Determining Pollinizer Success Rates among Several Apple (Malus domestica L.) Cultivars Using Microsatellite Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. SSR Genotyping
3. Results and Discussion
3.1. SSR Polymorphism
3.2. Climate and Flowering
3.3. Identifying Most Successful Pollinizers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT, Food and Agriculture Organization of the United Nations. 2022. Available online: https://www.fao.org/faostat/en/#da (accessed on 25 February 2023).
- Fotirić Akšić, M.; Dabić Zagorac, D.; Gašić, U.; Tosti, T.; Natić, M.; Meland, M. Analysis of Apple Fruit (Malus × domestica Borkh.) Quality Attributes Obtained from Organic and Integrated Production Systems. Sustainability 2022, 14, 5300. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Lazarević, K.; Šegan, S.; Natić, M.; Tosti, T.; Ćirić, I.; Meland, M. Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Seeds from Apple Cultivars (Malus domestica Borkh.) Grown in Norway. Foods 2021, 10, 1956. [Google Scholar] [CrossRef] [PubMed]
- Gaši, F.; Kanlić, K.; Stroil, B.K.; Pojskić, N.; Asdal, Å.; Rasmussen, M.; Kaiser, C.; Meland, M. Redundancies and Genetic Structure among ex situ Apple Collections in Norway Examined with Microsatellite Markers. HortScience 2016, 51, 1458–1462. [Google Scholar] [CrossRef] [Green Version]
- Meland, M.; Aksic, M.F.; Frøynes, O.; Konjic, A.; Lasic, L.; Pojskic, N.; Gasi, F. Genetic Identity and Diversity of Apple Accessions within a Candidate Collection for the Norwegian National Clonal Germplasm Repository. Horticulturae 2022, 8, 630. [Google Scholar] [CrossRef]
- Jackson, J.E. The Biology of Apples and Pears; Cambridge University Press: Cambridge, NY, USA, 2003. [Google Scholar]
- De Nettancourt, D. Incompatibility in angiosperms. Sex. Plant Reprod. 1997, 10, 185–199. [Google Scholar] [CrossRef]
- Maliepaard, C.; Alston, F.H.; Van Arkel, G.; Brown, L.M.; Chevreau, E.; Dunemann, F.; Evans, K.M.; Gardiner, S.; Guilford, P.; Van Heusden, A.W. Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor. Appl. Genet. 1998, 97, 60–73. [Google Scholar] [CrossRef]
- Schneider, D.; Stern, R.A.; Goldway, M. A comparison between semi-and fully compatible apple pollinators grown under suboptimal pollination conditions. HortScience 2005, 40, 1280–1282. [Google Scholar] [CrossRef] [Green Version]
- Pelé, A.; Rousseau-Gueutin, M.; Chèvre, A.-M.M. Speciation Success of Polyploid Plants Closely Relates to the Regulation of Meiotic Recombination. Front. Plant Sci. 2018, 9, 907. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, S. Apple pollination biology for stable and novel fruit production: Search system for apple cultivar combination showing incompatibility, semicompatibility, and full-compatibility based on the S-RNase allele database. Int. J. Agron. 2014, 2014, 138271. [Google Scholar]
- Quinet, M.; Jacquemart, A. Cultivar placement affects pollination efficiency and fruit production in European pear (Pyrus communis) orchards. Eur. J. Agron. 2017, 91, 84–92. [Google Scholar] [CrossRef]
- Fountain, M.T.; Mateos-Fierro, Z.; Shaw, B.; Brain, P.; Delgado, A. Insect pollinators of conference pear (Pyrus communis L.) and their contribution to fruit quality. J. Pollinat. Ecol. 2019, 25, 103–114. [Google Scholar]
