Estimation of Macro and Micronutrients in Persimmon (Diospyros kaki L.) cv. ‘Rojo Brillante’ Leaves through Vis-NIR Reflectance Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Vis-NIR Spectral Measurements
2.3. Chemical Analysis
2.4. Chemometric Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morales, J.; Rodríguez-Carretero, I.; Martínez-Alcántara, B.; Canet, R.; Quiñones, A. DRIS Norms and Sufficiency Ranges for Persimmon ‘Rojo Brillante’ Grown under Mediterranean Conditions in Spain. Agronomy 2022, 12, 1269. [Google Scholar] [CrossRef]
- Menino, R. Leaf Analysis in Citrus: Interpretation Tools. In Advances in Citrus Nutrition; Springer: Dordrecht, The Netherlands, 2012; pp. 59–79. [Google Scholar] [CrossRef]
- Embleton, T.W.; Jones, W.W.; Labanauskas, C.K.; Reuther, W. Leaf analysis as a diagnostic tool and guide to fertilisation. Citrus Ind. 1973, 3, 183–210. [Google Scholar]
- Güsewell, S. N: P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Bondada, B.R.; Oosterhuis, D.M. Canopy photosynthesis, specific leaf weight, and yield components of cotton under varying nitrogen supply. J. Plant Nutr. 2001, 24, 469–477. [Google Scholar] [CrossRef]
- Raghothama, K.G.; Karthikeyan, A.S. Phosphate Acquisition. Plant Soil 2005, 274, 37–49. [Google Scholar] [CrossRef]
- George, A.; Nissen, B.; Broadley, R. Persimmon Nutrition: A Practical Guide to Improving Fruit Quality and Production; Department of Primary Industries, Queensland Horticulture Institute: Indooroopilly, QLD, Australia, 2005. [Google Scholar]
- Dong, H.; Kong, X.; Li, W.; Tang, W.; Zhang, D. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crops Res. 2010, 119, 106–113. [Google Scholar] [CrossRef]
- Dasy, R.K.; Avasthe, S.K. Plant Nutrition Management Strategy: A Policy for Optimum Yield. Acta Sci. Agric. 2018, 2, 65–70. [Google Scholar]
- Alva, A.; Paramasivam, S.; Obreza, T.; Schumann, A. Nitrogen best management practice for citrus trees. Sci. Hortic. 2006, 107, 233–244. [Google Scholar] [CrossRef]
- Intrigliolo, F.; Tittarelli, F.; Roccuzzo, G.; Canali, S. Fertilizzazione degli agrumi. Inf. Agrar. 1998, 54, 79–86. [Google Scholar]
- Obreza, T.A.; Alva, A.K.; Hanlon, E.A.; Rouse, R.E. Citrus Grove Leaf Tissue and Soil Testing: Sampling, Analysis, and Interpretation. In Cooperative Extension Service Bulletin, SL; University of Florida: Lake Alfred, FL, USA, 1992; Volume 115, pp. 1–4. [Google Scholar]
- Shenk, J.; Westerhaus, M.; Hoover, M. Analysis of Forages by Infrared Reflectance. J. Dairy Sci. 1979, 62, 807–812. [Google Scholar] [CrossRef]
- Jones, J.B., Jr. Plant Nutrition and Soil Fertility Manual; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Pandey, P.; Ge, Y.; Stoerger, V.; Schnable, J.C. High Throughput In vivo Analysis of Plant Leaf Chemical Properties Using Hyperspectral Imaging. Front. Plant Sci. 2017, 8, 1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Fonseca, I.L.; Caresani, J.R.F.; Varella, A.C. Caracterização espectral multitemporal dos cereais de estação fria em imagens de satélite com média resolução espacial Multitemporal spectral characterization of cool season cereals in satellite images with moderate spatial resolution. Ciência Rural. 2010, 40, 2053–2059. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Atefi, A.; Zhang, H.; Miao, C.; Ramamurthy, R.K.; Sigmon, B.; Yang, J.; Schnable, J.C. High-throughput analysis of leaf physiological and chemical traits with VIS–NIR–SWIR spectroscopy: A case study with a maize diversity panel. Plant Methods 2019, 15, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Liu, F.; He, Y.; Gong, X. Detecting macronutrients content and distribution in oilseed rape leaves based on hyperspectral imaging. Biosyst. Eng. 2013, 115, 56–65. [Google Scholar] [CrossRef]
