Effects of Water and Nitrogen Management on Root Morphology, Nitrogen Metabolism Enzymes, and Yield of Rice under Drip Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Experimental Design
2.3. Determination Indicators and Methods
2.3.1. Morphological Parameters of the Root System
2.3.2. Root System Architectural Parameters
2.3.3. Content of Nitrogen Metabolism Enzymes
2.3.4. Seed Test and Yield
2.4. Data Processing and Statistical Methods
3. Results
3.1. Effects of Water and Nitrogen Management on Rice Yield, Composition Factors and Nitrogen Partial Factor Productivity under Drip Irrigation
3.2. Effects of Water and Nitrogen Management on Morphological Parameters of Rice Roots under Drip Irrigation
3.3. Influence of Water and Nitrogen Management on the Root Architecture Index of Rice under Drip Irrigation
3.3.1. Effects of Water and Nitrogen Management on the Vertical Distribution of Rice Roots under Drip Irrigation
3.3.2. Effects of Water and Nitrogen Management on the β Value of the Rice Root Architecture Parameter under Drip Irrigation
3.4. Effects of water and Nitrogen Management on the Activities of Nitrogen Metabolism Enzymes in Rice under Drip Irrigation
3.4.1. Effects of Water and Nitrogen Management on Nitrogen Metabolism Activity of Rice Leaves under Drip Irrigation
3.4.2. Effects of Water and Nitrogen Management on Nitrogen Metabolism Activity of Rice Roots under Drip Irrigation
3.5. Correlation Analysis of Root Morphological Characteristics and Nitrogen Metabolism Enzymes and Yield
4. Discussion
4.1. Effects of Water and Nitrogen Fertilizer Management on the Root Morphology and Growth Characteristics of Rice under Drip Irrigation
4.2. Effects of Water and Nitrogen Fertilizer Management on Physiological Characteristics of Nitrogen Metabolism in Rice under Drip Irrigation
4.3. The Relationship between Water and Nitrogen Management on High Yield and High Efficiency of Rice under Drip Irrigation and Root Morphology and Physiological Characteristics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- FAOSTAT. FAO Statistical Databases. Food and Agriculture Organization (FAO) of the United Nations. 2021. Available online: https://www.fao.org/faostat/en/#data (accessed on 1 March 2023).
- Zhu, T.; Liu, W. Tianye Ecological Park under Film Drip Irrigation Rice Exceeded 836 kg; China Science and Technology Network: Beijing, China; Available online: http://www.stdaily.com/stdaily/content/2012-10/10/content-526347.htm (accessed on 1 March 2023).
- Zhu, S.J.; Ye, X.S.; Wang, B. Effects of Water Biochar Coupling on Rice Yield and Water Use Efficiency. Water Sav. Irrig. 2018, 1, 1–5. [Google Scholar]
- Barnaby, J.Y.; Rohila, J.S.; Henry, C.G. Physiological and Meta-bolic Responses of Rice to Reduced Soil Moisture: Relationship of Water Stress Tolerance and Grain Production. Int. J. Mol. Sci. 2019, 8, 20. [Google Scholar]
