental Assessment of Soils and Crops Based on Heavy Metal Risk Analysis in Southeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Sample Collection and Analysis
2.2.1. Layout of Sampling Points
2.2.2. Soil and Crop Sampling
2.2.3. Chemical Analysis
2.3. Data and Statistical Analysis
2.3.1. Evaluation of Soil Heavy Metal Pollution Status
2.3.2. Assessment of Agricultural Product Heavy Metal Accumulation
2.3.3. Environment Partition of the Production Area
2.4. Data Analysis
3. Results and Discussion
3.1. Descriptive Statistical Analysis of Soil Physicochemical Properties and Heavy Metals Accumulation in Soils and Crops
3.2. Spatial Distribution of Heavy Metals in Soils and Crops
3.3. Heavy Metal Pollution Assessment in the Study Area
3.4. Environment Partition of the Production Area
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seleiman, M.F.; Santanen, A.; Mäkelä, P.S.A. Recycling sludge on cropland as fertilizer–Advantages and risks. Resour. Conserv. Recy. 2020, 155, 104647. [Google Scholar] [CrossRef]
- Hubbard, A. Heavy metals in the environment: Origin, interaction and remediation. J. Colloid Interface Sci. 2005, 291, 307. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Junaid, M.F.; Ijaz, N.; Khalid, U.; Ijaz, Z. Remediation methods of heavy metal contaminated soils from environmental and geotechnical standpoints. Sci. Total Environ. 2023, 867, 161468. [Google Scholar] [CrossRef] [PubMed]
- MEPC (Ministry of Environmental Protection of China). National Communique of Soil Pollution Survey; MEPC: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Wu, Q.M.; Hu, W.Y.; Wang, H.F.; Liu, P.; Wang, X.K.; Huang, B. Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China. Sci. Total Environ. 2021, 780, 146557. [Google Scholar] [CrossRef] [PubMed]
- Borris, M.; Österlund, H.; Marsalek, J.; Viklander, M. Contribution of coarse particles from road surfaces to dissolved and particle-bound heavy metal loads in runoff: A laboratory leaching study with synthetic stormwater. Sci. Total Environ. 2016, 573, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.T.; Li, Y.; Yang, J.Y.; Lei, K.G.; Li, Y.; Li, F.; Zheng, D.F.; Fang, X.Q.; Cao, Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Pinedo-Hernández, J.; Díez, S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res. 2017, 154, 380–388. [Google Scholar] [CrossRef]
- Štrbac, S.; Ranđelović, D.; Gajica, G.; Hukić, E.; Stojadinović, S.; Veselinović, G.; Orlić, J.; Tognetti, R.; Kašanin-Grubin, M. Spatial distribution and source identification of heavy metals in European mountain beech forests soils. Chemosphere 2022, 309 Pt 1, 136662. [Google Scholar] [CrossRef]
- Lazo, P.; Steinnes, E.; Qarri, F.; Allajbeu, S.; Kane, S.; Stafilov, T.; Frontasyeva, M.V.; Harmens, H. Origin and spatial distribution of metals in moss samples in Albania: A hotspot of heavy metal contamination in Europe. Chemosphere 2018, 190, 337–349. [Google Scholar] [CrossRef] [Green Version]
