Transformation of Soil Accumulated Phosphorus and Its Driving Factors across Chinese Cropping Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Designs
2.2. Soil Sample Collection and Analysis
2.3. Statistical Analysis
3. Results
3.1. Temporal-Spatial Changes in Soil Olsen-P and P Surplus
3.2. Temporal-Spatial Variation of SPTE and Its Driving Factors
4. Discussion
4.1. Temporal-Spatial Differences of Soil Olsen-P and P Surplus
4.2. SPTE and Its Influencing Factors
4.3. Recommendation of P Fertilizer Based on SPTE
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Site Number | Region | Province | Longitude | Latitude | Yield of Main Crops (kg ha−1) | Soil Properties | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wheat | Maize | Rice | pH | SOM 1 (g/kg) | AK 2 (mg/kg) | Clay (%) | Silt (%) | Sand (%) | Soil Texture | |||||
1 | NE 3 | Jilin | 126.5 | 44.8 | 8940 | 6.57 | 30.56 | 25 | 50 | 25 | Loam | |||
2 | NE | Jilin | 129.1 | 42.8 | 7350 | 5.93 | 40.48 | 157.07 | 20 | 41 | 39 | Loam | ||
3 | NE | Heilongjiang | 126.8 | 46 | 9600 | 6.64 | 33.75 | 265.02 | 31 | 53 | 16 | Silty clay loam | ||
4 | NE | Heilongjiang | 126.3 | 45.3 | 9780 | 6.73 | 27.63 | 174.84 | 26 | 42 | 32 | Loam | ||
5 | NE | Heilongjiang | 127 | 47 | 7725 | 6.35 | 36.97 | 184.69 | 32 | 49 | 19 | Silty clay loam | ||
6 | NE | Heilongjiang | 126.8 | 46.7 | 8100 | 6.29 | 37.29 | 165.37 | 32 | 49 | 19 | Silty clay loam | ||
7 | NE | Heilongjiang | 129.7 | 46.2 | 8970 | 7380 | 6.31 | 30.29 | 195.77 | 29.6 | 41 | 29.4 | Clay loam | |
8 | HH | Hebei | 114.4 | 37.2 | 4695 | 6375 | 8.06 | 16.81 | 98.43 | 20 | 43 | 37 | Loam | |
9 | HH | Hebei | 114.3 | 38.1 | 6075 | 7095 | 8.00 | 20.63 | 123.80 | 17 | 47 | 36 | Loam | |
10 | HH | Shandong | 117.1 | 36.5 | 6720 | 9195 | 7.76 | 15.58 | 137.55 | 22 | 47 | 15 | Loam | |
11 | HH | Shandong | 115.5 | 35.3 | 6000 | 6945 | 8.04 | 12.93 | 127.83 | 19 | 50 | 31 | Loam | |
12 | HH | Shandong | 120.4 | 36.8 | 6510 | 7950 | 7.04 | 14.42 | 114.64 | 22.3 | 33.1 | 44.6 | Loam | |
13 | HH | Shandong | 119.8 | 37.2 | 2880 | 4650 | 5.51 | 8.72 | 72.90 | 23 | 35.2 | 41.8 | Loam | |
14 | HH | Shandong | 120 | 37.1 | 2940 | 5220 | 5.22 | 8.67 | 70.01 | 23 | 35.2 | 41.8 | Loam | |
15 | HH | Henan | 112.3 | 32.6 | 6555 | 6840 | 6.68 | 15.44 | 126.45 | 29 | 44 | 27 | Clay loam | |
16 | HH | Henan | 114.1 | 31.2 | 6795 | 5.85 | 21.32 | 92.34 | 30 | 52 | 18 | Silty clay loam | ||
17 | HH | Henan | 114.5 | 32.4 | 5850 | 5.48 | 14.14 | 70.42 | 32.3 | 50.4 | 17.3 | Silty clay loam | ||
18 | HH | Henan | 112.8 | 34.6 | 4965 | 5475 | 7.97 | 15.67 | 134.30 | 19.7 | 48.3 | 32 | Loam | |
19 | HH | Henan | 114.6 | 33.5 | 7605 | 6780 | 6.78 | 17.37 | 156.24 | 31 | 51.3 | 17.7 | Silty clay loam | |
20 | HH | Henan | 115.2 | 34.7 | 5235 | 8.04 | 8.37 | 66.39 | 18.8 | 47.9 | 33.3 | Loam | ||
21 | HH | Henan | 115.1 | 34.6 | 6360 | 7080 | 8.17 | 12.76 | 81.71 | 18.8 | 47.9 | 33.3 | Loam | |
22 | HH | Henan | 114.9 | 33.8 | 6285 | 6120 | 7.95 | 17.02 | 172.29 | 26.7 | 49.1 | 24.2 | Loam | |
23 | HH | Henan | 112.8 | 32.7 | 6285 | 5445 | 6.35 | 14.99 | 133.31 | 35.7 | 29.8 | 34.5 | Clay loam | |
24 | HH | Henan | 115.1 | 35.8 | 6465 | 8145 | 8.21 | 14.24 | 86.57 | 23.5 | 46.4 | 30.1 | Loam | |
25 | HH | Henan | 114.8 | 34.6 | 6360 | 7395 | 8.45 | 9.77 | 79.17 | 19.6 | 50.5 | 29.9 | Silty loam | |
26 | YR | Jiangsu | 119.7 | 31.4 | 5625 | 9060 | 5.76 | 25.54 | 92.88 | 29 | 53 | 18 | Silty clay loam | |
27 | YR | Jiangsu | 119.7 | 31.9 | 5265 | 8670 | 6.62 | 21.03 | 104.15 | 28 | 57 | 15 | Silty clay loam | |
28 | YR | Guangxi | 110.8 | 24.8 | 5910 | 6.95 | 56.36 | 109.81 | 29 | 38 | 33 | Loam | ||
29 | YR | Jiangsu | 120 | 32.9 | 5820 | 9345 | 6.93 | 20.08 | 121.03 | 27 | 56 | 17 | Silty loam | |
30 | YR | Jiangsu | 120.5 | 33.2 | 6075 | 9705 | 8.09 | 17.21 | 137.45 | 27 | 53 | 20 | Silty clay loam | |
31 | YR | Anhui | 116.2 | 33.5 | 6465 | 6552 | 7.10 | 16.30 | 139.41 | 43.1 | 45.5 | 11.4 | Silty clay | |
32 | YR | Anhui | 116.4 | 33.1 | 6735 | 7590 | 6.46 | 19.26 | 124.23 | 25 | 47 | 28 | Loam | |
33 | YR | Anhui | 117.9 | 32.7 | 5415 | 7650 | 6.28 | 20.49 | 109.17 | 29 | 49 | 22 | Clay loam | |
34 | YR | Anhui | 118 | 30.9 | 7830 | 7.64 | 27.70 | 91.94 | 35.8 | 47.3 | 16.9 | Silty clay loam | ||
35 | YR | Fujian | 117.8 | 27.3 | 7785 | 5.18 | 40.04 | 81.58 | 29.6 | 27.4 | 43 | Sandy clay loam | ||
