Sustainable Management of Anaerobic Digestate: From Biogas Plant to Full-Scale Cultivation of Pleurotus ostreatus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates
2.2. Mycelial Cultures and Growth Rate Evaluation
2.3. Preparation of Substrates for Full-Scale Mushroom Cultivation
2.3.1. Experimental Design
2.3.2. Mushroom Parameters
2.4. Chemical Analyses of Substrates and Mushrooms
2.4.1. ATR-FTIR Spectroscopy
2.4.2. Polysaccharides Extraction
2.4.3. SERS Analyses
2.5. Statistical Analyses
3. Results
3.1. Chemical and Spectroscopical Analyses of the Substrates
3.2. In Vitro Mycelial Growth of P. ostreatus and ATR-FTIR of Exhausted Substrates
3.3. Full-Scale Cultivation
3.4. Qualitative Evaluation of the Fruiting Bodies
3.4.1. Chemical Parameters
3.4.2. ATR-FTIR Analysis
3.4.3. SERS Analysis
3.4.4. Polysaccharides
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lesa, K.N.; Khandaker, M.U.; Mohammad Rashed Iqbal, F.; Sharma, R.; Islam, F.; Mitra, S.; Emran, T.B. Nutritional Value, Medicinal Importance, and Health-Promoting Effects of Dietary Mushroom (Pleurotus ostreatus). J. Food Qual. 2022, 2022, 2454180. [Google Scholar] [CrossRef]
- Papadaki, A.; Kachrimanidou, V.; Papanikolaou, S.; Philippoussis, A.; Diamantopoulou, P. Upgrading Grape Pomace through Pleurotus spp. Cultivation for the Production of Enzymes and Fruiting Bodies. Microorganisms 2019, 7, 207. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, J.; Butnariu, M.; Ezzat, S.M.; Adetunji, C.O.; Imran, M.; Sobhani, S.R.; Tufail, T.; Hosseinabadi, T.; Ramírez-Alarcón, K.; Martorell, M.; et al. Mushrooms-Rich Preparations on Wound Healing: From Nutritional to Medicinal Attributes. Front. Pharmacol. 2020, 11, 567518. [Google Scholar] [CrossRef]
- Corrêa, R.C.G.; Brugnari, T.; Bracht, A.; Peralta, R.M.; Ferreira, I.C. Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: A review on the past decade findings. Trends Food Sci. Technol. 2016, 50, 103–117. [Google Scholar] [CrossRef] [Green Version]
- Feeney, M.J.; Miller, A.M.; Roupas, P. Mushrooms—Biologically Distinct and Nutritionally Unique: Exploring a “Third Food Kingdom”. Nutr. Today 2014, 49, 301–307. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 19 January 2023).
- Giving Intelligence Teams an AI-Powered Advantage. Available online: https://www.reportlinker.com/ (accessed on 19 January 2023).
- Bellettini, M.B.; Fiorda, F.A.; Maieves, H.A.; Teixeira, G.L.; Ávila, S.; Hornung, P.S.; Júnior, A.M.; Ribani, R.H. Factors Affecting Mushroom Pleurotus spp. Saudi J. Biol. Sci. 2019, 26, 633–646. [Google Scholar] [CrossRef]
- Philippoussis, A.; Diamantopoulou, P. Agro-food industry wastes and agricultural residues convertion into high value products by mushroom cultivation. In Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7), Arcachon, France, 4–7 October 2011; pp. 4–7. [Google Scholar]
- Kumla, J.; Suwannarach, N.; Sujarit, K.; Penkhrue, W.; Kakumyan, P.; Jatuwong, K.; Vadthanarat, S.; Lumyong, S. Cultivation of Mushrooms and Their Lignocellulolytic Enzyme Production through the Utilization of Agro-Industrial Waste. Molecules 2020, 25, 2811. [Google Scholar] [CrossRef] [PubMed]
- Anwar, Z.; Gulfraz, M.; Irshad, M. Agro-Industrial Lignocellulosic Biomass a Key to Unlock the Future Bio-Energy: A Brief Review. J. Radiat. Res. Appl. Sci. 2014, 7, 163–173. [Google Scholar] [CrossRef]
- Singh, N.B.; Chaudhary, R.G.; Desimone, M.F.; Agrawal, A.; Shukla, S.K. Green Synthesized Nanomaterials for Safe Technology in Sustainable Agriculture. Curr. Pharm. Biotechnol. 2023, 24, 61–85. [Google Scholar] [CrossRef]
- Monlau, F.; Sambusiti, C.; Ficara, E.; Aboulkas, A.; Barakat, A.; Carrère, H. New Opportunities for Agricultural Digestate Valorization: Current Situation and Perspectives. Energy Environ. Sci. 2015, 8, 2600–2621. [Google Scholar] [CrossRef]
- European Commission and Industry Leaders Launch Biomethane Industrial Partnership to Support the 35 Bcm Target on Biomethane by 2030 European Biogas Association. Available online: https://www.europeanbiogas.eu/european-commission-and-industry-leaders-launch-biomethane-industrial-partnership-to-support-the-35-bcm-target-on-biomethane-by-2030/ (accessed on 20 February 2023).