- Liu, H.; Wang., J.; Abias. Study on water requirement and yield of dry rice under mulched drip irrigation in eastern Inner Mongolia. Chin. Agric. Sci. Bull. 2021, 37, 146–151. [Google Scholar]
- Xu, Y.; Su, B.; Wang, H.; He, J.; Yang, Y. Analysis of the water balance and the nitrogen and phosphorus run off pollution of a paddy field in situ in the Taihu Lake basin. Paddy Water Environ. 2020, 18, 385–398. [Google Scholar] [CrossRef]
- Jat, R.A.; Wani, S.P.; Sahrawat, K.L.; Singh, P.; Dhaka, S.R.; Dhaka, B.L. Recent approaches in nitrogen management for sustainable agricultural production and eco-safety. Arch. Agron. Soil Sci. 2012, 58, 1033–1060. [Google Scholar] [CrossRef]
- He, H.B.; Ma, F.Y.; Yang, R.; Chen, L.; Li, L. Rice performance and water use efficiency under plastic mulching with drip irrigation. PLoS ONE 2013, 8, e83103. [Google Scholar] [CrossRef] [Green Version]
- Pandey, V.; Shukla, A. Acclimation and tolerance strategies of rice under drought stress. Rice Sci. 2015, 22, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Ding, F.; Pu, S.H.; Lv, Y.P. Effects of Different Irrigation Quotas on Water Consumption Characteristics and Water Production Efficiency of Rice under Film Drip Irrigation. Xinjiang Agric. Sci. 2021, 58, 1577–1584. [Google Scholar]
- Bajpai, A.; Kaushal, A. Soil moisture distribution under trickle irrigation: A review. Water Sci. Technol. Water Supply 2020, 20, 761–772. [Google Scholar] [CrossRef]
- Jing, T.; Fan, M.S.; Zhou, D.B. Effects of drip fertigation on potato yield, nitrogen uptake and soil nitrate accumulation under high ridge with plastic film mulching. Plant Nutr. Fertil. 2012, 18, 654–661. [Google Scholar]
- Ding, Y.F.; Liu, S.H.; Wang, S.H. Effect of nitrogen basal and tiller fertilization on nitrogen uptake and utilization in rice. J. Crop Sci. 2004, 30, 762–767. [Google Scholar]
- Zhu, Q.C.; Wei, C.Z.; Li, M.N. Effects of nitrogen application on growth and yield of rice under drip irrigation under film. Chin. J. Rice Sci. 2013, 27, 440–446. [Google Scholar]
- Yang, J.C.; Zhang, H.; Zhang, J.H. Root morphology and physiology in relation to the yield formation of rice. J. Integr. Agric. 2012, 11, 920–926. [Google Scholar] [CrossRef]
- Chu, G.; Chen, T.T.; Wang, Z.Q.; Yang, J.C.; Zhang, J.H. Morphological and physiological traits of roots and their relationships with water productivity in water saving and drought-resistant rice. Field Crops Res. 2014, 162, 108–119. [Google Scholar] [CrossRef]
- Xu, G.W.; Lu, D.K.; Wang, H.Z.; Li, Y.J. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agric Water Manag. 2018, 203, 385–394. [Google Scholar] [CrossRef]
- Xu, G.W.; Song, K.J.; Lu, D.K. Influence of water management and nitrogen appliction on rice root and shoot traits. Agron. J. 2019, 111, 2232–2244. [Google Scholar] [CrossRef]