36 | YR | Fujian | 117.1 | 26.8 | 7260 | 5.26 | 41.71 | 107.36 | 32 | 37 | 31 | Clay loam | ||
37 | YR | Hubei | 110.1 | 32.2 | 4050 | 5625 | 6.64 | 14.88 | 115.17 | 21 | 41 | 38 | Loam | |
38 | YR | Hubei | 114 | 30.1 | 6210 | 6900 | 6.91 | 28.34 | 98.54 | 26 | 52 | 22 | Silty loam | |
39 | YR | Hubei | 112.9 | 30.7 | 2850 | 7.23 | 21.66 | 137.34 | 29.9 | 38.3 | 31.8 | Clay loam | ||
40 | YR | Hubei | 112.7 | 30.3 | 3510 | 7815 | 7.32 | 19.57 | 86.90 | 27 | 46 | 27 | Loam | |
41 | YR | Jiangsu | 119 | 31.6 | 4770 | 8340 | 6.17 | 25.84 | 114.77 | 35.4 | 47.6 | 17 | Silty clay loam | |
42 | YR | Jiangsu | 118.7 | 32.4 | 5310 | 8565 | 6.47 | 22.39 | 111.28 | 32.7 | 49.9 | 17.4 | Silty clay loam | |
43 | YR | Jiangsu | 119.2 | 32.5 | 5490 | 7830 | 6.22 | 18.44 | 78.64 | 31.7 | 53.7 | 14.6 | Silty clay loam | |
44 | YR | Jiangsu | 120 | 32.5 | 6300 | 8640 | 7.34 | 20.92 | 73.16 | 25.5 | 54.6 | 19.9 | Silty loam | |
45 | YR | Jiangsu | 120.4 | 32.6 | 6405 | 9180 | 7.58 | 33.17 | 105.11 | 20 | 56.5 | 23.5 | Silty loam | |
46 | YR | Jiangsu | 120.5 | 32.8 | 5985 | 4920 | 9825 | 8.00 | 16.00 | 74.32 | 26.1 | 57.2 | 16.7 | Silty loam |
47 | YR | Anhui | 116.8 | 33.6 | 6885 | 7410 | 6.84 | 19.34 | 219.40 | 35.3 | 49.4 | 15.3 | Silty clay loam | |
48 | YR | Anhui | 116.3 | 32.6 | 6915 | 6300 | 6.09 | 14.05 | 152.38 | 35.1 | 45.9 | 19 | Silty clay loam | |
49 | YR | Anhui | 115.2 | 32.8 | 7890 | 8310 | 6.08 | 16.95 | 155.47 | 35 | 54 | 11 | Silty clay loam | |
50 | YR | Anhui | 117.1 | 32.3 | 5715 | 7590 | 6.33 | 13.80 | 99.67 | 27.5 | 56.2 | 16.3 | Silty loam | |
51 | YR | Anhui | 117.3 | 31.2 | 6825 | 5.69 | 20.41 | 79.09 | 37.4 | 49.6 | 13 | Silty clay loam | ||
52 | YR | Anhui | 118.5 | 30.2 | 7725 | 5.86 | 37.80 | 54.93 | 25.7 | 28.9 | 45.4 | Sandy clay loam | ||
53 | YR | Fujian | 117.8 | 24.4 | 6870 | 5.78 | 39.89 | 172.07 | 32.5 | 33 | 34.5 | Clay loam | ||
54 | YR | Hubei | 111.5 | 30.1 | 3390 | 7140 | 7.21 | 20.47 | 184.09 | 25.9 | 41.4 | 32.7 | Loam | |
55 | YR | Hubei | 112.5 | 31.2 | 4395 | 8970 | 6.83 | 24.35 | 114.98 | 26.6 | 37 | 36.4 | Loam | |
56 | YR | Hubei | 110.7 | 32.6 | 3225 | 5475 | 6.81 | 15.83 | 107.39 | 35.8 | 38.6 | 25.6 | Clay loam | |
57 | YR | Hubei | 113 | 30.6 | 8460 | 6.43 | 31.67 | 84.52 | 30 | 37.3 | 32.7 | Clay loam | ||
58 | YR | Hunan | 114.1 | 28.3 | 6540 | 5.31 | 33.91 | 73.70 | 27.8 | 35.7 | 36.5 | Loam | ||
59 | YR | Hunan | 111.8 | 27.1 | 5805 | 4.77 | 18.29 | 200.58 | 36 | 39.8 | 24.2 | Clay loam | ||
60 | YR | Hunan | 113.1 | 29.3 | 6375 | 5.72 | 30.97 | 52.35 | 31.4 | 41.3 | 27.3 | Clay loam | ||
61 | YR | Hunan | 111.2 | 25.5 | 6315 | 5.93 | 42.33 | 63.73 | 21.9 | 31.2 | 46.9 | Loam | ||
62 | YR | Hunan | 110 | 27.1 | 7890 | 5.17 | 40.49 | 74.19 | 29.3 | 46.4 | 24.3 | Clay loam | ||
63 | YR | Guangxi | 108.8 | 23.2 | 5700 | 5.63 | 44.85 | 72.27 | 39.7 | 46 | 14.3 | Silty clay loam | ||
64 | SC | Guangdong | 110.2 | 20.5 | 5910 | 6.77 | 75.78 | 71.71 | 40 | 27 | 33 | Clay loam | ||
65 | SC | Guangdong | 112.2 | 22.6 | 5655 | 5.45 | 42.36 | 65.20 | 24 | 36 | 40 | Loam | ||
66 | SC | Guangdong | 113.5 | 24.1 | 6060 | 4.98 | 46.66 | 67.73 | 28.8 | 25.7 | 45.3 | Sandy clay loam | ||
67 | SC | Guangdong | 112.6 | 23.1 | 7500 | 5.49 | 33.56 | 107.91 | 30.3 | 48.1 | 21.6 | Clay loam | ||
68 | SC | Hainan | 110.4 | 19.2 | 6570 | 5.38 | 28.31 | 50.41 | 35.3 | 30.8 | 33.9 | Clay loam | ||
69 | SC | Hainan | 110.3 | 19.4 | 5835 | 5.52 | 28.78 | 60.39 | 35.3 | 30.8 | 33.9 | Clay loam | ||
70 | SW | Sichuan | 104.6 | 31 | 2985 | 3810 | 6.58 | 10.30 | 61.52 | 30 | 47 | 23 | Clay loam | |
71 | SW | Sichuan | 104.7 | 31.1 | 3315 | 4065 | 8.06 | 15.94 | 113.35 | 30 | 47 | 23 | Clay loam | |
72 | SW | Guizhou | 105.8 | 26.5 | 5535 | 5400 | 7.23 | 32.03 | 86.80 | 38 | 41 | 21 | Clay loam | |
73 | SW | Yunnan | 103.9 | 25.4 | 2265 | 7365 | 5.65 | 42.67 | 152.46 | 37.2 | 38.4 | 24.4 | Clay loam | |
74 | SW | Yunnan | 100.1 | 23.8 | 8235 | 5.56 | 78.08 | 186.29 | 30 | 39.5 | 30.5 | Clay loam | ||
75 | SW | Chongqing | 106.2 | 29.1 | 7215 | 5.14 | 25.66 | 146.46 | 25.6 | 35.3 | 39.1 | Loam | ||
76 | SW | Chongqing | 106.4 | 28.7 | 7065 | 6.88 | 30.79 | 147.28 | 25.6 | 35.3 | 39.1 | Loam | ||
77 | NW | Xinjiang | 79.9 | 37 | 5715 | 5880 | 8.21 | 12.46 | 159.46 | 19 | 43 | 38 | Loam | |
78 | NW | Xinjiang | 79.7 | 37.2 | 5550 | 5895 | 8.27 | 13.21 | 162.68 | 22.8 | 42.3 | 34.9 | Loam | |