- Galimba, K.D.; Bullock, D.G.; Dardick, C.; Liu, Z.; Callahan, A.M. Gibberellic acid induced parthenocarpic ‘Honeycrisp’ apples (Malus domestica) exhibit reduced ovary width and lower acidity. Hortic. Res. 2019, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Nogué, S.; Long, P.; Eycott, A.; De Nascimento, L.; Fernández-Palacios, J.M.; Petrokofsky, G.; Vigdis, V.; Willis, K.J. Pollination service delivery for European crops: Challenges and opportunities. Ecol. Econ. 2016, 128, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Vicens, N.; Bosch, J. Weather-Dependent Pollinator Activity in an Apple Orchard, with Special Reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environ. Entomol. 2000, 29, 413–420. [Google Scholar] [CrossRef]
- Garratt, M.P.; Breeze, T.D.; Jenner, N.; Polce, C.; Biesmeijer, J.C.; Potts, S.G. Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agric. Ecosyst. Environ. 2014, 184, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, S.; Soejima, J.; Maejima, T. Influence of Repeated Pollination on Seed Number and Fruit Shape of ‘Fuji’ Apples. Sci. Hortic-Amst. 2012, 137, 131–137. [Google Scholar] [CrossRef]
- Sheffield, C.S. Pollination, seed set and fruit quality in apple: Studies with Osmia lignaria (Hymenoptera: Megachilidae) in the Annapolis Valley, Nova Scotia, Canada. J. Pollinat. Ecol. 2014, 12, 120–128. [Google Scholar] [CrossRef]
- Vizzotto, G.; Driussi, E.; Pontoni, M.; Testolin, R. Effect of flower pollination on fruit set and cropping in apple. Am. J. Agric. For. 2018, 6, 156–161. [Google Scholar] [CrossRef]
- Olhnuud, A.; Liu, Y.; Makowski, D.; Tscharntke, T.; Westphal, C.; Wu, P.; Wang, M.; van der Werf, W. Pollination deficits and contributions of pollinators in apple production: A global meta-analysis. J. App. Ecol. 2022, 59, 2911–2921. [Google Scholar] [CrossRef]
- Kron, P.; Husband, B.C.; Kevan, P.; Belaousoff, S. Factors affecting pollen dispersal in high-density apple orchards. Hortscience 2001, 36, 1039–1046. [Google Scholar] [CrossRef] [Green Version]
- Kron, P.; Husband, B.C. The effects of pollen diversity on plant reproduction: Insights from apple. Sex. Plant Reprod. 2006, 19, 125–131. [Google Scholar] [CrossRef]
- Ramírez, F.; Davenport, T.L. Apple pollination: A review. Sci. Hortic. 2013, 162, 188–203. [Google Scholar] [CrossRef]
- Sehic, J.; Nybom, H.; Hjeltnes, S.H.; Gaši, F. Genetic diversity and structure of Nordic plum germplasm preserved ex situ and on-farm. Sci. Hortic. 2015, 160, 195–202. [Google Scholar] [CrossRef]
- Kitahara, K.; Matsumoto, S.; Yamamoto, T.; Soejima, J.; Kimura, T.; Komatsu, H.; Abe, K. Parent identification of eight apple cultivars by S-RNase analysis and simple sequence repeat markers. HortScience 2005, 40, 314–317. [Google Scholar] [CrossRef] [Green Version]
- Moriya, S.; Iwanami, H.; Okada, K.; Yamamoto, T.; Abe, K. A practical method for apple cultivar identification and parent-offspring analysis using simple sequence repeat markers. Euphytica 2011, 177, 135–150. [Google Scholar] [CrossRef]