- Suralta, R.R.; Kano-Nakata, M.; Niones, J.M.; Inukai, Y.; Kameoka, E.; Tran, T.T. Root plasticity for maintenance of productivity under abiotic stressed soil environments in rice: Progress and prospects. Field Crops Res. 2018, 220, 57–66. [Google Scholar] [CrossRef]
- Dong, H.; Kong, X.; Luo, Z.; Li, W.; Xin, C. Unequal salt distribution in the root zone increases growth and yield of cotton. Eur. J. Agron. 2010, 33, 285–292. [Google Scholar]
- Lu, D.K.; Duan, H.; Wang, W.W. The growth and function of rice roots were poor under different dry-wet alternate irrigation and nitrogen fertilizer form coupling. J. Plant Nutr. Fertil. 2019, 25, 1362–1372. [Google Scholar]
- Xu, G.W.; Lu, D.K.; Liu, C.J. Effects of alternate wetting and drying irrigation and nitrogen application on endogenous hormones and nitrogen utilization in rice. Agric. Eng. 2018, 34, 137–146. [Google Scholar]
- Xu, G.W.; Wang, H.Z.; Li, Y.J. Effects of different water and nitrogen coupling on root morphology, physiology, yield and nitrogen utilization of rice. Agric. Eng. 2015, 31, 132–141. [Google Scholar]
- Guo, J.J.; Fan, J.L.; Xiang, Y.Z. Coupling effects of irrigation amount and nitrogen fertilizer type on grain yield, water productivity and nitrogen use efficiency of drip-irrigated maize. Agric. Water Manag. 2022, 261, 107–389. [Google Scholar] [CrossRef]
- Yan, F.J.; Sun, Y.J.; Ma, J. Effects of straw mulching and nitrogen application on root growth and nitrogen utilization of hybrid rice. J. Plant Nutr. Fertil. 2015, 21, 23–35. [Google Scholar]
- Li, N.; Yang, Z.Y.; Dai, Z. Relationship between root morphology, nitrogen uptake and utilization and yield of rice with different nitrogen efficiency. Sci. Agric. Sin. 2017, 50, 2683–2695. [Google Scholar]
- Gale, M.R.; Grigal, D.F. Vertical root distributions of northern tree species in relation to successional status. Can. J. For. Res. 1987, 17, 829–834. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 26.0.; IBM Corp.: Armonk, NY, USA, 2019. [Google Scholar]
- Systat Software, Inc. Using Sigma Plot12.5 for Drawing, Version 12.5; Systat Software, Inc.: San Jose, CA, USA, 2013. [Google Scholar]
- ter Braak, C.; Šmilauer, P. Redundancy Analysis Using Canoco 5.0; Microcomputer Power: Gailhersburg, MD, USA, 2012. [Google Scholar]
- Fan, J.B.; Zhang, Y.L.; Turner, D. Root physiological and morphological characteristics of two rice cultivars with different nitrogen-use efficiency. Pedosphere 2010, 20, 446–455. [Google Scholar] [CrossRef]
- Gu, D.X.; Tang, L.; Xu, Q.J.; Lei, X.J.; Cao, W.X.; Zhu, Y. Root growth and distribution in rice cultivars as affected by nitrogen and water supply. Chin. J. Plant Ecol. 2011, 35, 558–566. [Google Scholar] [CrossRef]
- Ji, L.; Li, T.G.; Zhang, X.Z. Root morphology and vigor characteristics of rice genotypes with high nitrogen use efficiency. Sci. Agric. Sin. 2012, 45, 4770–4781. [Google Scholar]