- Gan, Y.D.; Huang, X.M.; Li, S.S.; Liu, N.; Li, Y.C.C.; Freidenreich, A.; Wang, W.X.; Wang, R.Q.; Dai, J.L. Source quantification and potential risk of mercury, cadmium, arsenic, lead, and chromium in farmland soils of Yellow River Delta. J. Clean Prod. 2019, 221, 98–107. [Google Scholar] [CrossRef]
- Anaman, R.; Peng, C.; Jiang, Z.C.; Liu, X.; Zhou, Z.R.; Guo, Z.H.; Xiao, X.Y. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF. Sci. Total Environ. 2022, 823, 153759. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Ran, J.; Wang, D.; Wang, C.; Zhang, G.; Zhang, H. Heavy metal contents, distribution, and prediction in a regional soil-wheat system. Sci. Total Environ. 2016, 544, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Koner, S.; Chen, J.S.; Rathod, J.; Hussain, B.; Hsu, B.M. Unravelling the ultramafic rock-driven serpentine soil formation leading to the geo-accumulation of heavy metals: An impact on the resident microbiome, biogeochemical cycling and acclimatized eco-physiological profiles. Sci. Total Environ. 2023, 216 Pt 4, 114664. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.P.; Xu, Y.N.; Zhang, J.H.; Wang, W.K.; Elwardany, R.M. Effects of heavy metal pollution on farmland soils and crops: A case study of the Xiaoqinling Gold Belt, China. China Geol. 2020, 3, 402–410. [Google Scholar]
- Napoletano, P.; Guezgouz, N.; Iorio, E.D.; Colombo, C.; Guerriero, G.; Marco, A.D. Anthropic impact on soil heavy metal contamination in riparian ecosystems of northern Algeria. Chemosphere 2023, 313, 137522. [Google Scholar] [CrossRef]
- USEPA (United States Environmental Protection Agency). Integrated Risk Information System; USEPA: Washington, DC, USA, 2019. [Google Scholar]
- Beinabaj, S.M.H.; Heydariyan, H.; Aleii, H.M.; Hosseinzadeh, A. Concentration of heavy metals in leachate, soil, and plants in Tehran’s landfill: Investigation of the effect of landfill age on the intensity of pollution. Heliyon 2023, 9, e13017. [Google Scholar] [CrossRef]
- Guo, G.H.; Li, K.; Lei, M. Accumulation, environmental risk characteristics and associated driving mechanisms of potential toxicity elements in roadside soils across China. Sci. Total Environ. 2022, 835, 155342. [Google Scholar] [CrossRef]
- Lemessa, F.; Simane, B.; Seyoum, A.; Gebresenbet, G. Analysis of the concentration of heavy metals in soil, vegetables and water around the bole Lemi industry park, Ethiopia. Heliyon 2022, 8, e12429. [Google Scholar] [CrossRef]
- Wan, M.X.; Hu, W.Y.; Wang, H.F.; Tian, K.; Huang, B. Comprehensive assessment of heavy metal risk in soil-crop systems along the Yangtze River in Nanjing, Southeast China. Sci. Total Environ. 2021, 780, 146567. [Google Scholar] [CrossRef]
- Doabi, S.A.; Karami, M.; Afyuni, M.; Yeganeh, M. Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicol. Environ. Saf. 2018, 163, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.K.; Sonne, C.; Kim, K.H. Heavy metals and arsenic stress in food crops: Elucidating antioxidative defense mechanisms in hyperaccumulators for food security, agricultural sustainability, and human health. Sci. Total Environ. 2023, 874, 162327. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.Y.; Li, Z.H.; Sun, J.T.; Zhu, L.Z. Pollution characteristics and health risk assessment of phthalate esters in agricultural soil and vegetables in the Yangtze River Delta of China. Sci. Total Environ. 2020, 726, 137978. [Google Scholar] [CrossRef]