- Ferwerda, J.G.; Skidmore, A. Can nutrient status of four woody plant species be predicted using field spectrometry? ISPRS J. Photogramm. Remote Sens. 2007, 62, 406–414. [Google Scholar] [CrossRef]
- Menesatti, P.; Antonucci, F.; Pallottino, F.; Roccuzzo, G.; Allegra, M.; Stagno, F.; Intrigliolo, F. Estimation of plant nutritional status by Vis–NIR spectrophotometric analysis on orange leaves [Citrus sinensis (L) Osbeck cv Tarocco]. Biosyst. Eng. 2010, 105, 448–454. [Google Scholar] [CrossRef]
- Ordoñez, C.; Rodriguez-Perez, J.R.; Moreira, J.J.; Sanz, E. Using Hyperspectral Spectrometry and Functional Models to Characterize Vine-Leaf Composition. IEEE Trans. Geosci. Remote Sens. 2012, 51, 2610–2618. [Google Scholar] [CrossRef]
- Yarce, C.J.; Rojas, G. Near infrared spectroscopy for the analysis of macro and micro nutrients in sugarcane leaves. Sugar Ind. 2012, 137, 707–710. [Google Scholar] [CrossRef]
- Chen, M.; Glaz, B.; Gilbert, R.A.; Daroub, S.H.; Barton, F.E.; Wan, Y. Near-Infrared Reflectance Spectroscopy Analysis of Phosphorus in Sugarcane Leaves. Agron. J. 2002, 94, 1324–1331. [Google Scholar] [CrossRef] [Green Version]
- Visconti, F.; de Paz, J.M. Non-destructive assessment of chloride in persimmon leaves using a miniature visible near-infrared spectrometer. Comput. Electron. Agric. 2019, 164, 104894. [Google Scholar] [CrossRef]
- McQuaker, N.R.; Brown, D.F.; Kluckner, P.D. Digestion of environmental materials for analysis by inductively coupled plasma-atomic emission spectrometry. Anal. Chem. 1979, 51, 1082–1084. [Google Scholar] [CrossRef]
- Steckenmesser, D.; Vogel, C.; Herzel, H.; Félix, R.; Adam, C.; Steffens, D. Thermal treatment of sewage sludge for phosphorus fertilizer production: A model experiment. J. Plant Nutr. 2022, 45, 1123–1133. [Google Scholar] [CrossRef]
- Romanov, S. The Intertech Equipment for Laboratory Analysis and Scientific Research. Sci. Innov. 2014, 10, 18–24. [Google Scholar] [CrossRef]
- Cassap, M. Method development for ICP-OES. Spectroscopy 2016, 31, 14–15. [Google Scholar]
- Bremner, J.M.; Norman, A.G. Inorganic Forms of Nitrogen. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Wiley: New York, NY, USA, 2016; pp. 1179–1237. [Google Scholar] [CrossRef]
- Bertrand, D.; Dufour, E. Infrared spectroscopy and its analytical applications. In Infrared Spectroscopy and Its Analytical Applications; Editions Tec&Doc: Paris, France, 2006. [Google Scholar]
- Grassi, S.; Jolayemi, O.; Giovenzana, V.; Tugnolo, A.; Squeo, G.; Conte, P.; De Bruno, A.; Flamminii, F.; Casiraghi, E.; Alamprese, C. Near Infrared Spectroscopy as a Green Technology for the Quality Prediction of Intact Olives. Foods 2021, 10, 1042. [Google Scholar] [CrossRef] [PubMed]