- Corden, C.; Bougas, K.; Cunningham, E.; Tyrer, D.; Kreißig, J.; Zetti, E.; Gamero, E.; Wildey, R.; Crookes, M. Digestate and Compost as Fertilisers: Risk Assessment and Risk Management Options. Wood Environment & Infrastructure Solutions UK Limited. (Doc Ref. 40039CL003i3). 2019. Available online: https://ec.europa.eu/environment/chemicals/reach/pdf/40039%20Digestate%20and%20Compost%20RMOA%20-%20Final%20report%20i2_20190208.pdf (accessed on 20 March 2023).
- Gioelli, F.; Dinuccio, E.; Balsari, P. Residual Biogas Potential from the Storage Tanks of Non-Separated Digestate and Digested Liquid Fraction. Bioresour. Technol. 2011, 102, 10248–10251. [Google Scholar] [CrossRef] [PubMed]
- Menardo, S.; Gioelli, F.; Balsari, P. The Methane Yield of Digestate: Effect of Organic Loading Rate, Hydraulic Retention Time, and Plant Feeding. Bioresour. Technol. 2011, 102, 2348–2351. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, J.; Herbes, C.; Nelles, M. Biogas Digestate Marketing: Qualitative Insights into the Supply Side. Resour. Conserv. Recycl. 2015, 104, 152–161. [Google Scholar] [CrossRef]
- Phan, C.-W.; Sabaratnam, V. Potential Uses of Spent Mushroom Substrate and Its Associated Lignocellulosic Enzymes. Appl. Microbiol. Biotechnol. 2012, 96, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Wan Mahari, W.A.; Peng, W.; Nam, W.L.; Yang, H.; Lee, X.Y.; Lee, Y.K.; Liew, R.K.; Ma, N.L.; Mohammad, A.; Sonne, C.; et al. A Review on Valorization of Oyster Mushroom and Waste Generated in the Mushroom Cultivation Industry. J. Hazard. Mater. 2020, 400, 123156. [Google Scholar] [CrossRef]
- Sánchez, C. Lignocellulosic Residues: Biodegradation and Bioconversion by Fungi. Biotechnol. Adv. 2009, 27, 185–194. [Google Scholar] [CrossRef]
- Philippoussis, A.; Zervakis, G.; Diamantopoulou, P. Bioconversion of Agricultural Lignocellulosic Wastes through the Cultivation of the Edible Mushrooms Agrocybe aegerita, Volvariella volvacea and Pleurotus spp. World J. Microbiol. Biotechnol. 2001, 17, 191–200. [Google Scholar] [CrossRef]
- Puliga, F.; Leonardi, P.; Minutella, F.; Zambonelli, A.; Francioso, O. Valorization of Hazelnut Shells as Growing Substrate for Edible and Medicinal Mushrooms. Horticulturae 2022, 8, 214. [Google Scholar] [CrossRef]
- Fornito, S.; Puliga, F.; Leonardi, P.; Di Foggia, M.; Zambonelli, A.; Francioso, O. Degradative Ability of Mushrooms Cultivated on Corn Silage Digestate. Molecules 2020, 25, 3020. [Google Scholar] [CrossRef]
- Hultberg, M.; Asp, H.; Bergstrand, K.J.; Golovko, O. Production of Oyster Mushroom (Pleurotus ostreatus) on Sawdust Supplemented with Anaerobic Digestate. Waste Manag. 2023, 155, 1–7. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; ur Rehman, D.I. Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2008, 43, 134–179. [Google Scholar] [CrossRef]
- Meenu, M.; Xu, B. Application of Vibrational Spectroscopy for Classification, Authentication and Quality Analysis of Mushroom: A Concise Review. Food Chem. 2019, 289, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Dina, N.E.; Gherman, A.M.R.; Chiş, V.; Sârbu, C.; Wieser, A.; Bauer, D.; Haisch, C. Characterization of Clinically Relevant Fungi via SERS Fingerprinting Assisted by Novel Chemometric Models. Anal. Chem. 2018, 90, 2484–2492. [Google Scholar] [CrossRef] [PubMed]