- Topp, C.N.; Bray, A.L.; Ellis, N.A.; Liu, Z. How can we harness quantitative genetic variation in crop root systems for agricultural improvement? J. Integr. Plant Biol. 2016, 58, 213–225. [Google Scholar] [CrossRef]
- Ning, S.G.; Chen, C.; Zhou, B.B. Evaluation of normalized root length density distribution models. Field Crops Res. 2019, 242, 107–640. [Google Scholar] [CrossRef]
- Zhu, Y.; Abdalla, A.; Tang, Z.; Cen, H. Improving rice nitrogen stress diagnosis by denoising strips in hyperspectral images via deep learning. Biosyst. Eng. 2022, 219, 165–176. [Google Scholar] [CrossRef]
- Cai, K.Z.; Luo, S.M.; Duan, S.S. Spatial distribution of rice roots and its relationship with yield. J. South China Agric. Univ. 2003, 3, 1–4. [Google Scholar]
- Zhu, K.Y.; Yan, J.C.; Shen, Y. Deciphering the morpho–physiological traits for high yield potential in nitrogen efficient varieties (NEVs): A japonica rice case study. J. Integr. Agric. 2022, 21, 947–963. [Google Scholar] [CrossRef]
- Jiang, H.F.; Lan, Y.C.; Guo, X.H. Effects of nitrogen application on key enzyme activities of nitrogen metabolism and protein content in rice grains in saline-alkali soil. Acta Agric. Boreal-Sin. 2019, 34, 213–220. [Google Scholar]
- Sun, Y.J.; Ma, J.; Sun Y, Y. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China. Field Crops Res. 2012, 127, 85–98. [Google Scholar] [CrossRef]
- Zhao, J.H.; Li, Y.; Sun, Y.J. Effects of irrigation methods and nitrogen application on nitrogen utilization and yield of hybrid rice under no-tillage furrow cultivation. J. Plant Nutr. Fertil. 2016, 22, 609–617. [Google Scholar]
- Ling, Q.H.; Ling, L. Studies on the functions of roots at different node positions and their relation to the yield. Sci. Agric. Sin. 1984, 5, 3–11. [Google Scholar]
Growth Stage | Date (D/M/Y) | Over Time/Days | Irrigation Frequency | Irrigation Times | Irrigation Quantity (m3/hm2) | |
---|---|---|---|---|---|---|
W1 | W2 | |||||
Seeding stage | 28/04–27/05/2018 05/01–05/27/2019 | 30 27 | One watering | 1 | 450 | 450.0 |
Seeding—jointing stage | 28/05–06/07 | 40 | Every 3 days | 14 | 164.4 | 195.0 |
Jointin—15 days before maturity | 07/07–14/09 | 7 | Every 3 days | 35 | 164.4 | 195.0 |
5 days before maturation—Harvest | 15/09–30/09 | 15 | ||||
Total/(m3/hm2) | 28/04–30/09/2018 01/05–30/09/2019 | 155 152 | 50 | 8670.0 | 10,200.0 |
Treatments | Irrigation Amount (m3/hm2) | Nitrogen Fertilization Amount (kg/hm2) | Seeding: Tiller: Spike: Grain Nitrogen | N Fertilization Rate (kg/hm2) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Seeding Nitrogen | Tiller Nitrogen | Spike Nitrogen | Grain Nitrogen | ||||||||
20 Days after Sowing | 28 Days after Sowing | 36 Days after Sowing | 45 Days after Sowing | 54 Days after Sowing | 78 Days after Sowing | 88 Days after Sowing | 95 Days after Sowing | ||||