79 | NW | Gansu | 101.9 | 38.2 | 7470 | 8.35 | 19.68 | 314.06 | 16 | 42 | 42 | Sandy loam | ||
80 | NW | Gansu | 102.9 | 37.5 | 6000 | 6645 | 8.61 | 8.13 | 120.07 | 15 | 47 | 38 | Loam | |
81 | NW | Ningxia | 106.5 | 39.4 | 5040 | 9945 | 8.33 | 17.66 | 213.49 | 20 | 55 | 25 | Silty loam | |
82 | NW | Ningxia | 105.8 | 37.8 | 5595 | 8355 | 9675 | 8.30 | 12.97 | 116.78 | 19 | 47 | 24 | Loam |
83 | NW | Xinjiang | 88.6 | 45.1 | 4890 | 8310 | 7.50 | 21.21 | 240.29 | 28 | 45 | 27 | Loam | |
84 | NW | Ningxia | 106.1 | 38.6 | 13,095 | 8850 | 8.30 | 19.38 | 142.57 | 26.8 | 43 | 30.2 | Loam | |
85 | NW | Ningxia | 106.4 | 38.7 | 8955 | 8.23 | 22.09 | 187.63 | 26.8 | 43 | 30.2 | Loam | ||
86 | NW | Shanxi | 110.98 | 35.02 | 4710 | 6090 | 8.61 | 13.38 | 123.61 | 20 | 44 | 36 | Loam | |
87 | NW | Gansu | 105.5 | 34.3 | 4680 | 8490 | 8.25 | 12.35 | 113.69 | 18 | 47 | 35 | Loam | |
88 | NW | Qinghai | 102.4 | 36.4 | 2745 | 8.34 | 11.88 | 198.76 | 18 | 46 | 36 | Loam | ||
89 | NW | Qinghai | 102.2 | 36.8 | 4095 | 8.15 | 20.50 | 133.45 | 20 | 45 | 35 | Loam | ||
90 | NW | Shaanxi | 109.6 | 33.4 | 4020 | 5745 | 7.85 | 16.50 | 135.87 | 19.6 | 47.6 | 32.8 | Loam | |
91 | NW | Shanxi | 111.23 | 37.88 | 7080 | 8.25 | 9.13 | 139.50 | 14 | 43 | 43 | Loam |
Site Number | Region | Province | Longitude | Latitude | Climate | Agronomic Practices | Topographic Information | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean Annual Temperature (℃) | Mean Annual Precipitation (mm) | Drought Index | Climatic Zone | Fertilizer P Rate (kg P2O5 ha−1) | Cropping Pattern | Land Use Type | Slope (°C) | |||||
1 | NE 1 | Jilin | 126.5 | 44.8 | 4.0 | 600 | 42.86 | middle temperate zone | 108.19 | mono-cropping | upland | 2–6 |
2 | NE | Jilin | 129.1 | 42.8 | 5.5 | 550 | 35.48 | middle temperate zone | 75.22 | mono-cropping | paddy | 0–2 |
3 | NE | Heilongjiang | 126.8 | 46 | 3.3 | 505 | 37.97 | middle temperate zone | 95.56 | mono-cropping | upland | 2–6 |
4 | NE | Heilongjiang | 126.3 | 45.3 | 4.4 | 481 | 33.40 | middle temperate zone | 85.86 | mono-cropping | upland | 2–6 |
5 | NE | Heilongjiang | 127 | 47 | 2.4 | 547 | 44.11 | middle temperate zone | 90.22 | mono-cropping | paddy | 6–15 |
6 | NE | Heilongjiang | 126.8 | 46.7 | 2.4 | 547 | 44.11 | middle temperate zone | 65.80 | mono-cropping | paddy | 2–6 |
7 | NE | Heilongjiang | 129.7 | 46.2 | 1.2 | 569.1 | 50.81 | middle temperate zone | 74.20 | mono-cropping | paddy-upland | 2–6 |
8 | HH | Hebei | 114.4 | 37.2 | 13.9 | 480 | 20.08 | warm temperate zone | 168.44 | double-cropping | upland | 2–6 |
9 | HH | Hebei | 114.3 | 38.1 | 13.3 | 536 | 23.00 | warm temperate zone | 219.54 | double-cropping | upland | 2–6 |
10 | HH | Shandong | 117.1 | 36.5 | 14.3 | 665.7 | 27.40 | warm temperate zone | 208.34 | double-cropping | upland | 2–6 |
11 | HH | Shandong | 115.5 | 35.3 | 14.8 | 640 | 25.81 | warm temperate zone | 167.42 | double-cropping | upland | 2–6 |
12 | HH | Shandong | 120.4 | 36.8 | 11.3 | 732 | 34.37 | warm temperate zone | 230.53 | double-cropping | upland | 2–6 |
13 | HH | Shandong | 119.8 | 37.2 | 12.5 | 809 | 35.96 | warm temperate zone | 155.96 | double-cropping | upland | 0–2 |
14 | HH | Shandong | 120 | 37.1 | 12.5 | 809 | 35.96 | warm temperate zone | 144.94 | double-cropping | upland | 2–6 |
15 | HH | Henan | 112.3 | 32.6 | 15.1 | 721 | 28.73 | warm temperate zone | 149.09 | double-cropping | upland | 2–6 |
16 | HH | Henan | 114.1 | 31.2 | 15.2 | 1100 | 43.65 | warm temperate zone | 91.61 | double-cropping | upland | 2–6 |
17 | HH | Henan | 114.5 | 32.4 | 15.0 | 938 | 37.52 | warm temperate zone | 125.95 | double-cropping | upland | 2–6 |
18 | HH | Henan | 112.8 | 34.6 | 14.2 | 570 | 23.55 | warm temperate zone | 174.03 | double-cropping | upland | 2–6 |
19 | HH | Henan | 114.6 | 33.5 | 14.5 | 785.1 | 32.04 | warm temperate zone | 145.44 | double-cropping | upland | 0–2 |
20 | HH | Henan | 115.2 | 34.7 | 14.1 | 674 | 27.97 | warm temperate zone | 209.78 | double-cropping | upland | 2–6 |
21 | HH | Henan | 115.1 | 34.6 | 14.1 | 674 | 27.97 | warm temperate zone | 193.72 | double-cropping | upland | 2–6 |
22 | HH | Henan | 114.9 | 33.8 | 14.0 | 740 | 30.83 | warm temperate zone | 139.30 | double-cropping | upland | 2–6 |
23 | HH | Henan | 112.8 | 32.7 | 15.2 | 910.1 | 36.12 | warm temperate zone | 174.43 | double-cropping | upland | 2–6 |