- Liu, M.Y.; Liu, D.Y.; Zhang, W.; Chen, X.X.; Zhao, Q.Y.; Chen, X.P.; Zou, C.Q. Health risk assessment of heavy metals (Zn, Cu, Cd, Pb, As and Cr) in wheat grain receiving repeated Zn fertilizers. Environ. Pollut. 2020, 257, 113581. [Google Scholar] [CrossRef]
- Anderson, R.H.; Farrar, D.B.; Thoms, S.R. Application of discriminant analysis with clustered data to determine anthropogenic metals contamination. Sci. Total Environ. 2009, 408, 50–56. [Google Scholar] [CrossRef]
- Puthusseri, R.M.; Nair, H.P.; Johny, T.K.; Bhat, S.G. Insights into the response of mangrove sediment microbiomes to heavy metal pollution: Ecological risk assessment and metagenomics perspectives. J. Environ. Manag. 2021, 298, 113492. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Zhang, R.Z.; Gan, Y.D.; Cai, L.Q.; Freidenreich, A.; Wang, K.P.; Guo, T.W.; Wang, H.B. Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region. Sci. Total Environ. 2019, 651, 3127–3138. [Google Scholar] [CrossRef]
- Liu, C.; Wei, B.K.; Bao, J.S.; Wang, Y.; Hu, J.C.; Tang, Y.E.; Chen, T.; Jin, J. Polychlorinated biphenyls in the soil–crop–atmosphere system in e-waste dismantling areas in Taizhou: Concentrations, congener profiles, uptake, and translocation. Environ. Pollut. 2020, 257, 113622. [Google Scholar] [CrossRef]
- Xu, L.; Dai, H.P.; Skuza, L.; Xu, J.M.; Shi, J.C.; Shentu, J.L.; Wei, S.H. Integrated survey on the heavy metal distribution, sources and risk assessment of soil in a commonly developed industrial area. Ecotoxicol. Environ. Saf. 2022, 236, 113462. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Wang, W.J.; Zhang, M.; Lai, L.; Liao, Q.L. Spatial variability of soil organic carbon and related factors in Jiangsu Province, China. Pedosphere 2012, 22, 404–414. [Google Scholar] [CrossRef]
- Oduor, A.M.O.; Yang, B.F.; Li, J.M. Alien ornamental plant species cultivated in Taizhou, southeastern China, may experience greater range expansions than native species under future climates. Glob. Ecol. Conserv. 2023, 41, e02371. [Google Scholar] [CrossRef]
- DARAJP (Department of Agriculture and Rural Affairs of Jiangsu Province). Food Production Announcement; DARAJP: Nanjing, China, 2020. (In Chinese) [Google Scholar]
- Batool, F.; Hussain, M.I.; Nazar, S.; Bashir, H.; Khan, Z.I.; Ahmad, K.; Alnuwaiser, M.A.; Yang, H.H. Potential of sewage irrigation for heavy metal contamination in soil–wheat grain system: Ecological risk and environmental fate. Agr. Watter Manage. 2023, 278, 108144. [Google Scholar] [CrossRef]
- Kaya, F.; Başayiğit, L.; Keshavarzi, A.; Francaviglia, R. Digital mapping for soil texture class prediction in northwestern Türkiye by different machine learning algorithms. Geoderma Reg. 2022, 31, e00584. [Google Scholar] [CrossRef]
- MAC (Ministry of Agriculture of China). Technical Specification for Monitoring Farmland Soil Environmental Quality (NY/T 395–2012); MAC: Beijing, China, 2012. (In Chinese) [Google Scholar]