W1N1 | 10,200 | 300 | 30%:50%:13%:7% | 45.0 | 45.0 | 50.0 | 50.0 | 50.0 | 19.5 | 19.5 | 21.0 |
W1N2 | 20%:40%:30%:10% | 30.0 | 30.0 | 40.0 | 40.0 | 40.0 | 45.0 | 45.0 | 30.0 | ||
W1N3 | 10%:30%:40%:20% | 15.0 | 15.0 | 30.0 | 30.0 | 30.0 | 60.0 | 60.0 | 60.0 | ||
W2N1 | 8670 | 30%:50%:13%:7% | 45.0 | 45.0 | 50.0 | 50.0 | 50.0 | 19.5 | 19.5 | 21.0 | |
W2N2 | 20%:40%:30%:10% | 30.0 | 30.0 | 40.0 | 40.0 | 40.0 | 45.0 | 45.0 | 30.0 | ||
W2N3 | 10%:30%:40%:20% | 15.0 | 15.0 | 30.0 | 30.0 | 30.0 | 60.0 | 60.0 | 60.0 |
Year | Cultivars | Treatmens | Panicle Numbers × 104/hm2 | Spikelet per Panicle Particle/Spike | Filled Grain Rate % | 1000-Grain Weight g | Yield t/hm2 | PFP kg/kg |
---|---|---|---|---|---|---|---|---|
2020 | T-43 | W1N1 | 430.5 ± 16.7 c | 88.6 ± 4.2 bc | 79.8 ± 2.0 a | 23.3 ± 1.0 ab | 6.1 ± 0.4 c | 20.2 ± 1.2 bc |
W1N2 | 543.3 ± 8.4 a | 101.5 ± 4.6 a | 81.9 ± 2.3 a | 23.1 ± 1.3 ab | 8.9 ± 0.9 a | 29.8 ± 3.2 a | ||
W1N3 | 501.1 ± 6.4 b | 83.8 ± 3.4 c | 81.1 ± 1.3 a | 24.4 ± 0.3 a | 7.1 ± 0.2 b | 23.6 ± 0.7 b | ||
W2N1 | 423.7 ± 19.3 c | 83.1 ± 0.5 c | 77.0 ± 5.6 a | 21.6 ± 0.7 bc | 5.0 ± 0.4 c | 16.7 ± 1.2 c | ||
W2N2 | 514.8 ± 12.9 b | 91.0 ± 2.9 b | 79.2 ± 1.5 a | 21.4 ± 0.1 c | 7.5 ± 0.2 b | 23.2 ± 1.0 b | ||
W2N3 | 493.2 ± 11.1 b | 75.8 ± 4.5 d | 80.0 ± 1.0 a | 20.8 ± 0.7 c | 5.7 ± 0.2 c | 17.4 ± 1.9 c | ||
LX-3 | W1N1 | 437.3 ± 3.8 d | 69.0 ± 2.9 bc | 72.5 ± 1.0 bc | 26.4 ± 0.1 ab | 4.9 ± 0.1 d | 16.4 ± 0.3 de | |
W1N2 | 563.3 ± 4.7 a | 69.6 ± 2.5 bc | 78.2 ± 3.4 a | 26.8 ± 0.7 a | 7.0 ± 0.2 a | 23.4 ± 0.8 a | ||
W1N3 | 486.7 ± 18.9 c | 66.6 ± 1.6 c | 75.9 ± 2.6 ab | 26.1 ± 0.2 ab | 5.5 ± 0.2 c | 18.3 ± 0.6 c | ||
W2N1 | 453.3 ± 18.9 d | 72.4 ± 1.8 ab | 69.9 ± 0.6 c | 24.7 ± 0.0 c | 4.8 ± 0.0 d | 16.2 ± 0.2 e | ||
W2N2 | 523.3 ± 4.7 b | 72.6 ± 1.7 ab | 71.2 ± 0.2 bc | 25.4 ± 0.5 bc | 5.9 ± 0.2 b | 19.6 ± 0.6 b | ||
W2N3 | 484.4 ± 6.3 c | 69.5 ± 3.7 a | 68.8 ± 3.1 c | 24.7 ± 0.5 c | 4.9 ± 0.1 c | 16.3 ± 0.4 cd | ||
2021 | T-43 | W1N1 | 384.7 ± 19.6 cd | 94.8 ± 2.0 c | 82.5 ± 5.5 ab | 23.1 ± 0.2 a | 5.9 ± 0.2 cd | 19.8 ± 0.7 cd |
W1N2 | 479.6 ± 16.9 a | 105.0 ± 0.7 b | 90.8 ± 1.5 a | 22.9 ± 0.5 a | 9.0 ± 0.3 a | 29.9 ± 0.9 a | ||
W1N3 | 455.8 ± 25.6 ab | 102.1 ± 4.2 b | 81.1 ± 2.1 ab | 21.5 ± 0.4 bc | 7.7 ± 0.8 b | 26.1 ± 1.1 b | ||
W2N1 | 369.0 ± 17.7 d | 86.8 ± 1.2 d | 82.5 ± 6.3 ab | 22.6 ± 0.9 ab | 5.1 ± 0.7 d | 17.0 ± 2.3 d | ||
W2N2 | 427.1 ± 20.0 b | 112.4 ± 0.0 a | 87.0 ± 0.0 ab | 21.2 ± 0.0 c | 7.6 ± 0.4 b | 25.2 ± 1.2 b | ||
W2N3 | 423.0 ± 14.0 bc | 92.8 ± 3.5 c | 85.1 ± 2.9 ab | 22.5 ± 0.5 ab | 6.4 ± 0.2 c | 21.4 ± 0.7 c | ||
LX-3 | W1N1 | 424.4 ± 5.0 cd | 70.8 ± 1.5 ab | 79.6 ± 1.5 ab | 26.9 ± 0.8 a | 5.5 ± 0.4 bc | 19.5 ± 1.3 bc | |
W1N2 | 508.8 ± 10.6 a | 76.1 ± 5.0 a | 82.1 ± 0.8 a | 27.9 ± 0.9 a | 7.6 ± 0.5 a | 25.5 ± 0.6 a | ||
W1N3 | 471.5 ± 30.2 ab | 71.4 ± 4 ab | 79.3 ± 2.3 ab | 27.9 ± 0.9 a | 6.4 ± 0.5 b | 21.4 ± 1.6 b | ||