24 | HH | Henan | 115.1 | 35.8 | 13.4 | 540 | 23.08 | warm temperate zone | 158.03 | double-cropping | upland | 2–6 |
25 | HH | Henan | 114.8 | 34.6 | 14.0 | 678.2 | 28.26 | warm temperate zone | 158.57 | double-cropping | upland | 2–6 |
26 | YR | Jiangsu | 119.7 | 31.4 | 16.1 | 1300 | 49.81 | subtropical zone | 120.57 | double-cropping | paddy-upland | 2–6 |
27 | YR | Jiangsu | 119.7 | 31.9 | 16.5 | 1043 | 39.36 | subtropical zone | 143.67 | double-cropping | paddy-upland | 2–6 |
28 | YR | Guangxi | 110.8 | 24.8 | 18.8 | 1894 | 65.76 | subtropical zone | 157.13 | double-cropping | paddy | 2–6 |
29 | YR | Jiangsu | 120 | 32.9 | 15.0 | 1032.3 | 41.29 | subtropical zone | 125.42 | double-cropping | paddy-upland | 2–6 |
30 | YR | Jiangsu | 120.5 | 33.2 | 14.1 | 1042.2 | 43.24 | subtropical zone | 174.52 | double-cropping | paddy-upland | 2–6 |
31 | YR | Anhui | 116.2 | 33.5 | 15.1 | 809.8 | 32.26 | subtropical zone | 115.72 | double-cropping | upland | 2–6 |
32 | YR | Anhui | 116.4 | 33.1 | 14.9 | 812 | 32.61 | subtropical zone | 161.83 | double-cropping | upland | 2–6 |
33 | YR | Anhui | 117.9 | 32.7 | 14.9 | 1100 | 44.18 | subtropical zone | 158.37 | double-cropping | paddy-upland | 2–6 |
34 | YR | Anhui | 118 | 30.9 | 15.0 | 1000 | 40.00 | subtropical zone | 130.91 | double-cropping | paddy-upland | 2–6 |
35 | YR | Fujian | 117.8 | 27.3 | 18.1 | 1742 | 61.99 | subtropical zone | 86.68 | double-cropping | paddy | 2–6 |
36 | YR | Fujian | 117.1 | 26.8 | 19.2 | 1753 | 60.03 | subtropical zone | 109.95 | double-cropping | paddy | 0–2 |
37 | YR | Hubei | 110.1 | 32.2 | 14.0 | 905 | 37.71 | subtropical zone | 148.51 | triple-cropping | upland | 0–2 |
38 | YR | Hubei | 114 | 30.1 | 17.0 | 900 | 33.33 | subtropical zone | 155.78 | triple-cropping | paddy-upland | 2–6 |
39 | YR | Hubei | 112.9 | 30.7 | 16.2 | 900 | 34.35 | subtropical zone | 149.94 | double-cropping | upland | 2–6 |
40 | YR | Hubei | 112.7 | 30.3 | 16.1 | 1200 | 45.98 | subtropical zone | 175.74 | double-cropping | upland | 2–6 |
41 | YR | Jiangsu | 119 | 31.6 | 15.6 | 1037.6 | 40.53 | subtropical zone | 130.19 | double-cropping | paddy | 2–6 |
42 | YR | Jiangsu | 118.7 | 32.4 | 15.6 | 1100 | 42.97 | subtropical zone | 125.40 | double-cropping | paddy | 2–6 |
43 | YR | Jiangsu | 119.2 | 32.5 | 15.8 | 1015 | 39.34 | subtropical zone | 100.66 | double-cropping | paddy | 2–6 |
44 | YR | Jiangsu | 120 | 32.5 | 14.5 | 991.7 | 40.48 | subtropical zone | 133.74 | double-cropping | paddy | 2–6 |
45 | YR | Jiangsu | 120.4 | 32.6 | 15.8 | 959 | 37.17 | subtropical zone | 103.33 | double-cropping | paddy | 2–6 |
46 | YR | Jiangsu | 120.5 | 32.8 | 15.0 | 1061.2 | 42.45 | subtropical zone | 131.93 | double-cropping | paddy | 0–2 |
47 | YR | Anhui | 116.8 | 33.6 | 15.3 | 850 | 33.60 | subtropical zone | 190.30 | double-cropping | upland | 2–6 |
48 | YR | Anhui | 116.3 | 32.6 | 15.4 | 930 | 36.61 | subtropical zone | 127.10 | double-cropping | upland | 2–6 |
49 | YR | Anhui | 115.2 | 32.8 | 15.4 | 890 | 35.04 | subtropical zone | 142.65 | double-cropping | upland | 0–2 |
50 | YR | Anhui | 117.1 | 32.3 | 15.0 | 960 | 38.40 | subtropical zone | 152.36 | double-cropping | paddy | 2–6 |
51 | YR | Anhui | 117.3 | 31.2 | 16.2 | 1262.9 | 48.20 | subtropical zone | 133.75 | double-cropping | paddy | 2–6 |
52 | YR | Anhui | 118.5 | 30.2 | 15.6 | 1430 | 55.86 | subtropical zone | 52.48 | double-cropping | paddy | 0–2 |
53 | YR | Fujian | 117.8 | 24.4 | 21.5 | 1563.2 | 49.63 | subtropical zone | 119.92 | double-cropping | paddy | 2–6 |
54 | YR | Hubei | 111.5 | 30.1 | 16.2 | 1250 | 47.71 | subtropical zone | 136.70 | double-cropping | upland | 2–6 |
55 | YR | Hubei | 112.5 | 31.2 | 16.4 | 987.6 | 37.41 | subtropical zone | 153.45 | double-cropping | paddy | 2–6 |
56 | YR | Hubei | 110.7 | 32.6 | 15.4 | 780 | 30.71 | subtropical zone | 138.00 | double-cropping | upland | 0–2 |
57 | YR | Hubei | 113 | 30.6 | 16.4 | 960 | 36.36 | subtropical zone | 90.20 | double-cropping | paddy | 2–6 |
58 | YR | Hunan | 114.1 | 28.3 | 18.2 | 1395.7 | 49.49 | subtropical zone | 85.43 | double-cropping | paddy | 2–6 |
59 | YR | Hunan | 111.8 | 27.1 | 16.6 | 1250 | 46.99 | subtropical zone | 177.40 | double-cropping | upland | 2–6 |
60 | YR | Hunan | 113.1 | 29.3 | 16.8 | 1295 | 48.32 | subtropical zone | 114.52 | double-cropping | paddy | 2–6 |