- Salvi, S.; Micheletti, D.; Magnago, P.; Fontanari, M.; Viola, R.; Pindo, M.; Velasco, R. One-step reconstruction of multi-generation pedigree networks in apple (Malus × domestica Borkh.) and the parentage of Golden Delicious. Mol. Breed. 2014, 34, 511–524. [Google Scholar] [CrossRef]
- Gasi, F.; Pojskić, N.; Kurtovic, M.; Kaiser, C.; Hjeltnes, S.H.; Fotiric-Aksic, M.; Meland, M. Pollinizer efficacy of several ‘Ingeborg’ pear pollinizers in Hardanger, Norway, examined using microsatellite markers. HortScience 2017, 52, 1722–1727. [Google Scholar] [CrossRef]
- Gasi, F.; Frøynes, O.; Kalamujić Stroil, B.; Lasić, L.; Pojskić, N.; Fotirić Akšić, M.; Meland, M. S-Genotyping and Seed Paternity Testing of the Pear Cultivar ‘Celina’. Agronomy 2020, 10, 1372. [Google Scholar] [CrossRef]
- Meland, M.; Froynes, O.; Fotiric Aksic, M.; Pojskic, N.; Kalamujic Stroil, B.K.; Lasic, L.; Gasi, F. Identifying Pollen Donors and Success Rate of Individual Pollinizers in European Plum (Prunus domestica L.) Using Microsatellite Markers. Agronomy 2020, 10, 264. [Google Scholar] [CrossRef] [Green Version]
- Kron, P.; Husband, B.C.; Kevan, P. Across- and along-row pollen dispersal in high-density apple orchards: Insights from allozymes markers. J. Hortic. Sci. Biotechnol. 2001, 76, 286–294. [Google Scholar] [CrossRef]
- Matsumoto, S.; Eguchi, T.; Maejima, T.; Komatsu, H. Effect of distance from early flowering pollinizers “Maypole” and “Dolgo” on “Fiji” fruit set. Sci. Hortic. 2008, 117, 151–159. [Google Scholar] [CrossRef]
- Matsumoto, S.; Okada, K.; Kojima, A.; Shiratake, K.; Abe, K. S-RNase genotypes of apple (Malus domestica Borkh.) including new cultivars, lineages, and triploid progenies. J. Hortic. Sci. Biotechnol. 2011, 86, 654–660. [Google Scholar] [CrossRef]
- Gianfranceschi, L.; Seglias, N.; Tarchini, R.; Komjanc, M.; Gessler, C. Simple sequence repeats for the genetic analysis of apple. Theor. Appl. Genet. 1998, 96, 1069–1076. [Google Scholar] [CrossRef]
- Liebhard, R.; Gianfranceschi, L.; Koller, B.; Ryder, C.D.; Tarchini, R.; Van de Weg, E.; Gessler, C. Development and characterization of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol. Breed. 2002, 10, 217–241. [Google Scholar] [CrossRef]
- Gaši, F.; Žulj-Mihaljević, M.; Šimon, S.; Grahić, J.; Pojskić, N.; Kurtović, M.; Nikolić, D.; Pejić, I. Genetic structure of apple accessions maintained ex situ in Bosnia and Herzegovina examined by microsatellite markers. Genetika 2013, 45, 467–478. [Google Scholar] [CrossRef]
- Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978, 89, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [Green Version]
- Duchesne, P.; Godbout, M.H.; Bernatchez, L. PAPA (package for the analysis of parental allocation): A computer program for simulated and real parental allocation. Mol. Ecol. Notes 2002, 2, 191–193. [Google Scholar] [CrossRef] [Green Version]
- Duchesne, P.; Castric, T.; Bernatchez, L. PASOS (parental allocation of singles in open systems): A computer program for individual parental allocation with missing parents. Mol. Ecol. Notes 2005, 5, 701–704. [Google Scholar] [CrossRef]
- Decroocq, V.; Hagen, L.S.; Favé, M.-G.; Eyquard, J.-P.; Pierronnet, A. Microsatellite markers in the hexaploidy Prunus domestica species and parentage lineage of three European plum cultivars using nuclear and chloroplast simple-sequence repeats. Mol. Breed. 2004, 13, 135–142. [Google Scholar]