W2N1 | 397.7 ± 20.9 d | 65.9 ± 1.3 b | 79.6 ± 4.4 ab | 26.1 ± 0.7 a | 4.6 ± 0.4 c | 15.5 ± 1.4 d | ||
W2N2 | 450.3 ± 5.9 bc | 65.3 ± 2.4 b | 81.2 ± 4.0 ab | 25.9 ± 1.4 a | 5.3 ± 0.6 bc | 17.6 ± 2.0 cd | ||
W2N3 | 433.9 ± 16.0 bcd | 65.4 ± 7.4 b | 75.4 ± 1.1 b | 26.3 ± 0.8 a | 4.8 ± 0.3 c | 16.0 ± 1.0 d | ||
F-value | ||||||||
W | 23.49 ** | 105.64 ** | 18.09 ** | 49.75 ** | 103.53 ** | 103.41 ** | ||
N | 99.51 ** | 241.26 ** | 5.59 * | 0.002 ns | 89.73 ** | 89.41 ** | ||
W × N | 4.57 * | 0.09 ns | 0.87 ns | 1.11 ns | 5.08 * | 5.07 * |
Fine Branch Root (D ≤ 0.3 mm) | Coarse Branch Root (0.3 mm < D ≤ 0.9 mm) | Adventitious Root (D > 0.9 mm) | |||||||
---|---|---|---|---|---|---|---|---|---|
RLD | SAD | RVD | RLD | SAD | RVD | RLD | SAD | RVD | |
W | 145.3 ** | 19..5 ** | 4.3 * | 93.1 ** | 7.2 * | 1.3 ns | 144.5 ** | 41.6 ** | 38.6 ** |
N | 38.2 ** | 11.8 ** | 6.35 * | 23.1 ** | 2.6 ns | 10.1 ** | 46.7 ** | 60.7 ** | 3.4 ns |
W × N | 36.9 ** | 17.35 * | 18.05 ** | 7.7 * | 28.2 ** | 7.9 * | 22.8 ** | 15.1 ** | 6.3 * |
Year | Cultivars | Treatments | Root Length Density β Value | Root Surface Area Density β Value | Root Volume Density β Value | |||
---|---|---|---|---|---|---|---|---|
HS | 20 DAH | HS | 20 DAH | HS | 20 DAH | |||
2020 | T-43 | W1N1 | 0.923 ± 0.005 bc | 0.947 ± 0.001 b | 0.963 ± 0.001 a | 0.960 ± 0.000 b | 0.910 ± 0.006 bc | 0.946 ± 0.003 abc |
W1N2 | 0.922 ± 0.000 bc | 0.932 ± 0.000 e | 0.963 ± 0.002 a | 0.961 ± 0.000 b | 0.909 ± 0.006 bc | 0.950 ± 0.002 ab | ||
W1N3 | 0.932 ± 0.005 ab | 0.941 ± 0.003 c | 0.963 ± 0.001 a | 0.961 ± 0.001 b | 0.910 ± 0.017 bc | 0.960 ± 0.006 a | ||
W2N1 | 0.921 ± 0.003 bc | 0.937 ± 0.003 d | 0.963 ± 0.002 a | 0.962 ± 0.000 b | 0.933 ± 0.002 a | 0.939 ± 0.003 bc | ||
W2N2 | 0.912 ± 0.014 c | 0.944 ± 0.001 bc | 0.963 ± 0.000 a | 0.962 ± 0.000 ab | 0.904 ± 0.007 c | 0.933 ± 0.017 bc | ||
W2N3 | 0.943 ± 0.003 a | 0.956 ± 0.003 a | 0.964 ± 0.000 a | 0.965 ± 0.002 ab | 0.924 ± 0.014 ab | 0.953 ± 0.007 a | ||
LX-3 | W1N1 | 0.932 ± 0.006 b | 0.926 ± 0.011 c | 0.961 ± 0.002 a | 0.961 ± 0.002 b | 0.910 ± 0.009 bc | 0.911 ± 0.005 b | |
W1N2 | 0.919 ± 0.003 c | 0.926 ± 0.007 c | 0.964 ± 0.001 a | 0.964 ± 0.001 ab | 0.901 ± 0.014 cd | 0.911 ± 0.010 b | ||
W1N3 | 0.935 ± 0.004 b | 0.935 ± 0.002 bc | 0.961 ± 0.000 a | 0.961 ± 0.000 b | 0.921 ± 0.009 b | 0.921 ± 0.010 b | ||
W2N1 | 0.929 ± 0.003 b | 0.952 ± 0.015 a | 0.963 ± 0.004 a | 0.963 ± 0.003 ab | 0.942 ± 0.002 a | 0.951 ± 0.003 a | ||
W2N2 | 0.954 ± 0.000 a | 0.945 ± 0.005 ab | 0.964 ± 0.001 a | 0.963 ± 0.002 ab | 0.886 ± 0.015 d | 0.929 ± 0.003 ab | ||
W2N3 | 0.906 ± 0.008 d | 0.941 ± 0.002 abc | 0.962 ± 0.002 a | 0.965 ± 0.000 ab | 0.919 ± 0.003 b | 0.919 ± 0.037 b | ||
2021 | T-43 | W1N1 | 0.938 ± 0.012 ab | 0.935 ± 0.003 a | 0.920 ± 0.004 c | 0.926 ± 0.003 ab | 0.912 ± 0.008 b | 0.939 ± 0.008 a |