- MAC (Ministry of Agriculture of China). Technical Specification for Contamination Monitoring of Agricultural Products (NY/T 398–2000); MAC: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Duane, M.J.; Facchetti, S.; Pigozzi, G. Site characterization of polluted soils and comparison of screening techniques for heavy metals by mobile ICP-MS (fixed laboratory) and EDXRF (fixed laboratory). Sci. Total Environ. 1996, 177, 195–214. [Google Scholar] [CrossRef]
- Abdelhafiz, M.A.; Liu, J.; Jiang, T.; Pu, Q.; Aslam, M.W.; Zhang, K.; Meng, B.; Feng, X.B. DOM influences Hg methylation in paddy soils across a Hg contamination gradient. Environ. Pollut. 2023, 322, 121237. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wang, Y.J.; Zhang, Q.J.; Hu, W.J.; Zhao, J.T.; Chen, Y.H.; Zhong, H.; Wang, G.; Zhang, Z.Y.; Gao, Y.X. Elemental sulfur amendment enhance methylmercury accumulation in rice (Oryza sativa L.) grown in Hg mining polluted soil. J. Hazard. Mater. 2019, 379, 120701. [Google Scholar] [CrossRef]
- MEEC (Ministry of Ecological Environment of China). Risk Control Standard for Soil Contamination of Agricultural Land (GB15618-2018); MEE: Beijing, China, 2018. (In Chinese) [Google Scholar]
- AFDC (Administration of Food and Drug of China). Limit for Contaminants in Food (GB2762-2017); AFDC: Beijing, China, 2017. (In Chinese) [Google Scholar]
- SCOC (Soil Census Office of China). Second National Soil Survey of China; SCOC: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Soleimani, H.; Mansouri, B.; Kiani, A.; Omer, A.K.; Tazik, M.; Ebrahimzadeh, G.; Sharafi, K. Ecological risk assessment and heavy metals accumulation in agriculture soils irrigated with treated wastewater effluent, river water, and well water combined with chemical fertilizers. Heliyon 2023, 9, e14580. [Google Scholar] [CrossRef]
- Zhang, H.H.; Chen, J.J.; Zhu, L.; Li, F.B.; Wu, Z.F.; Yu, W.M.; Liu, J.M. Spatial patterns and variation of soil cadmium in Guangdong Province, China. J. Geochem. Explor. 2011, 109, 86–91. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Wang, X.R. Cd contamination status and cost-benefits analysis in agriculture soils of Yangtze River basin. Environ. Pollut. 2019, 254, 112962. [Google Scholar] [CrossRef]
- Fei, X.F.; Xiao, R.; Christakos, G.; Langousis, A.; Ren, Z.Q.; Tian, Y.; Lv, X.N. Comprehensive assessment and source apportionment of heavy metals in Shanghai agricultural soils with different fertility levels. Ecol. Indic. 2019, 106, 105508. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhang, J.R.; Gong, Y.W.; Yang, S.H.; Ye, M.; Yu, X.; Ma, J. Status of mercury accumulation in agricultural soils across China (1976–2016). Ecotoxicol. Environ. Saf. 2020, 197, 110564. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Wang, X.D.; Guo, G.L.; Yan, Z.G. Status and environmental management of soil mercury pollution in China: A review. J. Environ. Manage. 2021, 277, 111442. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.W.; Chen, Y.C.; Zhang, S.; Yang, Z.M.; Huang, L.; Lei, B.; Li, L.; Zhou, Z.B.; Xiong, H.L.; Li, X.X. Identification and prevention of agricultural non-point source pollution risk based on the minimum cumulative resistance model. Global Ecol. Conserv. 2020, 23, e01149. [Google Scholar] [CrossRef]