- Dzhangaliev, A. The Wild Apple Tree of Kazakhstan. Hortic. Rev. 2003, 29, 63–304. [Google Scholar]
- Sanzol, J.; Herrero, M. The effective pollination period in fruit trees. Sci. Hortic. 2001, 90, 1–17. [Google Scholar] [CrossRef]
- Cho, J.G.; Kumar, S.; Kim, S.H.; Seung, H.K.; Han, J.H.; Durso, C.S.; Martin, P.H. Apple phenology occurs earlier across South Korea with higher temperatures and increased precipitation. Int. J. Biometeorol. 2021, 65, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Chiou, C.-R.; Hsieh, T.-Y.; Chien, C.-C. Plant bioclimatic models in climate change research. Bot. Stud. 2015, 56, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heide, O.M.; Rivero, R.; Sønsteby, A. Temperature control of shoot growth and floral initiation in apple (Malus × domestica Borkh.). CABI Agric Biosci. 2020, 1, 8. [Google Scholar] [CrossRef]
- Grab, S.; Craparo, A. Advance of apple and pear tree full bloom dates in response to climate change in the southwestern Cape, South Africa: 1973–2009. Agric. For. Meteorol. 2011, 151, 406–413. [Google Scholar] [CrossRef]
- Feurtey, A.; Cornille, A.; Shykoff, J.; Snirc, A.; Giraud, T. Crop-to wild gene flow and its consequences for a wild fruit tree: Towards a comprehensive conservation strategy of the wild apple in Europe. Evol. Appl. 2017, 10, 180–188. [Google Scholar] [CrossRef]
- Milutinovic, M.; Surlan-Momirovic, G.; Nikolic, D. Relationship between pollinizer distance and fruit set in apple. Acta Hort. 1996, 423, 91–94. [Google Scholar] [CrossRef]
- Larsen, A.; Kjær, E. Pollen mediated gene flow in a native population of Malus sylvestris and its implications for contemporary gene conservation management. Conserv. Genet. 2009, 10, 1637–1646. [Google Scholar] [CrossRef]
- Schlathölter, I.; Dalbosco, A.; Meissle, M.; Knauf, A.; Dallemulle, A.; Keller, B.; Romeis, J.; Broggini, G.A.L.; Patocchi, A. Low Outcrossing from an Apple Field Trial Protected with Nets. Agronomy 2021, 11, 1754. [Google Scholar] [CrossRef]
- Reim, S.; Proft, A.; Heinz, S.; Lochschmidt, F.; Höfer, M.; Tröber, U.; Wolf, H. Pollen movement in a Malus sylvestris population and conclusions for conservation measures. Plant Genet. Res. 2017, 15, 12–20. [Google Scholar] [CrossRef]
- Kaemper, W.; Trueman, S.J.; Ogbourne, S.M.; Wallace, H.M. Pollination services in a macadamia cultivar depend on across-orchard transport of cross pollen. J. App. Ecol. 2021, 58, 2529–2539. [Google Scholar] [CrossRef]
- Nishio, S.; Takada, N.; Terakami, S.; Kato, H.; Inoue, H.; Takeuchi, Y.; Saito, T. Estimation of effective pollen dispersal distance for cross-pollination in chestnut orchards by microsatellite-based paternity analyses. Sci. Hortic. 2019, 250, 89–93. [Google Scholar] [CrossRef]
- Vuletin Selak, G.; Baruca Arbeiter, A.; Cuevas, J.; Perica, S.; Pujic, P.; Raboteg Božiković, M.; Bandelj, D. Seed Paternity Analysis Using SSR Markers to Assess Successful Pollen Donors in Mixed Olive Orchards. Plants 2021, 10, 2356. [Google Scholar] [CrossRef]