W1N2 | 0.904 ± 0.005 c | 0.895 ± 0.004 c | 0.897 ± 0.003 d | 0.896 ± 0.003 c | 0.890 ± 0.001 c | 0.919 ± 0.006 b | ||
W1N3 | 0.927 ± 0.000 b | 0.937 ± 0.010 a | 0.934 ± 0.010 ab | 0.933 ± 0.006 a | 0.929 ± 0.013 a | 0.894 ± 0.003 c | ||
W2N1 | 0.949 ± 0.008 a | 0.919 ± 0.001 b | 0.939 ± 0.006 ab | 0.925 ± 0.014 ab | 0.941 ± 0.003 a | 0.927 ± 0.008 b | ||
W2N2 | 0.934 ± 0.009 ab | 0.896 ± 0.006 c | 0.928 ± 0.006 bc | 0.900 ± 0.004 c | 0.926 ± 0.000 ab | 0.873 ± 0.003 d | ||
W2N3 | 0.946 ± 0.012 a | 0.921 ± 0.004 b | 0.943 ± 0.004 a | 0.918 ± 0.000 b | 0.933 ± 0.011 a | 0.919 ± 0.004 b | ||
LX-3 | W1N1 | 0.949 ± 0.002 a | 0.923 ± 0.000 bc | 0.943 ± 0.009 a | 0.923 ± 0.014 ab | 0.895 ± 0.001 b | 0.931 ± 0.004 a | |
W1N2 | 0.907 ± 0.013 b | 0.931 ± 0.000 ab | 0.896 ± 0.001 c | 0.932 ± 0.002 a | 0.896 ± 0.005 c | 0.945 ± 0.006 b | ||
W1N3 | 0.912 ± 0.006 b | 0.935 ± 0.011 a | 0.915 ± 0.009 b | 0.924 ± 0.004 ab | 0.936 ± 0.013 a | 0.937 ± 0.004 c | ||
W2N1 | 0.902 ± 0.003 b | 0.918 ± 0.003 c | 0.895 ± 0.000 c | 0.907 ± 0.002 c | 0.894 ± 0.002 a | 0.907 ± 0.000 b | ||
W2N2 | 0.883 ± 0.007 c | 0.906 ± 0.004 d | 0.872 ± 0.008 d | 0.916 ± 0.009 bc | 0.864 ± 0.006 ab | 0.912 ± 0.003 d | ||
W2N3 | 0.911 ± 0.011 b | 0.925 ± 0.008 abc | 0.900 ± 0.011 c | 0.922 ± 0.010 abc | 0.889 ± 0.003 a | 0.913 ± 0.006 b | ||
F-value | ||||||||
W | 1.12ns | 0.08ns | 24.92 ** | 0.01ns | 1.77ns | 7.00 * | ||
N | 57.22 ** | 52.89 ** | 11.62 ** | 44.51 ** | 44.94 ** | 4.25 * | ||
W × N | 27.31 ** | 8.48 * | 1.83ns | 2.47ns | 16.39 ** | 4.27 * |
Year | Cultivars | Treatments | GS Activity/U·g | GOGAT Activity/U·g | GDH Activity/nmol/min/g | |||
---|---|---|---|---|---|---|---|---|
HS | 20 DAH | HS | 20 DAH | HS | 20 DAH | |||
2020 | T-43 | W1N1 | 79.3 ± 5.6 b | 53.6 ± 0.0 c | 471.3 ± 30.1 d | 361.2 ± 20.1 c | 370.3 ± 51.6 b | 283.3 ± 30.1 d |
W1N2 | 95.8 ± 9.2 ab | 74.5 ± 6.8 b | 614.1 ± 3.0 a | 411.0 ± 10.0 b | 417.7 ± 13.0 b | 422.0 ± 0.0 c | ||
W1N3 | 56.0 ± 3.0 b | 49.0 ± 1.1 d | 360.2 ± 0.0 e | 354.2 ± 0.1 e | 361.0 ± 33.7 b | 220.9 ± 12.0 b | ||
W2N1 | 85.8 ± 4.5 b | 62.5 ± 4.4 b | 536.5 ± 6.0 b | 375.5 ± 35.1 d | 458.2 ± 24.1 c | 163.6 ± 8.9 c | ||
W2N2 | 96.0 ± 16.3 a | 77.3 ± 2.2 a | 648.1 ± 21.0 a | 467.2 ± 15.0 a | 619.6 ± 86.1 a | 524.9 ± 0.0 a | ||
W2N3 | 85.9 ± 9.9 b | 64.4 ± 0.5 b | 429.1 ± 12.0 abc | 387.8 ± 25.1 b | 373.2 ± 4.3 d | 342.7 ± 48.2 cd | ||
LX-3 | W1N1 | 42.6 ± 2.3 d | 31.1 ± 2.2 b | 475.3 ± 5.0 e | 460.2 ± 0.0 d | 465.0 ± 86.1 bc | 487.2 ± 36.1 c | |
W1N2 | 61.5 ± 2.4 b | 69.2 ± 1.1 a | 602.8 ± 18.8 a | 481.8 ± 21.3 b | 904.3 ± 21.0 a | 816.8 ± 6.0 b | ||
W1N3 | 45.4 ± 1.4 c | 39.2 ± 9.3 a | 425.5 ± 12.0 c | 377.5 ± 38.4 d | 674.6 ± 12.0 cd | 507.2 ± 16.0 a | ||
W2N1 | 44.9 ± 8.0 c | 36.8 ± 7.8 b | 580.8 ± 60.2 bc | 496.4 ± 5.0 c | 680.8 ± 10.0 cd | 645.0 ± 40.4 c | ||