- Gmochowska, W.; Pietranik, A.; Tyszka, R.; Ettler, V.; Mihaljevič, M.; Długosz, M.; Walenczak, K. Sources of pollution and distribution of Pb, Cd and Hg in Wrocław soils: Insight from chemical and Pb isotope composition. Geochemistry 2019, 79, 434–445. [Google Scholar] [CrossRef]
- Pescatore, A.; Grassi, C.; Rizzo, A.M.; Orlandini, S.; Napoli, M. Effects of biochar on berseem clover (Trifolium alexandrinum, L.) growth and heavy metal (Cd, Cr, Cu, Ni, Pb, and Zn) accumulation. Chemosphere 2022, 287 Pt 1, 131986. [Google Scholar] [CrossRef]
- Bur, T.; Crouau, Y.; Bianco, A.; Gandois, L.; Probst, A. Toxicity of Pb and of Pb/Cd combination on the springtail Folsomia candida in natural soils: Reproduction, growth and bioaccumulation as indicators. Sci. Total Environ. 2012, 414, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H. Contrasting effects of Cr(III) and Cr(VI) on lettuce grown in hydroponics and soil: Chromium and manganese speciation. Environ. Pollut. 2020, 266 Pt 2, 115073. [Google Scholar] [CrossRef]
- Deng, M.H.; Malik, A.; Zhang, Q.; Sadeghpour, A.; Zhu, Y.W.; Li, Q.R. Improving Cd risk managements of rice cropping system by integrating source-soil-rice-human chain for a typical intensive industrial and agricultural region. J. Clean. Prod. 2021, 313, 127883. [Google Scholar] [CrossRef]
- Rashid, I.; Murtaza, G.; Dar, A.A.; Wang, Z.Y. The influence of humic and fulvic acids on Cd bioavailability to wheat cultivars grown on sewage irrigated Cd-contaminated soils. Ecotoxicol. Environ. Saf. 2020, 205, 111347. [Google Scholar] [CrossRef]
- Cai, Y.M.; Wang, M.E.; Chen, B.D.; Chen, W.P.; Xu, W.B.; Xie, H.W.; Long, Q.Z.; Cai, Y.H. Effects of external Mn2+ activities on OsNRAMP5 expression level and Cd accumulation in indica rice. Environ. Pollut. 2020, 260, 113941. [Google Scholar] [CrossRef]
- Bari, M.A.; El-Shehawi, A.M.; Elseehy, M.M.; Naheen, N.N.; Rahman, M.M.; Kabir, A.H. Molecular characterization and bioinformatics analysis of transporter genes associated with Cd-induced phytotoxicity in rice (Oryza sativa L.). Plant Physiol. Bioch. 2021, 167, 438–448. [Google Scholar] [CrossRef]
- Riaz, M.; Kamran, M.; Rizwan, M.; Ali, S.; Parveen, A.; Malik, Z.; Wang, X.R. Cadmium uptake and translocation: Selenium and silicon roles in Cd detoxification for the production of low Cd crops: A critical review. Chemosphere 2021, 273, 129690. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sanchez, G.M.; Wu, Z.F.; Cheng, J.; Zhang, S.Y.; Wang, Q.; Li, F.B.; Sun, G.; Meentemeyer, R.K. Spatiotemporal patterns and drivers of soil contamination with heavy metals during an intensive urbanization period (1989–2018) in southern China. Environ. Pollut. 2020, 260, 114075. [Google Scholar] [CrossRef] [PubMed]