- Ulissi, V.; Antonucci, F.; Benincasa, P.; Farneselli, M.; Tosti, G.; Guiducci, M.; Tei, F.; Costa, C.; Pallottino, F.; Pari, L.; et al. Nitrogen Concentration Estimation in Tomato Leaves by VIS-NIR Non-Destructive Spectroscopy. Sensors 2011, 11, 6411–6424. [Google Scholar] [CrossRef] [Green Version]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Alchanatis, V.; Schmilovitch, Z.; Meron, M. In-Field Assessment of Single Leaf Nitrogen Status by Spectral Reflectance Measurements. Precis. Agric. 2005, 6, 25–39. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Jiang, J.; Liu, J. Spectroscopic determination of leaf chlorophyll content and color for genetic selection on Sassafras tzumu. Plant Methods 2019, 15, 73. [Google Scholar] [CrossRef] [PubMed]
- Tobias, R.D. An introduction to partial least squares regression. In Proceedings of the Twentieth Annual SAS Users Group International Conference; SAS Institute Inc.: Cary, NC, USA., 1995; pp. 1250–1257. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Cawley, G.C.; Talbot, N.L. Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers. Pattern Recognit. 2003, 36, 2585–2592. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Sun, D.-W. Partial Least Squares Regression (PLSR) Applied to NIR and HSI Spectral Data Modeling to Predict Chemical Properties of Fish Muscle. Food Eng. Rev. 2017, 9, 36–49. [Google Scholar] [CrossRef]
- Johnson, J.-M.; Sila, A.; Senthilkumar, K.; Shepherd, K.D.; Saito, K. Application of infrared spectroscopy for estimation of concentrations of macro- and micronutrients in rice in sub-Saharan Africa. Field Crops Res. 2021, 270, 108222. [Google Scholar] [CrossRef]
- Albiach, R.; Climent, C.; Canet, R.; Pomares, F. Soil Fertility and Nutritional State of Persimmon Rojo Brillante Plantations in the Ribera Alta (Valencia, Spain). Commun. Soil Sci. Plant Anal. 2012, 43, 2767–2776. [Google Scholar] [CrossRef]
- Osco, L.P.; Ramos, A.P.M.; Pinheiro, M.M.F.; Moriya, A.S.; Imai, N.N.; Estrabis, N.; Ianczyk, F.; de Araújo, F.F.; Liesenberg, V.; Jorge, L.A.D.C.; et al. A Machine Learning Framework to Predict Nutrient Content in Valencia-Orange Leaf Hyperspectral Measurements. Remote Sens. 2020, 12, 906. [Google Scholar] [CrossRef] [Green Version]
- Rotbart, N.; Schmilovitch, Z.; Cohen, Y.; Alchanatis, V.; Erel, R.; Ignat, T.; Shenderey, C.; Dag, A.; Yermiyahu, U. Estimating olive leaf nitrogen concentration using visible and near-infrared spectral reflectance. Biosyst. Eng. 2012, 114, 426–434. [Google Scholar] [CrossRef]
- Wang, J.; Shen, C.; Liu, N.; Jin, X.; Fan, X.; Dong, C.; Xu, Y. Non-Destructive Evaluation of the Leaf Nitrogen Concentration by In-Field Visible/Near-Infrared Spectroscopy in Pear Orchards. Sensors 2017, 17, 538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhao, H.-b; Shen, C.-w.; Chen, Q.-w.; Dong, C.-x.; Xu, Y.-c. Determination of Nitrogen Concentration in Fresh Pear Leaves by Visible/Near-Infrared Reflectance Spectroscopy. Agron. J. 2014, 106, 1867–1872. [Google Scholar] [CrossRef]
- De Oliveira, L.F.R.; Santana, R.C. Estimation of leaf nutrient concentration from hyperspectral reflectance in Eucalyptus using partial least squares regression. Sci. Agric. 2020, 77, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cuq, S.; Lemetter, V.; Kleiber, D.; Levasseur-Garcia, C. Assessing macro- (P, K, Ca, Mg) and micronutrient (Mn, Fe, Cu, Zn, B) concentration in vine leaves and grape berries of vitis vinifera by using near-infrared spectroscopy and chemometrics. Comput. Electron. Agric. 2020, 179, 105841. [Google Scholar] [CrossRef]
Treatment | N (kg ha−1) | K2O (kg ha−1) |
---|---|---|
T1 (N-0%) | 0 | 110 |
T2 (N-33%) | 35 | 110 |
T3 (N-50%) | 53 | 110 |