61 | YR | Hunan | 111.2 | 25.5 | 18.0 | 1600 | 57.14 | subtropical zone | 119.08 | double-cropping | paddy | 0–2 |
62 | YR | Hunan | 110 | 27.1 | 17.0 | 1700 | 62.96 | subtropical zone | 144.80 | double-cropping | paddy | 2–6 |
63 | YR | Guangxi | 108.8 | 23.2 | 28.8 | 1589.2 | 40.96 | subtropical zone | 102.25 | double-cropping | paddy | 2–6 |
64 | SC | Guangdong | 110.2 | 20.5 | 23.3 | 1364 | 40.96 | subtropical zone | 210.46 | double-cropping | paddy | 6–15 |
65 | SC | Guangdong | 112.2 | 22.6 | 21.5 | 1663.7 | 52.82 | subtropical zone | 81.09 | double-cropping | paddy | 2–6 |
66 | SC | Guangdong | 113.5 | 24.1 | 19.3 | 1923 | 65.63 | subtropical zone | 101.15 | double-cropping | paddy | 2–6 |
67 | SC | Guangdong | 112.6 | 23.1 | 21.2 | 1650 | 52.88 | subtropical zone | 87.90 | double-cropping | paddy | 0–2 |
68 | SC | Hainan | 110.4 | 19.2 | 24.1 | 1900 | 55.72 | tropical zone | 163.08 | double-cropping | paddy | 2–6 |
69 | SC | Hainan | 110.3 | 19.4 | 24.0 | 1953 | 57.44 | tropical zone | 126.40 | double-cropping | paddy | 6–15 |
70 | SW | Sichuan | 104.6 | 31 | 16.7 | 950 | 35.58 | subtropical zone | 169.46 | triple-cropping | upland | 0–2 |
71 | SW | Sichuan | 104.7 | 31.1 | 16.7 | 950 | 35.58 | subtropical zone | 170.52 | triple-cropping | upland | 0–2 |
72 | SW | Guizhou | 105.8 | 26.5 | 15.1 | 1378.2 | 54.91 | subtropical zone | 72.60 | double-cropping | paddy | 0–2 |
73 | SW | Yunnan | 103.9 | 25.4 | 14.5 | 1008 | 41.14 | subtropical zone | 97.12 | double-cropping | upland | 0–2 |
74 | SW | Yunnan | 100.1 | 23.8 | 17.9 | 1158 | 41.51 | subtropical zone | 147.37 | double-cropping | upland | 0–2 |
75 | SW | Chongqing | 106.2 | 29.1 | 18.0 | 1000 | 35.71 | subtropical zone | 57.30 | double-cropping | paddy | 0–2 |
76 | SW | Chongqing | 106.4 | 28.7 | 18.2 | 1034.7 | 36.69 | subtropical zone | 53.80 | double-cropping | paddy | 0–2 |
77 | NW | Xinjiang | 79.9 | 37 | 8.9 | 35 | 1.85 | warm temperate zone | 368.49 | double-cropping | upland | 0–2 |
78 | NW | Xinjiang | 79.7 | 37.2 | 8.9 | 35 | 1.85 | warm temperate zone | 307.58 | double-cropping | upland | 0–2 |
79 | NW | Gansu | 101.9 | 38.2 | 4.8 | 185.1 | 12.51 | warm temperate zone | 158.38 | mono-cropping | upland | 0–2 |
80 | NW | Gansu | 102.9 | 37.5 | 5.6 | 300 | 19.23 | warm temperate zone | 132.91 | mono-cropping | upland | 0–2 |
81 | NW | Ningxia | 106.5 | 39.4 | 8.9 | 173.2 | 9.16 | middle temperate zone | 219.27 | mono-cropping | upland | 0–2 |
82 | NW | Ningxia | 105.8 | 37.8 | 8.5 | 260.7 | 14.09 | middle temperate zone | 151.54 | double-cropping | paddy-upland | 0–2 |
83 | NW | Xinjiang | 88.6 | 45.1 | 5.9 | 145 | 9.12 | middle temperate zone | 140.21 | mono-cropping | upland | 0–2 |
84 | NW | Ningxia | 106.1 | 38.6 | 8.3 | 210 | 11.48 | middle temperate zone | 102.64 | mono-cropping | paddy | 0–2 |
85 | NW | Ningxia | 106.4 | 38.7 | 8.5 | 225 | 12.16 | middle temperate zone | 95.30 | mono-cropping | paddy | 0–2 |
86 | NW | Shanxi | 110.98 | 35.02 | 13.6 | 559.3 | 23.70 | warm temperate zone | 150.26 | mono-cropping | upland | 0–2 |
87 | NW | Gansu | 105.5 | 34.3 | 10.7 | 531 | 25.63 | warm temperate zone | 132.49 | mono-cropping | upland | 0–2 |
88 | NW | Qinghai | 102.4 | 36.4 | 7.3 | 335.4 | 19.39 | warm temperate zone | 232.38 | mono-cropping | upland | 0–2 |
89 | NW | Qinghai | 102.2 | 36.8 | 5.8 | 477.4 | 30.22 | warm temperate zone | 177.34 | mono-cropping | upland | 0–2 |
90 | NW | Shaanxi | 109.6 | 33.4 | 13.1 | 709 | 30.69 | warm temperate zone | 241.08 | double-cropping | upland | 0–2 |
91 | NW | Shanxi | 111.23 | 37.88 | 7.7 | 520 | 29.38 | middle temperate zone | 119.80 | mono-cropping | upland | 0–2 |
Region | Current Olsen-P Content (mg kg−1) | Current P Surplus (kg ha−1) | SPTE (mg kg−1) | Time Required to Reach Environmental Threshold (Year) |
---|---|---|---|---|
NE 1 | 26.63 | 20.44 | 1.22 | 53.6–101.7 |
HH | 29.55 | 86.9 | 0.91 | 13.2–28.4 |
YR | 25.12 | 55.72 | 1.04 | 25.7–46.4 |
SC | 35.27 | 52.6 | 1.97 | 4.6–16.1 |
SW | 36.6 | 40.38 | 1.12 | 7.5–34.1 |
NW | 29.21 | 103.53 | 0.87 | 12.0–25.3 |
References
- Simpson, R.J.; Oberson, A.; Culvenor, R.A.; Ryan, M.H.; Veneklaas, E.J.; Lambers, H.; Lynch, J.P.; Ryan, P.R.; Delhaize, E.; Smith, F.A.; et al. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 2011, 349, 89–120. [Google Scholar]