- Bidar, G.; Pelfrêne, A.; Schwartz, C.; Waterlot, C.; Sahmer, K.; Marot, F.; Douay, F. Urban kitchen gardens: Effect of the soil contamination and parameters on the trace element accumulation in vegetables–A review. Sci. Total Environ. 2020, 738, 139569. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.L.; Guo, Z.H.; Xiao, X.Y.; Peng, C.; Shi, L.; Ran, H.Z.; Xu, W.X. Atmospheric deposition as a source of cadmium and lead to soil-rice system and associated risk assessment. Ecotoxicol. Environ. Saf. 2019, 180, 60–167. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.U.; Wang, X.J.; Shahzad, M.; Bashir, O.; Li, Y.L.; Cheng, H.F. A review of the influence of nanoparticles on the physiological and biochemical attributes of plants with a focus on the absorption and translocation of toxic trace elements. Environ. Pollut. 2022, 310, 119916. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.S.; Abuarab, M.E.; Ibrahim, M.M.; Baioumy, M.; Mokhtar, A. Assessment of environmental and toxicity impacts and potential health hazards of heavy metals pollution of agricultural drainage adjacent to industrial zones in Egypt. Chemosphere 2023, 318, 137872. [Google Scholar] [CrossRef] [PubMed]
- Viczek, S.A.; Aldrian, A.; Pomberger, R.; Sarc, R. Origins and carriers of Sb, As, Cd, Cl, Cr, Co, Pb, Hg, and Ni in mixed solid waste–A literature-based evaluation. Waste Manag. 2020, 103, 87–112. [Google Scholar] [CrossRef]
- Wu, B.; Li, L.L.; Guo, S.H.; Li, Y. Source apportionment of heavy metals in the soil at the regional scale based on soil-forming processes. J. Hazard. Mater. 2023, 448, 130910. [Google Scholar] [CrossRef]
- Mehmood, A.; Mirza, M.A.; Choudhary, M.A.; Kim, K.H.; Raza, W.; Raza, N.; Lee, S.S.; Zhang, M.; Lee, J.H.; Sarfraz, M. Spatial distribution of heavy metals in crops in a wastewater irrigated zone and health risk assessment. Environ. Res. 2019, 168, 382–388. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, R.D.; Li, Y.C.; Peng, Y.S.; Wen, X.F.; Ni, X.R. Distribution, accumulation, and potential risks of heavy metals in soil and tea leaves from geologically different plantations. Ecotoxicol. Environ. Saf. 2020, 195, 110475. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, B.P.; Hagmann, D.F.; Haramuniz, J.; Krumins, J.A.; Goodey, N.M. Artificial root exudates restore microbial functioning in a metal contaminated, barren, inactive soil. Environ. Pollut. 2022, 312, 120007. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.P.; Wang, Y.S. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China. Atmos. Chem. Phys. 2015, 15, 951–972. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Tripathi, S.; Sirohi, R.; Kim, S.H.; Ngo, H.H.; Pande, A. Uptake and mobilization of heavy metals through phytoremediation process from native plants species growing on complex pollutants: Antioxidant enzymes and photosynthetic pigments response. Environ. Technol. Innov. 2021, 23, 101629. [Google Scholar] [CrossRef]
- MLRC (Ministry of Land and Resources of China). Communique on the Quality and Grade of Cultivated Land in China; MLRC: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Lavado, R.S.; Porcelli, C.A.; Alvarez, R. Nutrient and heavy metal concentration and distribution in corn, soybean and wheat as affected by different tillage systems in the Argentine Pampas. Soil Tillage Res. 2001, 62, 55–60. [Google Scholar] [CrossRef]