T4 (K2O-0%) | 106 | 0 |
T5 (K2O-50%) | 106 | 55 |
Control (N and K2O-100%) | 106 | 110 |
Nutrient | Cycle | Average | Standard Deviation | Coefficient | July | Range | Std Bias | Kurtosis |
---|---|---|---|---|---|---|---|---|
Min–Max | Cycle | of Variation | Min–Max | |||||
N | 1.06–2.82 | 1.74 | 0.39 | 0.22 | 1.62–2.30 | 1.75 | 2.48 | 1.09 |
P | 0.04–0.30 | 0.11 | 0.06 | 0.55 | 0.13–0.30 | 0.26 | 8.87 | 5.6 |
K | 0.83–2.96 | 1.94 | 0.53 | 0.28 | 1.08–2.30 | 2.13 | 0.71 | 2.53 |
Ca | 0.30–6.52 | 2.7 | 1.41 | 0.52 | 0.30–2.11 | 6.22 | 0.81 | 0.17 |
Mg | 0.17–0.95 | 0.5 | 0.2 | 0.39 | 0.17–0.58 | 0.78 | 0.68 | 1.26 |
Fe | 13.22–81.77 | 39.52 | 15.45 | 0.39 | 31.00–69.00 | 68.54 | 3.36 | 1.36 |
Mn | 32.81–295.02 | 181.07 | 72.92 | 0.4 | 32.00–118.00 | 262.21 | 2.66 | 2.27 |
B | 12.18–102.10 | 48.76 | 22.89 | 0.47 | 12.00–26.00 | 89.92 | 0.06 | 2.49 |
Pretreatment | LV | N | LV | P | LV | K | LV | Ca | LV | Mg | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSEP | R2 | RMSEP | R2 | RMSEP | R2 | RMSEP | R2 | RMSEP | R2 | ||||||
Raw data | 12 | 0.19 | 0.71 | 12 | 0.02 | 0.75 | 10 | 0.34 | 0.52 | 12 | 0.66 | 0.72 | 11 | 0.11 | 0.60 |
MC | 12 | 0.20 | 0.70 | 12 | 0.02 | 0.71 | 11 | 0.35 | 0.50 | 12 | 0.68 | 0.70 | 11 | 0.12 | 0.57 |
MC + SG | 12 | 0.20 | 0.69 | 12 | 0.02 | 0.74 | 12 | 0.34 | 0.54 | 12 | 0.67 | 0.71 | 12 | 0.12 | 0.56 |
MC + SNV | 12 | 0.19 | 0.72 | 12 | 0.02 | 0.74 | 12 | 0.35 | 0.51 | 12 | 0.66 | 0.72 | 12 | 0.11 | 0.63 |
MC + 1D | 10 | 0.18 | 0.78 | 8 | 0.02 | 0.72 | 6 | 0.35 | 0.51 | 10 | 0.60 | 0.77 | 9 | 0.11 | 0.63 |
MC + 2D | 9 | 0.20 | 0.69 | 8 | 0.02 | 0.72 | 6 | 0.35 | 0.50 | 12 | 0.66 | 0.72 | 9 | 0.12 | 0.53 |
Pretreatment | Fe | Mn | B | ||||||
---|---|---|---|---|---|---|---|---|---|
LV | RMSEP | R2 | LV | RMSEP | R2 | LV | RMSEP | R2 | |
Raw data | 12 | 11.75 | 0.37 | 12 | 40.75 | 0.69 | 12 | 9.51 | 0.79 |
MC | 12 | 11.96 | 0.35 | 12 | 43.84 | 0.64 | 12 | 9.48 | 0.79 |
MC + SG | 12 | 12.15 | 0.33 | 12 | 43.09 | 0.65 | 12 | 10.11 | 0.76 |
MC+ SNV | 12 | 12.02 | 0.35 | 12 | 41.00 | 0.68 | 12 | 9.53 | 0.79 |
MC + 1D | 8 | 11.56 | 0.39 | 9 | 41.11 | 0.68 | 10 | 8.59 | 0.83 |
MC + 2D | 6 | 11.88 | 0.36 | 9 | 44.00 | 0.63 | 9 | 9.98 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta, M.; Visconti, F.; Quiñones, A.; Blasco, J.; de Paz, J.M. Estimation of Macro and Micronutrients in Persimmon (Diospyros kaki L.) cv. ‘Rojo Brillante’ Leaves through Vis-NIR Reflectance Spectroscopy. Agronomy 2023, 13, 1105. https://doi.org/10.3390/agronomy13041105
Acosta M, Visconti F, Quiñones A, Blasco J, de Paz JM. Estimation of Macro and Micronutrients in Persimmon (Diospyros kaki L.) cv. ‘Rojo Brillante’ Leaves through Vis-NIR Reflectance Spectroscopy. Agronomy. 2023; 13(4):1105. https://doi.org/10.3390/agronomy13041105
Chicago/Turabian StyleAcosta, Maylin, Fernando Visconti, Ana Quiñones, José Blasco, and José Miguel de Paz. 2023. "Estimation of Macro and Micronutrients in Persimmon (Diospyros kaki L.) cv. ‘Rojo Brillante’ Leaves through Vis-NIR Reflectance Spectroscopy" Agronomy 13, no. 4: 1105. https://doi.org/10.3390/agronomy13041105
APA StyleAcosta, M., Visconti, F., Quiñones, A., Blasco, J., & de Paz, J. M. (2023). Estimation of Macro and Micronutrients in Persimmon (Diospyros kaki L.) cv. ‘Rojo Brillante’ Leaves through Vis-NIR Reflectance Spectroscopy. Agronomy, 13(4), 1105. https://doi.org/10.3390/agronomy13041105