- Withers, P.J.A.; Sylvester-Bradley, R.; Jones, D.L.; Healey, J.R.; Talboys, P.J. Feed the Crop Not the Soil: Rethinking Phosphorus Management in the Food Chain. Environ. Sci. Technol. 2014, 48, 6523–6530. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Chen, J.; Sun, F. Agricultural phosphorus flow and its environmental impacts in China. Sci. Total Environ. 2008, 405, 140–152. [Google Scholar] [CrossRef]
- MacDonald, G.K.; Elena, M.B.; Potter, P.A.; Ramankutty, N. Agronomic phosphorus imbalances across the world’s croplands. Proc. Natl. Acad. Sci. USA 2011, 108, 3086–3091. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.C.; He, P.; Xu, X.P.; He, W.T.; Liu, Y.X.; Yang, F.Q.; Chen, F.; Li, S.T.; Tu, S.H.; Jin, J.Y.; et al. Temporal and spatial changes in soil available phosphorus in China (1990–2012). Field Crop. Res. 2016, 192, 13–20. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Hua, H.; Sheng, H.; Jarvie, H.P.; Liu, X.; Zhang, Y.; Yuan, Z.W.; Zhang, L.; Liu, X.W. Phosphorus footprint in China over the 1961–2050 period: Historical perspective and future prospect. Sci. Total Environ. 2019, 650, 687–695. [Google Scholar] [CrossRef]
- Shen, R.P.; Sun, B.; Zhao, Q.G. Spatial and Temporal variability of N, P and K balances for agroecosystems in China. Pedosphere 2005, 15, 347–355. [Google Scholar]
- Li, H.; Huang, G.; Meng, Q.; Ma, L.; Yuan, L.; Wang, E.; Zhang, W.; Cui, Z.; Shen, J.; Chen, X.; et al. Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant Soil 2011, 349, 157–167. [Google Scholar] [CrossRef]
- Ma, J.C.; Liu, Y.X.; He, W.T.; He, P.; Haygarth, P.M.; Surridge, B.W.J.; Lei, Q.L.; Zhou, W. The long-term soil phosphorus balance across Chinese arable land. Soil Use Manag. 2018, 34, 306–315. [Google Scholar]
- Carpenter, S.R. Eutrophication of aquatic ecosystems: Bistability and soil phosphorus. Proc. Natl. Acad. Sci. USA 2005, 102, 10002–10005. [Google Scholar] [CrossRef] [Green Version]
- McDowell, R.; Dodd, R.; Pletnyakov, P.; Noble, A. The ability to reduce soil legacy phosphorus at a country scale. Front. Environ. Sci. 2020, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.H.; Li, H.G.; Yang, X.Y.; Zhou, B.K.; Shi, X.J.; Wang, B.R.; Li, D.C.; Shen, J.B.; Chen, Q.; Qin, W.; et al. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil 2013, 372, 27–37. [Google Scholar] [CrossRef]
- Xi, B.; Zhai, L.M.; Liu, J.; Liu, S.; Wang, H.Y.; Luo, C.Y.; Ren, T.Z.; Liu, H.B. Long-term phosphorus accumulation and agronomic and environmental critical phosphorus levels in Haplic Luvisol soil, northern China. J. Integr. Agric. 2016, 15, 200–208. [Google Scholar] [CrossRef]
- Zhan, X.Y.; Zhang, L.; Zhou, B.K.; Zhu, P.; Zhang, S.X.; Xu, M.G. Changes in Olsen phosphorus concentration and its response to phosphorus balance in black soils under different long-term fertilization patterns. PLoS ONE 2015, 10, e0131713. [Google Scholar] [CrossRef]
- Wu, Q.H.; Zhang, S.X.; Ren, Y.; Zhan, X.Y.; Xu, M.G.; Feng, G. Soil Phosphorus Management Based on the Agronomic Critical Value of Olsen P. Commun. Soil Sci. Plan. 2018, 49, 934–944. [Google Scholar]
- Cao, N.; Chen, X.P.; Cui, Z.L.; Zhang, F.S. Change in soil available phosphorus in relation to the phosphorus budget in China. Nutr. Cycl. Agroecosyst. 2012, 94, 161–170. [Google Scholar] [CrossRef]
- Shen, P.; Xu, M.G.; Zhang, H.M.; Yang, X.Y.; Huang, S.M.; Zhang, S.X.; He, X.H. Long-term response of soil Olsen P and organic C to the depletion or addition of chemical and organic fertilizers. Catena 2014, 118, 20–27. [Google Scholar] [CrossRef]
- Daly, K.; Styles, D.; Lalor, S.; Wall, D.P. Phosphorus sorption, supply potential and availability in soils with contrasting parent material and soil chemical properties. Eur. J. Soil Sci. 2015, 66, 792–801. [Google Scholar] [CrossRef]
- Olsson, R.; Giesler, R.; Loring, J.S.; Persson, P. Enzymatic hydrolysis of organic phosphates adsorbed on mineral surfaces. Environ. Sci. Technol. 2012, 46, 285–291. [Google Scholar] [CrossRef]
- Meyer, G.; Bell, M.J.; Doolette, C.L.; Brunetti, G.; Zhang, Y.Q.; Lombi, E.; Kopittke, P. Plant-Available Phosphorus in Highly Concentrated Fertilizer Bands: Effects of Soil Type, Phosphorus Form, and Coapplied Potassium. J. Agric. Food Chem. 2020, 68, 7571–7580. [Google Scholar] [CrossRef]