- Fornasaro, S.; Gurian, E.; Pagarin, S.; Genova, E.; Stocco, G.; Decorti, G.; Sergo, V.; Bonifacio, A. Ergothioneine, a Dietary Amino Acid with a High Relevance for the Interpretation of Label-Free Surface Enhanced Raman Scattering (SERS) Spectra of Many Biological Samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 246, 119024. [Google Scholar] [CrossRef]
- Puliga, F.; Zuffi, V.; Zambonelli, A.; Francioso, O.; Sanchez-Cortes, S. Spectroscopic Analysis of Mushrooms by Surface-Enhanced Raman Scattering (SERS). Chem. Biol. Technol. Agric. 2022, 9, 100. [Google Scholar] [CrossRef]
- Aroca, R. Surface Enhanced Vibrational Spectroscopy; Wiley: Hoboken, NJ, USA, 2006; ISBN 978-0-471-60731-1. [Google Scholar]
- Aroca, R.F. Plasmon enhanced spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 5355–5363. [Google Scholar] [CrossRef] [PubMed]
- Butler, H.J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N.J.; Gardner, B.; Martin-Hirsch, P.L.; et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 2016, 11, 664–687. [Google Scholar] [CrossRef] [Green Version]
- Le Ru, E.; Etchegoin, P. Principles of Surface Enhanced Raman Spectroscopy (and Related Plasmonic Effects); Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57, 783–826. [Google Scholar] [CrossRef]
- Moskovits, M.; Suh, J.S. Surface selection rules for surface-enhanced Raman spectroscopy: Calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver. J. Phys. Chem. 1984, 88, 5526–5530. [Google Scholar] [CrossRef]
- Tryfinopoulou, P.; Chourdaki, A.; Nychas, G.-J.E.; Panagou, E.Z. Competitive Yeast Action against Aspergillus carbonarius Growth and Ochratoxin A Production. Int. J. Food Microbiol. 2020, 317, 108460. [Google Scholar] [CrossRef]
- Sinclair, C.G.; Cantero, D. Fermentation modelling. In Fermentation a Practical Approach; McNeil, B.L., Harvey, M., Eds.; IRL Press: New York, NY, USA, 1989; pp. 65–112. ISBN 978-0-19-963044-8. [Google Scholar]
- Oei, P. Mushroom Cultivation: Appropriate Technology for Mushroom Growers, 3rd ed.; Backhuys: Leiden, The Netherlands, 2003; ISBN 978-90-5782-137-0. [Google Scholar]
- Jasińska, A.; Dawidowicz, L.; Siwulski, M.; Kilinowski, P. Growth of Mycelium of Different Edible and Medicinal Mushrooms on Medium Supplemented with Digestate from AD Biogas Plant. Not. Bot. Horti. Agrobo. 2017, 45, 498–506. [Google Scholar] [CrossRef] [Green Version]
- Cocchi, L.; Vescovi, L.; Petrini, L.E.; Petrini, O. Heavy metals in edible mushrooms in Italy. Food Chem. 2006, 98, 277–284. [Google Scholar] [CrossRef]
- Leopold, N.; Lendl, B. A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride. J. Phys. Chem. B 2003, 107, 5723–5727. [Google Scholar] [CrossRef]
- Liu, R.; Yu, H.; Huang, Y. Structure and Morphology of Cellulose in Wheat Straw. Cellulose 2005, 12, 25–34. [Google Scholar] [CrossRef]
- Gao, A.H.; Bule, M.V.; Laskar, D.D.; Chen, S. Structural and Thermal Characterization of Wheat Straw Pretreated with Aqueous Ammonia Soaking. J. Agric. Food Chem. 2012, 60, 8632–8639. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, M.R.; Iannuzzi, G.; Fabbri, C.; Senesi, N. Qualitative Characterization and Differentiation of Digestates from Different Biowastes Using FTIR and Fluorescence Spectroscopies. JEP 2011, 02, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Das, B.; Rajkonwar, J.; Jagannath, A.; Raul, P.K.; Deb, U. Infra Red Spectra of Different Species of Cultivated Oyster Mushrooms Possible Tool for Identifying Bioactive Compounds and Establishing Taxonomic Linkage. Def. Life Sci. J. 2020, 5, 118–124. [Google Scholar] [CrossRef]