- Kim, H.T.; Lee, T.G. A simultaneous stabilization and solidification of the top five most toxic heavy metals (Hg, Pb, As, Cr, and Cd). Chemosphere 2017, 178, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.; Wu, Q.M.; Liu, P.; Hu, W.Y.; Huang, B.; Shi, B.; Zhou, Y.Q.; Kwon, B.O.; Choi, K.S.; Ryu, J.S.; et al. Ecological risk assessment of heavy metals in sediments and water from the coastal areas of the Bohai Sea and the Yellow Sea. Environ. Int. 2020, 136, 105512. [Google Scholar] [CrossRef]
Indexes | Cr | Pb | Cd | As | Hg | pH | OM | TN | AP | AK |
---|---|---|---|---|---|---|---|---|---|---|
(mg/kg) | (g/kg) | (mg/kg) | ||||||||
Maximum value | 807.0 | 123.0 | 1.19 | 24.70 | 0.70 | 8.28 | 77.5 | 2.49 | 49.7 | 475.8 |
Minimum value | 19.0 | 10.50 | 0.06 | 0.01 | 0.02 | 3.40 | 4.87 | 0.25 | 12.3 | 15.1 |
Mean value | 66.78 | 32.88 | 0.23 | 8.16 | 0.16 | 6.67 | 21.4 | 1.36 | 25.2 | 86.7 |
Standard deviation | 49.28 | 10.53 | 0.11 | 4.49 | 0.87 | 0.87 | 8.75 | 0.49 | 42.4 | 51.2 |
Coefficient of variation | 0.74 | 0.32 | 0.49 | 0.55 | 0.55 | 0.13 | 0.38 | 0.30 | 0.82 | 0.34 |
SBV a | 77.8 | 26.2 | 0.13 | 10.0 | 0.08 | - | - | - | - | - |
Over SBV rate (%) | 20.9 | 69.1 | 88.6 | 20.9 | 86.2 | - | - | - | - | - |
RCV b | 200 | 250 | 0.30 | 30 | 0.30 | - | - | - | - | - |
Over RCV rate (%) | 1.40 | 0 | 11.70 | 0 | 5.96 | - | - | - | - | - |
Soil−Cr | Soil−Pb | Soil−Cd | Soil−As | Soil−Hg | |
---|---|---|---|---|---|
Soil−Cr | 1.00 | − | − | − | − |
Soil−Pb | 0.06 | 1.00 | − | − | − |
Soil−Cd | 0.13 | 0.17 * | 1.00 | − | − |
Soil−As | −0.09 | −0.24 * | −0.05 | 1.00 | − |
Soil−Hg | −0.16 | −0.13 | −0.26 * | 0.15 | 1.00 |
Indexes | Cr | Pb | Cd (mg/kg) | As | Hg | |||||
---|---|---|---|---|---|---|---|---|---|---|
Rice | Wheat | Rice | Wheat | Rice | Wheat | Rice | Wheat | Rice | Wheat | |
Maximum value | 1.630 | 4.500 | 5.400 | 2.600 | 0.684 | 0.246 | 0.630 | 0.960 | 0.017 | 0.005 |
Minimum value | 0.180 | 0.263 | 0.060 | 0.041 | 0.005 | 0.02 | 0.023 | 0.006 | 0.001 | 0.001 |
Mean value | 0.480 | 0.388 | 0.620 | 0.386 | 0.150 | 0.049 | 0.099 | 0.056 | 0.005 | 0.002 |
Standard deviation | 0.201 | 0.253 | 0.483 | 0.157 | 0.097 | 0.028 | 0.067 | 0.035 | 0.003 | 0.001 |
FSV a | 1.0 | 0.2 | 0.1 | 0.5 | 0.02 | |||||
Over FSV rate (%) | 1.27 | 7.28 | 3.18 | 17.22 | 12.74 | 1.32 | 0.64 | 0.66 | 0 | 0 |
Coefficient of variation | 0.42 | 0.65 | 0.78 | 0.41 | 0.65 | 0.57 | 0.68 | 0.63 | 0.60 | 0.50 |
Cr | Pb | Cd | As | Hg | ||
---|---|---|---|---|---|---|
Rice | Cr | 1.00 | ||||
Pb | 0.04 | 1.00 | ||||
Cd | 0.02 | 0.11 | 1.00 | |||
As | 0.24 * | 0.01 | −0.02 | 1.00 | ||
Hg | 0.02 | 0.07 | 0.06 | 0.04 | 1.00 | |
Cr | Pb | Cd | As | Hg | ||
Wheat | Cr | 1.00 | ||||
Pb | 0.18 * | 1.00 | ||||
Cd | 0.01 | 0.01 | 1.00 | |||
As | 0.11 | −0.01 | −0.27 * | 1.00 | ||
Hg | −0.09 | −0.05 | 0.10 | 0.01 | 1.00 |
A | Single-Evaluation Index | Class of Pollution | Proportion of Different Pollution Levels (%) | ||||
Cr | Pb | Cd | As | Hg | |||