- Penn, C.J.; Camberato, J.J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Hou, E.Q.; Chen, C.R.; Luo, Y.Q.; Zhou, G.Y.; Kuang, Y.W.; Zhang, Y.G.; Heenan, M.; Lu, X.K.; Wen, D.Z. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Glob. Chang. Biol. 2018, 24, 3344–3356. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhao, X.; Wang, L.; Zhao, P.H.; Zhu, W.B.; Wang, S.Q. Phosphorus fertilization to the wheat-growing season only in a rice-wheat rotation in the Taihu Lake region of China. Field Crop. Res. 2016, 198, 32–39. [Google Scholar] [CrossRef]
- Khan, A.; Lu, G.Y.; Ayaz, M.; Zhang, H.T.; Wang, R.J.; Lv, F.L.; Yang, X.Y.; Sun, B.H.; Zhang, S.L. Phosphorus efficiency, soil phosphorus dynamics and critical phosphorus level under long-term fertilization for single and double cropping systems. Agric. Ecosyst. Environ. 2018, 256, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.; Zhang, H.; Schroder, J.; Li, C.; Zhou, D. Phosphate mobilization by citric, tartaric and oxalic acids in a clay loam ultisol. Soil Sci. Soc. Am. J. 2008, 72, 1263–1268. [Google Scholar] [CrossRef]
- He, W.T.; Jiang, R.; He, P.; Yang, J.Y.; Zhou, W.; Ma, J.C.; Liu, Y.X. Estimating soil nitrogen balance at regional scale in China’s croplands from 1984 to 2014. Agric. Syst. 2018, 167, 125–135. [Google Scholar] [CrossRef]
- Cai, A.D.; Xu, H.; Duan, Y.H.; Zhang, X.B.; Ashraf, M.N.; Zhang, W.J.; Xu, M.G. Changes in mineral-associated carbon and nitrogen by long-term fertilization and sequestration potential with various cropping across China dry croplands. Soil Tillage Res. 2021, 205, 104725. [Google Scholar] [CrossRef]
- Lu, R.K. Methods of Agricultural Chemical Analysis of Soil; China Agricultural Science and Technology Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA Circular: Washington, DC, USA, 1954; Volume 939, p. 19. [Google Scholar]
- Hengl, T.; Jesus, J.M.D.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Wei, S.; Wright, M.N.; Geng, X.; Bauermarschallinger, B. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [Green Version]
- FAO. World reference base for soil resources 2006: A framework for international classification, correlation and communication. World Soil Resour. Rep. 2006, 103, 1–128. [Google Scholar]
- Cai, A.D.; Xu, M.G.; Wang, B.R.; Zhang, W.J.; Liang, G.P.; Hou, E.Q.; Luo, Y.Q. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Bivand, R. spdep: Spatial Dependence: Weighting Schemes, Statistics and Models; R package Version 0.6-8; 2016. [Google Scholar]
- Grace, J.B.; Anderson, T.M.; Olff, H.; Scheiner, S.M. On the specification of structural equation models for ecological systems. Ecol. Monogr. 2010, 80, 67–87. [Google Scholar] [CrossRef] [Green Version]
- Xin, X.L.; Qin, S.W.; Zhang, J.B.; Zhu, A.N.; Yang, W.L.; Zhang, X.F. Yield, phosphorus use efficiency and balance response to substituting long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crop. Res. 2017, 208, 27–33. [Google Scholar] [CrossRef]
- Fei, C.; Zhang, S.R.; Feng, X.H.; Ding, X.D. Organic material with balanced C-nutrient stoichiometry and P addition could improve soil P availability with low C cost. J. Plant Nutr. Soil Sci. 2021, 184, 573–584. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Garg, A.K.; Kabba, B.S. Phosphorus accumulation, leaching and residual effects on crop yields from long-term applications in the subtropics. Soil Use Manag. 2007, 23, 417–427. [Google Scholar] [CrossRef]
- Messiga, A.J.; Ziadi, N.; Bélanger, G.; Morel, C. Relationship between soil phosphorus and phosphorus budget in grass sward with varying nitrogen applications. Soil Sci. Soc. Am. J. 2014, 78, 1481–1488. [Google Scholar] [CrossRef]
- Blake, L.; Mercik, S.; Koerschens, M.; Moskal, S.; Poulton, P.R.; Goulding, K.W.T.; Weigel, A.; Powlson, D.S. Phosphorus content in soil, uptake by plants and balance in three European long-term field experiments. Nutr. Cycl. Agroecosyst. 2000, 56, 263–275. [Google Scholar] [CrossRef]
- Fink, J.R.; Vasconcellos, I.A.; Tales, T.; Barrón, V. Iron oxides and organic matter on soil phosphorus availability. Cienc. Agrotecnol. 2016, 40, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Weyers, E.; Strawn, D.G.; Peak, D.; Moore, A.; Baker, L.; Cade-Menun, B. Phosphorus speciation in calcareous soils following annual dairy manure amendments. Soil Sci. Soc. Am. J. 2016, 80, 1531–1542. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Ilyas, M.; Riaz, M.; Ali, K.; Shan, K.; Haq, I.U.; Fahad, S. Biochar improves phosphorus use efficiency of organic-inorganic fertilizers, maize-wheat productivity and soil quality in a low fertility alkaline soil. Field Crop. Res. 2017, 214, 25–37. [Google Scholar] [CrossRef]