- Zervakis, G.I.; Bekiaris, G.; Tarantilis, P.A.; Pappas, C.S. Rapid Strain Classification and Taxa Delimitation within the Edible Mushroom Genus Pleurotus through the Use of Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopy. Fungal Biol. 2012, 116, 715–728. [Google Scholar] [CrossRef]
- Synytsya, A.; Novak, M. Structural analysis of glucans. Ann. Transl. Med. 2014, 2, 17. [Google Scholar] [CrossRef]
- Gomba, G.K.; Synytsya, A.; Švecová, P.; Coimbra, M.A.; Čopíková, J. Distinction of Fungal Polysaccharides by N/C Ratio and Mid Infrared Spectroscopy. Int. J. Biol. Macromol. 2015, 80, 271–281. [Google Scholar] [CrossRef]
- Sheets, J.P.; Yang, L.; Ge, X.; Wang, Z.; Li, Y. Beyond Land Application: Emerging Technologies for the Treatment and Reuse of Anaerobically Digested Agricultural and Food Waste. Waste Manag. 2015, 44, 94–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udayasimha, D.L.; Vijayalakshmi, Y.C. Sustainable Waste Managementby Growing Mushroom (Pleurotus florida) on Anaerobically Digested Waste and Agro Residues. Int. J. Eng. Res. 2012, 1, 1–8. [Google Scholar]
- O’Brien, B.J.; Milligan, E.; Carver, J.; Roy, E.D. Integrating Anaerobic Co-Digestion of Dairy Manure and Food Waste with Cultivation of Edible Mushrooms for Nutrient Recovery. Bioresour. Technol. 2019, 285, 121312. [Google Scholar] [CrossRef] [PubMed]
- Santi, G.; Muzzini, V.G.; Galli, E.; Proietti, S.; Moscatello, S.; Battistelli, A. Mycelial growth and enzymatic activities of white-rot fungi on anaerobic digestates from industrial biogas plants. Environ. Eng. Manag. J. 2015, 14, 1713–1719. [Google Scholar] [CrossRef]
- Singh, S.; Harms, H.; Schlosser, D. Screening of Ecologically Diverse Fungi for Their Potential to Pretreat Lignocellulosic Bioenergy Feedstock. Appl. Microbiol. Biotechnol. 2014, 98, 3355–3370. [Google Scholar] [CrossRef]
- Schimpf, U.; Schrader, A.; Hübner, A.; Schulz, R.; Neubauer, P. Utilisation of Solid Digestate from Acidification Reactors of Continues Two-Stage Anaerobic Digestion Processes in Lentinula edodes Cultivation. Bioresour. Technol. Rep. 2019, 8, 100322. [Google Scholar] [CrossRef]
- Zhou, J.-L.; Song, S.; Huang, Z.-X.; Yang, L.; Jiao, A.-G.; Liu, Y.; Wang, S.-X. Cultivation of Pleurotus ostreatus, a Potential Candidate for Biogas Residues Degradation. BioRes 2018, 13, 5432–5449. [Google Scholar] [CrossRef]
- Hoa, H.T.; Wang, C.-L.; Wang, C.-H. The Effects of Different Substrates on the Growth, Yield, and Nutritional Composition of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 2015, 43, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Osunde, M.O.; Olayinka, A.; Fashina, C.D.; Torimiro, N. Effect of Carbon-Nitrogen Ratios of Lignocellulosic Substrates on the Yield of Mushroom (Pleurotus pulmonarius). OALib 2019, 6, 1–8. [Google Scholar] [CrossRef]
- Sözbir, G.D.; Bektas, I.; Zulkadir, A. Lignocellulosic Wastes Used for the Cultivation of Pleurotus ostreatus Mushrooms: Effects on Productivity. BioResources 2015, 10, 4686–4693. [Google Scholar] [CrossRef]
- Sardar, H.; Ali, M.A.; Ayyub, C.M.; Ahmad, R. Effects of different culture media, temperature and pH levels on the growth of wild and exotic Pleurotus species. Pak. J. Phytopathol. 2015, 27, 139–145. [Google Scholar]