Municipality | Site | Orchard | Cultivars Sampled | AS | AR | DI | DO | ED | EL | EV | FR | GH | GR | JU | KA | KB | PS | RS | RU | SU | VB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ullensvang | UL1 | UL1-A | AR, DI, EL, RU | 33 | 34 | 17 | 16 | ||||||||||||||
Ullensvang | UL1 | UL1-B | RU | 11 | 12 | 2 | 11 | 2 | 2 | 2 | 2 | 2 | 42 | 12 | |||||||
Ullensvang | UL1 | UL1-C | SU | 9 | 2 | 89 | |||||||||||||||
Ullensvang | UL2 | UL2-A | AS | 55 | 37 | 1 | 6 | 1 | |||||||||||||
Ullensvang | UL2 | UL2-B | KA | 30 | 62 | 1 | 6 | 1 | |||||||||||||
Ullensvang | UL3 | UL3 | ED, FR | 3 | 2 | 2 | 35 | 2 | 50 | 2 | 2 | 2 | |||||||||
Ullensvang | UL4 | UL4 | GR | 20 | 35 | 5 | 5 | 35 | |||||||||||||
Ullensvang | UL5 | UL5 | VB | 5 | 10 | 5 | 30 | 50 | |||||||||||||
Svelvik | SV1 | SV1-A | AR, JU | 1 | 50 | 1 | 1 | 1 | 45 | 1 | |||||||||||
Svelvik | SV1 | SV1-B | EL | 1 | 96 | 1 | 1 | 1 | |||||||||||||
Svelvik | SV2 | SV2-A | DI | 1 | 83 | 1 | 1 | 1 | 1 | 10 | 2 | ||||||||||
Svelvik | SV2 | SV2-B | GR | 4 | 1 | 1 | 1 | 91 | 1 | 1 | |||||||||||
Svelvik | SV2 | SV2-C | JU | 2 | 1 | 97 | |||||||||||||||
Svelvik | SV2 | SV2-D | KA | 3 | 92 | 1 | 1 | 1 | 1 | 1 | |||||||||||
Svelvik | SV3 | SV3-A | ED | 1 | 62 | 1 | 35 | 1 | |||||||||||||
Svelvik | SV3 | SV3-B | FR | 1 | 35 | 1 | 62 | 1 | |||||||||||||
Svelvik | SV3 | SV3-C | SU | 7 | 93 | ||||||||||||||||
Svelvik | SV4 | SV4 | AS | 85 | 15 | ||||||||||||||||
Svelvik | SV5 | SV5 | RU | 1 | 1 | 2 | 5 | 91 |
ULLENSVANG | ||||||||||||||
Year | Flowering | AS | AR | DI | ED | EL | FR | GR | KA | RU | SU | VB | DO | EV |
2021 | First Bloom | 5/20 | 5/19 | 5/16 | 5/21 | 5/18 | 5/20 | 5/14 | 5/14 | 5/16 | 5/13 | 5/16 | 5/11 | 5/19 |
Full Bloom | 5/27 | 5/25 | 5/22 | 5/27 | 5/26 | 5/26 | 5/21 | 5/20 | 5/20 | 5/18 | 5/21 | 5/17 | 5/24 | |
Petal fall | 5/31 | 5/28 | 5/31 | 5/31 | 5/31 | 5/30 | 5/30 | 5/27 | 5/27 | 5/26 | 5/27 | 5/22 | 5/29 | |
2022 | First Bloom | 5/17 | 5/16 | 5/9 | 5/18 | 5/16 | 5/17 | 5/6 | 5/11 | 5/11 | 5/6 | 5/9 | 5/6 | 5/16 |
Full Bloom | 5/21 | 5/20 | 5/16 | 5/22 | 5/20 | 5/21 | 5/15 | 5/16 | 5/19 | 5/13 | 5/15 | 5/11 | 5/20 | |
Petal fall | 5/26 | 5/25 | 5/22 | 6/5 | 5/24 | 6/2 | 5/21 | 5/20 | 5/22 | 5/21 | 5/20 | 5/16 | 5/25 | |
SVELVIK | ||||||||||||||
Year | Flowering | AS | AR | DI | ED | EL | FR | GR | JU | KA | RU | SU | DO | EV |
2021 | First Bloom | 5/22 | 5/21 | 5/17 | 5/18 | 5/21 | 5/18 | 5/17 | 5/22 | 5/16 | 5/21 | 5/17 | 5/18 | 5/20 |
Full Bloom | 5/25 | 5/23 | 5/19 | 5/22 | 5/25 | 5/22 | 5/20 | 5/25 | 5/20 | 5/25 | 5/19 | 5/25 | 5/25 | |
Petal fall | 6/8 | 6/11 | 6/1 | 6/1 | 6/11 | 6/1 | 6/3 | 6/8 | 5/29 | 6/8 | 6/1 | 5/28 | 6/1 | |
2022 | First Bloom | 5/18 | 5/15 | 5/14 | 5/16 | 5/18 | 5/14 | 5/10 | 5/12 | 5/12 | 5/16 | 5/7 | 5/9 | 5/14 |
Full Bloom | 5/22 | 5/20 | 5/18 | 5/22 | 5/24 | 5/18 | 5/16 | 5/16 | 5/16 | 5/22 | 5/14 | 5/16 | 5/19 | |
Petal fall | 5/29 | 5/29 | 5/24 | 5/29 | 5/29 | 5/24 | 5/24 | 5/24 | 5/23 | 5/29 | 5/23 | 5/29 | 5/29 |
CULTIVARS | Year | Site | Orchard | AS | AR | DI | DO | ED | EL | EV | FR | JU | KA | KB | RU | SU | VB | UNK |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
‘Asfari’ | 21 | X | X | |||||||||||||||
SV4 | SV4 | 100 | ||||||||||||||||
22 | UL | UL2-A | 87 | 6 | 7 | |||||||||||||
SV4 | SV4 | 100 | ||||||||||||||||