≤ 1.0 | Non-pollution | 98.92 | 100 | 97.02 | 99.73 | 100 | |
1.0 ≤ 2.0 | Light pollution | 0.75 | 0 | 2.71 | 0.27 | 0 | |
2.0 ≤ 3.0 | Medium pollution | 0 | 0 | 0.27 | 0 | 0 | |
> 3.0 | Heavy pollution | 0 | 0 | 0 | 0 | 0 | |
Comprehensive evaluation index | Class of pollution | Proportion of different pollution levels (%) | |||||
B | Pcom ≤ 0.7 | Security level | 91.06 | ||||
0.7 < Pcom ≤ 1.0 | Warning level | 7.86 | |||||
1.0 < Pcom ≤ 2.0 | Light pollution level | 1.08 | |||||
2.0 < Pcom ≤ 3.0 | Medium pollution level | 0 | |||||
Pcom > 3.0 | Heavy pollution level | 0 |
A | Single-Evaluation Index | Class of Pollution | Proportion of Different Pollution Levels (%) | |||||||||
Cr | Pb | Cd | As | Hg | ||||||||
Rice | Wheat | Rice | Wheat | Rice | Wheat | Rice | Wheat | Rice | Wheat | |||
Pn1 ≤ 1.0 | Non-pollution | 98.73 | 92.67 | 96.82 | 82.67 | 87.90 | 98.66 | 99.36 | 99.33 | 100 | 100 | |
1.0 < Pn1 ≤ 2.0 | Light pollution | 1.27 | 4.0 | 1.91 | 8.67 | 7.01 | 0.67 | 0.64 | 0.67 | 0 | 0 | |
2.0 < Pn1 ≤ 3.0 | Medium pollution | 0 | 1.33 | 1.27 | 3.33 | 1.27 | 0.67 | 0 | 0 | 0 | 0 | |
Pn1 > 3.0 | Heavy pollution | 0 | 2.0 | 0 | 5.33 | 3.82 | 0 | 0 | 0 | 0 | 0 | |
B | Comprehensive evaluation index | Class of pollution | Proportion of different pollution levels (%) | |||||||||
Rice | Wheat | |||||||||||
Pn1com ≤ 0.7 | Security level | 84.08 | 64.67 | |||||||||
0.7 < Pn1com ≤ 1.0 | Warning level | 4.46 | 14.0 | |||||||||
1.0 < Pn1com ≤ 2.0 | Light pollution level | 6.37 | 14.0 | |||||||||
2.0 < Pn1com ≤ 3.0 | Medium pollution level | 1.91 | 3.33 | |||||||||
Pn1com > 3.0 | Heavy pollution level | 3.18 | 4.0 |
Clustering Index | Cluster | ||||
---|---|---|---|---|---|
2 | 5 | 3 | 4 | 1 | |
Pcom | 0.48 | 0.37 | 0.47 | 0.42 | 0.45 |
Pn1com | 0.46 | 0.28 | 0.39 | 0.42 | 0.46 |
Pn2com | 0.51 | 0.52 | 0.85 | 0.80 | 0.44 |
Y1 | 619 | 353 | 613 | 550 | 666 |
Y2 | 427 | 400 | 421 | 410 | 436 |
Case number | 216 | 8 | 45 | 56 | 45 |
Area proportion (%) | 58.38 | 2.16 | 12.16 | 15.14 | 12.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, X.; Sun, J.; Shaghaleh, H.; Jiang, X.; Yu, H.; Zhai, S.; Hamoud, Y.A. Environmental Assessment of Soils and Crops Based on Heavy Metal Risk Analysis in Southeastern China. Agronomy 2023, 13, 1107. https://doi.org/10.3390/agronomy13041107
Mao X, Sun J, Shaghaleh H, Jiang X, Yu H, Zhai S, Hamoud YA. Environmental Assessment of Soils and Crops Based on Heavy Metal Risk Analysis in Southeastern China. Agronomy. 2023; 13(4):1107. https://doi.org/10.3390/agronomy13041107
Chicago/Turabian StyleMao, Xinyu, Jingjing Sun, Hiba Shaghaleh, Xiaosan Jiang, Huaizhi Yu, Senmao Zhai, and Yousef Alhaj Hamoud. 2023. "Environmental Assessment of Soils and Crops Based on Heavy Metal Risk Analysis in Southeastern China" Agronomy 13, no. 4: 1107. https://doi.org/10.3390/agronomy13041107
APA StyleMao, X., Sun, J., Shaghaleh, H., Jiang, X., Yu, H., Zhai, S., & Hamoud, Y. A. (2023). Environmental Assessment of Soils and Crops Based on Heavy Metal Risk Analysis in Southeastern China. Agronomy, 13(4), 1107. https://doi.org/10.3390/agronomy13041107