- Zied, D.C.; Minhoni, M.T.A.; Kopytowski-Filho, J.; Andrade, M.C.N. Production of Agaricus blazei Ss. Heinemann (A. brasiliensis) on Different Casing Layers and Environments. World J. Microbiol. Biotechnol. 2010, 26, 1857–1863. [Google Scholar] [CrossRef]
- Berger, R.G.; Bordewick, S.; Krahe, N.-K.; Ersoy, F. Mycelium vs. Fruiting Bodies of Edible Fungi—A Comparison of Metabolites. Microorganisms 2022, 10, 1379. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dai, L.; Kong, X.; Chen, L. Characterization and in Vitro Antioxidant Activities of Polysaccharides from Pleurotus ostreatus. Int. J. Biol. Macromol. 2012, 51, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Kurt, S.; Buyukalaca, S. Yield Performances and Changes in Enzyme Activities of Pleurotus spp. (P. ostreatus and P. sajor-caju) Cultivated on Different Agricultural Wastes. Bioresour. Technol. 2010, 101, 3164–3169. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Chávez, A.M.; Alberti, M.M.; Albertó, E. Evaluation of Ligninolytic Activity in Spent Mushroom Substrate from Four Cultivated Mushrooms. J. Bioresour. Bioprod. 2022, 7, 288–294. [Google Scholar] [CrossRef]
- Pang, L.; Wang, T.; Liao, Q.; Cheng, Y.; Wang, D.; Li, J.; Fu, C.; Zhang, C.; Zhang, J. Protective Role of Ergothioneine Isolated from Pleurotus ostreatus against Dextran Sulfate Sodium-Induced Ulcerative Colitis in Rat Model. J. Food Sci. 2022, 87, 415–426. [Google Scholar] [CrossRef]
- Witkowska, E.; Jagielski, T.; Kamińska, A.; Kowalska, A.; Hryncewicz-Gwóźdź, A.; Waluk, J. Detection and Identification of Human Fungal Pathogens Using Surface-Enhanced Raman Spectroscopy and Principal Component Analysis. Anal. Methods 2016, 8, 8427–8434. [Google Scholar] [CrossRef]
- Feng, S.; Lin, J.; Cheng, M.; Li, Y.-Z.; Chen, G.; Huang, Z.; Yu, Y.; Chen, R.; Zeng, H. Gold Nanoparticle Based Surface-Enhanced Raman Scattering Spectroscopy of Cancerous and Normal Nasopharyngeal Tissues under Near-Infrared Laser Excitation. Appl. Spectrosc. 2009, 63, 1089–1094. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.-H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y.; et al. Antimicrobial Effects of Silver Nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Kwon, S.; Jeong, S. Preparation of Biodegradable Polymer/Silver Nanoparticles Composite and Its Antibacterial Efficacy. J. Nanosci. Nanotechnol. 2009, 9, 1098–1102. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.; van den Tweel, T.J.J.; de Mul, F.F.M.; Greve, J. Surface-Enhanced Raman Spectroscopy of DNA Bases. J. Raman Spectrosc. 1986, 17, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Rivas, L.; Murza, A.; Sánchez-Cortés, S.; García-Ramos, J.V. Interaction of Antimalarial Drug Quinacrine with Nucleic Acids of Variable Sequence Studied by Spectroscopic Methods. J. Biomol. Struct. Dyn. 2000, 18, 371–383. [Google Scholar] [CrossRef]
- Baeva, E.; Bleha, R.; Sedliaková, M.; Sushytskyi, L.; Švec, I.; Čopíková, J.; Jablonsky, I.; Klouček, P.; Synytsya, A. Evaluation of the Cultivated Mushroom Pleurotus ostreatus Basidiocarps Using Vibration Spectroscopy and Chemometrics. Appl. Sci. 2020, 10, 8156. [Google Scholar] [CrossRef]
- Joseph, S.M.; Krishnamoorthy, S.; Paranthaman, R.; Moses, J.A.; Anandharamakrishnan, C. A Review on Source-Specific Chemistry, Functionality, and Applications of Chitin and Chitosan. Carbohydr. Polym. Technol. Appl. 2021, 2, 100036. [Google Scholar] [CrossRef]