‘Aroma’ | 21 | UL1 | UL1-A | 13 | 27 | 7 | 53 | |||||||||||
SV1 | SV1-A | 100 | ||||||||||||||||
22 | UL1 | UL1-A | 87 | 13 | ||||||||||||||
SV1 | SV1-A | 100 | ||||||||||||||||
‘Discovery’ | 21 | UL1 | UL1-A | 6 | 20 | 20 | 7 | 20 | 27 | |||||||||
SV2 | SV2-A | 87 | 13 | |||||||||||||||
22 | UL1 | UL1-A | 73 | 7 | 20 | |||||||||||||
SV2 | SV2-A | 100 | ||||||||||||||||
‘Eden’ | 21 | UL3 | UL3 | 13 | 6 | 44 | 37 | |||||||||||
SV3 | SV3-A | 13 | 87 | |||||||||||||||
22 | UL3 | UL3 | 27 | 27 | 40 | 6 | ||||||||||||
SV3 | SV3-A | 7 | 13 | 80 | ||||||||||||||
‘Elstar’ | 21 | UL1 | UL1-A | 60 | 40 | |||||||||||||
SV1 | SV1-B | 87 | 13 | |||||||||||||||
22 | UL1 | UL1-A | 87 | 13 | ||||||||||||||
SV1 | SV1-B | 93 | 7 | |||||||||||||||
‘Fryd’ | 21 | UL3 | UL3 | 25 | 40 | 35 | ||||||||||||
SV3 | SV3-A | 77 | 15 | 8 | ||||||||||||||
22 | UL3 | UL3 | 60 | 20 | 7 | 7 | 6 | |||||||||||
SV3 | SV3-A | 7 | 73 | 20 | ||||||||||||||
‘Gravenstein’ | 21 | UL4 | UL4 | 10 | 90 | |||||||||||||
SV2 | SV2-B | 75 | 9 | 9 | 7 | |||||||||||||
22 | UL4 | UL4 | 11 | 11 | 78 | |||||||||||||
SV2 | SV2-B | 43 | 7 | 29 | 7 | 7 | 7 | |||||||||||
‘Julyred’ | 21 | SV2 | SV2-C | 46 | 40 | 7 | 7 | |||||||||||
SV1 | SV1-A | 100 | ||||||||||||||||
22 | SV2 | SV2-C | 93 | 7 | ||||||||||||||
SV1 | SV1-A | 100 | ||||||||||||||||
‘Katja’ | 21 | UL2 | UL2-B | 7 | 93 | |||||||||||||
X | X | |||||||||||||||||
22 | UL2 | UL2-B | 7 | 93 | ||||||||||||||
SV2 | SV2-D | 7 | 87 | 6 | ||||||||||||||
‘Rubinstep’ | 21 | UL1 | UL1-B | 20 | 20 | 13 | 7 | 33 | 7 | |||||||||
SV5 | SV5 | 33 | 7 | 7 | 13 | 27 | 13 | |||||||||||
22 | UL1 | UL1-A | 46 | 7 | 13 | 27 | 7 | |||||||||||
SV5 | SV5 | 60 | 13 | 20 | 7 | |||||||||||||
‘Summered’ | 21 | UL1 | UL1-C | 27 | 6 | 7 | 27 | 33 | ||||||||||
SV3 | SV3-C | 53 | 47 | |||||||||||||||
22 | UL1 | UL1-C | 7 | 33 | 20 | 40 | ||||||||||||
SV3 | SV3-C | 27 | 6 | 67 | ||||||||||||||
‘VistaBella’ | 21 | UL5 | UL5 | 20 | 40 | 7 | 33 | |||||||||||
UL5 | UL5 | 14 | 53 | 33 | ||||||||||||||
22 | UL5 | UL5 | 20 | 27 | 13 | 40 | ||||||||||||
X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasi, F.; Pojskić, N.; Stroil, B.K.; Frøynes, O.; Fotirić Akšić, M.; Meland, M. Determining Pollinizer Success Rates among Several Apple (Malus domestica L.) Cultivars Using Microsatellite Markers. Agronomy 2023, 13, 1106. https://doi.org/10.3390/agronomy13041106
Gasi F, Pojskić N, Stroil BK, Frøynes O, Fotirić Akšić M, Meland M. Determining Pollinizer Success Rates among Several Apple (Malus domestica L.) Cultivars Using Microsatellite Markers. Agronomy. 2023; 13(4):1106. https://doi.org/10.3390/agronomy13041106
Chicago/Turabian StyleGasi, Fuad, Naris Pojskić, Belma Kalamujić Stroil, Oddmund Frøynes, Milica Fotirić Akšić, and Mekjell Meland. 2023. "Determining Pollinizer Success Rates among Several Apple (Malus domestica L.) Cultivars Using Microsatellite Markers" Agronomy 13, no. 4: 1106. https://doi.org/10.3390/agronomy13041106
APA StyleGasi, F., Pojskić, N., Stroil, B. K., Frøynes, O., Fotirić Akšić, M., & Meland, M. (2023). Determining Pollinizer Success Rates among Several Apple (Malus domestica L.) Cultivars Using Microsatellite Markers. Agronomy, 13(4), 1106. https://doi.org/10.3390/agronomy13041106