W2N2 | 92.4 ± 1.4 a | 82.0 ± 8.0 a | 678.2 ± 65.3 a | 572.7 ± 40.1 a | 775.1 ± 25.8 ab | 409.9 ± 24.1 d | ||
W2N3 | 68.2 ± 1.2 a | 45.8 ± 2.3 b | 549.8 ± 19.1 ab | 482.3 ± 20.2 ab | 543.0 ± 8.6 d | 409.9 ± 72.3 d | ||
2021 | T-43 | W1N1 | 62.3 ± 2.6 c | 54.4 ± 1.6 b | 545.4 ± 90.4 c | 512.0 ± 24.2 cd | 391.8 ± 30.1 b | 361.7 ± 60.2 c |
W1N2 | 73.1 ± 3.8 a | 68.8 ± 2.4 a | 583.7 ± 60.2 b | 528.9 ± 3.0 a | 753.6 ± 30.1 a | 361.7 ± 60.2 c | ||
W1N3 | 39.0 ± 6.0 c | 35.2 ± 2.2 b | 471.3 ± 30.1 d | 422.0 ± 41.1 d | 663.1 ± 12.5 a | 150.7 ± 30.1 d | ||
W2N1 | 62.8 ± 5.8 c | 58.1 ± 2.7 b | 615.3 ± 30.1 a | 517.4 ± 30.1 bc | 560.2 ± 0.0 c | 572.7 ± 30.1 b | ||
W2N2 | 88.4 ± 2.4 b | 71.5 ± 7.5 a | 723.4 ± 41.3 b | 696.3 ± 15.0 a | 633.0 ± 30.1 a | 844.0 ± 60.2 a | ||
W2N3 | 52.4 ± 9.5 b | 44.8 ± 0.0 b | 635.9 ± 30.1 a | 521.9 ± 57.2 b | 602.8 ± 24.1 ab | 753.6 ± 90.4 a | ||
LX-3 | W1N1 | 67.4 ± 8.4 bc | 41.1 ± 2.1 b | 548.0 ± 9.0 d | 459.4 ± 6.0 e | 660.2 ± 0.0 d | 572.7 ± 90.4 a | |
W1N2 | 95.0 ± 3.0 a | 56.2 ± 3.7 b | 568.2 ± 1.5 c | 556.6 ± 33.1 b | 693.3 ± 30.1 a | 602.9 ± 0.0 a | ||
W1N3 | 57.0 ± 4.0 c | 36.9 ± 0.9 b | 465.4 ± 4.8 f | 426.7 ± 12.0 c | 452.9 ± 90.5 b | 241.1 ± 60.2 b | ||
W2N1 | 78.0 ± 1.0 ab | 47.0 ± 2.0 b | 584.2 ± 15.0 b | 493.3 ± 6.0 b | 471.7 ± 30.1 c | 433.0 ± 33.5 a | ||
W2N2 | 95.5 ± 3.4 a | 64.0 ± 3.6 a | 656.5 ± 22.6 a | 649.5 ± 45.2 a | 564.2 ± 60.3 a | 413.9 ± 34.4 a | ||
W2N3 | 77.9 ± 2.2 ab | 43.0 ± 1.9 b | 510.4 ± 0.0 e | 439.5 ± 15.3 c | 481.1 ± 12.7 cd | 413.9 ± 15.7 a | ||
F-value | ||||||||
W | 1.9 ns | 4.6 ns | 23.6 ** | 21.3 ** | 20.4 ** | 11.9 ** | ||
N | 8.5 * | 15.0 ** | 0.4 ns | 418.9 ** | 0.4 ns | 0.4 ns | ||
W × N | 2.4 ns | 8.1 * | 16.0 ** | 13.4 ** | 33.9 ** | 9.6 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Ma, Y.; Zhao, L.; Song, Z.; Yin, Y.; Wang, G.; Li, Y. Effects of Water and Nitrogen Management on Root Morphology, Nitrogen Metabolism Enzymes, and Yield of Rice under Drip Irrigation. Agronomy 2023, 13, 1118. https://doi.org/10.3390/agronomy13041118
Tang Q, Ma Y, Zhao L, Song Z, Yin Y, Wang G, Li Y. Effects of Water and Nitrogen Management on Root Morphology, Nitrogen Metabolism Enzymes, and Yield of Rice under Drip Irrigation. Agronomy. 2023; 13(4):1118. https://doi.org/10.3390/agronomy13041118
Chicago/Turabian StyleTang, Qingyun, Yadong Ma, Lei Zhao, Zhiwen Song, Yongan Yin, Guodong Wang, and Yuxiang Li. 2023. "Effects of Water and Nitrogen Management on Root Morphology, Nitrogen Metabolism Enzymes, and Yield of Rice under Drip Irrigation" Agronomy 13, no. 4: 1118. https://doi.org/10.3390/agronomy13041118
APA StyleTang, Q., Ma, Y., Zhao, L., Song, Z., Yin, Y., Wang, G., & Li, Y. (2023). Effects of Water and Nitrogen Management on Root Morphology, Nitrogen Metabolism Enzymes, and Yield of Rice under Drip Irrigation. Agronomy, 13(4), 1118. https://doi.org/10.3390/agronomy13041118