- Harish Prashanth, K.V.; Tharanathan, R.N. Chitin/Chitosan: Modifications and Their Unlimited Application Potential—An Overview. Trends Food Sci. Technol. 2007, 18, 117–131. [Google Scholar] [CrossRef]
- Boureghda, Y.; Satha, H.; Bendebane, F. Chitin–Glucan Complex from Pleurotus ostreatus Mushroom: Physicochemical Characterization and Comparison of Extraction Methods. Waste Biomass Valor. 2021, 12, 6139–6153. [Google Scholar] [CrossRef]
Parameters 1 | Unit | WS + SC | D |
---|---|---|---|
OC | % d.m. | 40.15 ± 0.002 | 37.66 ± 0.96 |
N tot | % d.m. | 0.48 ± 0.001 | 1.20 ± 0.005 |
NH4+ | % d.m. | n.d. | 0.27 |
pH | 6.5 | 9.06 | |
P | mg/kg | 334 | 2417 |
S | mg/kg | 617 | 1148 |
K | mg/kg | 6328 | 6514 |
Na | mg/kg | 150 | 1598 |
Ca | mg/kg | 10,147 | 4863 |
Mg | mg/kg | 992 | 1598 |
Fe | mg/kg | 1401 | 595 |
Cu | mg/kg | 7 | 9 |
Zn | mg/kg | 29 | 47 |
Mn | mg/kg | 53 | 67 |
Sample | First Flush | Second Flush | ||||
---|---|---|---|---|---|---|
Yield 1 Half | Total Yield | P (%) | Yield 1 Half | Total Yield | P (%) | |
WS + SC | 32.75 | 49.70 | 66% | 6.00 | 19.85 | 30% |
WS + SC | 13.95 | 38.50 | 36% | 16.10 | 19.30 | 83% |
WS + SC | 13.90 | 40.00 | 35% | 8.20 | 14.35 | 57% |
WS + SC | 11.05 | 42.60 | 26% | 5.60 | 13.20 | 42% |
Mean | 17.91 ± 9.98 | 42.70 ± 4.96 | 41% | 8.98 ± 4.88 | 16.68 ± 3.89 | 53% |
D15 | 21.20 | 38.00 | 56% | 19.05 | 22.90 | 83% |
D15 | 27.15 | 43.50 | 62% | 13.40 | 21.00 | 64% |
D15 | 24.50 | 40.40 | 61% | 15.35 | 20.60 | 75% |
D15 | 33.70 | 45.50 | 74% | 12.85 | 17.70 | 73% |
Mean | 26.64 ± 5.30 | 41.85 ± 3.32 | 63% | 15.16 ± 2.80 | 20.55 ± 2.15 | 74% |
Parameter | Unit | WS + SC | D15 |
---|---|---|---|
pH | 6.2 ± 0.8 | 6.2 ± 0.8 | |
NO3− | mg/kg | <50 | <50 |
NO2− | mg/kg | <50 | <50 |
Fe | mg/kg | 6.2 ± 1.5 | 7.4 ± 1.8 |
Cu | mg/kg | 0.9 ± 0.3 | 2.0 ± 0.6 |
Zn | mg/kg | 6.1 ± 0.5 | 1.0 ± 2.1 |
Mn | mg/kg | 0.8 ± 0.3 | 1.2 ± 0.4 |
Cd | mg/kg | n.d. 1 | n.d. |
Pb | mg/kg | n.d. | n.d. |
Co | mg/kg | n.d. | n.d. |
Ni | mg/kg | n.d. | n.d. |
Total coliforms | UFC/g | <10 | <10 |
Agrochemicals | mg/kg | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuffi, V.; Puliga, F.; Zambonelli, A.; Trincone, L.; Sanchez-Cortes, S.; Francioso, O. Sustainable Management of Anaerobic Digestate: From Biogas Plant to Full-Scale Cultivation of Pleurotus ostreatus. Agronomy 2023, 13, 950. https://doi.org/10.3390/agronomy13040950
Zuffi V, Puliga F, Zambonelli A, Trincone L, Sanchez-Cortes S, Francioso O. Sustainable Management of Anaerobic Digestate: From Biogas Plant to Full-Scale Cultivation of Pleurotus ostreatus. Agronomy. 2023; 13(4):950. https://doi.org/10.3390/agronomy13040950
Chicago/Turabian StyleZuffi, Veronica, Federico Puliga, Alessandra Zambonelli, Lorenzo Trincone, Santiago Sanchez-Cortes, and Ornella Francioso. 2023. "Sustainable Management of Anaerobic Digestate: From Biogas Plant to Full-Scale Cultivation of Pleurotus ostreatus" Agronomy 13, no. 4: 950. https://doi.org/10.3390/agronomy13040950
APA StyleZuffi, V., Puliga, F., Zambonelli, A., Trincone, L., Sanchez-Cortes, S., & Francioso, O. (2023). Sustainable Management of Anaerobic Digestate: From Biogas Plant to Full-Scale Cultivation of Pleurotus ostreatus. Agronomy, 13(4), 950. https://doi.org/10.3390/agronomy13040950