- Yan, Z.J.; Chen, S.; Dari, B.; Sihi, D.; Chen, Q. Phosphorus transformation response to soil properties changes induced by manure application in a calcareous soil. Geoderma 2018, 322, 163–171. [Google Scholar] [CrossRef]
- Zhang, W.W.; Wang, Q.; Wu, Q.H.; Zhang, S.X.; Zhu, P.; Peng, C.; Huang, S.M.; Wang, B.R.; Zhang, H.M. The response of soil Olsen-P to the P budgets of three typical cropland soil types under long-term fertilization. PLoS ONE 2020, 15, e0230178. [Google Scholar] [CrossRef] [Green Version]
- Barrow, N.J. The effects of pH on phosphate uptake from the soil. Plant Soil 2017, 410, 401–410. [Google Scholar] [CrossRef]
- Wang, X.M.; Hu, Y.F.; Tang, Y.D.; Yang, P.; Feng, X.H.; Xu, W.Q.; Zhu, M.Q. Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces. Environ. Sci. Nano 2017, 4, 2193–2204. [Google Scholar] [CrossRef]
- Wang, X.X.; Liu, S.L.; Zhang, S.M.; Li, H.B.; Maimaitiaili, B.; Feng, G.; Rengel, Z. Localized ammonium and phosphorus fertilization can improve cotton lint yield by decreasing rhizosphere soil pH and salinity. Field Crop. Res. 2018, 217, 75–81. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, L.H.; Liu, S.J.; Han, T.F.; Hayatu, N.G.; Li, D.C.; Zhang, S.X.; Wang, B.R.; Zhang, H.M. Vertical distribution of phosphorus fractions and the environmental critical phosphorus level in acidic red soil under long-term fertilizer and lime application in southern China. J. Plant. Nutr. Soil Sci. 2021, 184, 585–595. [Google Scholar] [CrossRef]
- Mayakaduwage, S.; Mosley, L.M.; Marschner, P. Phosphorus pools in acid sulfate soil are influenced by soil water content and form in which P is added. Geoderma 2021, 381, 114692. [Google Scholar] [CrossRef]
- Tang, X.; Li, J.M.; Ma, Y.B.; Hao, X.Y.; Li, X.Y. Phosphorus efficiency in long-term (15 years) wheat-maize cropping systems with various soil and climate conditions. Field Crop. Res. 2008, 108, 231–237. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, Y.; Mou, Z.J.; Kuang, L.H.; Wu, W.J.; Zhang, J.; Wang, F.M.; Hui, D.F.; Peñuelas, J.; Sardans, J.; et al. Phosphorus addition decreases microbial residual contribution to soil organic carbon pool in a tropical coastal forest. Glob. Chang. Biol. 2020, 27, 454–466. [Google Scholar] [CrossRef]
- Messiga, A.J.; Ziadi, N.; Morel, C.; Grant, C.; Tremblay, G.; Lamarre, G.; Parent, L.E. Long term impact of tillage practices and biennial P and N fertilization on maize and soybean yields and soil P status. Field Crop. Res. 2012, 133, 10–22. [Google Scholar] [CrossRef]
- Yan, X.; Wei, Z.Q.; Wang, D.J.; Zhang, G.; Wang, J. Phosphorus status and its sorption-associated soil properties in a paddy soil as affected by organic amendments. J. Soil Sediment. 2015, 15, 1882–1888. [Google Scholar] [CrossRef]
- Messiga, A.J.; Ziadi, N.; Jouany, C.; Virkajärvi, P.; Suomela, R.; Sinaj, S.; Bélanger, G.; Stroia, C.; Morel, C. Soil test phosphorus and cumulative phosphorus budgets in fertilized grassland. Ambio 2015, 44, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Borges, R.; Mallarino, A.P. Grain yield, early growth, and nutrient uptake of no-till soybean as affected by phosphorus and potassium placement. Agron. J. 2000, 92, 380–388. [Google Scholar]
- Xu, G.C.; Li, Z.B.; Li, P.; Zhang, T.G.; Cheng, S.D. Spatial variability of soil available phosphorus in a typical watershed in the source area of the middle Dan River, China. Environ. Earth Sci. 2014, 71, 3953–3962. [Google Scholar] [CrossRef]
- Achat, D.L.; Pousse, N.; Nicolas, M.; Brédoire, F.; Augusto, L. Soil properties controlling inorganic phosphorus availability: General results from a national forest network and a global compilation of the literature. Biogeochemistry 2016, 127, 255–272. [Google Scholar] [CrossRef]
- Zhong, X.; Zhao, X.; Bao, H.; Li, H.; Lin, Q. The evaluation of phosphorus leaching risk of 23 Chinese soils. I. Leaching criterion. Acta Ecol. Sin. 2004, 24, 2275–2280, (In Chinese with English Abstract). [Google Scholar]
- Zhou, J.; Zhang, Y.F.; Wu, K.B.; Hu, M.P.; Wu, H.; Chen, D.J. National estimates of environmental thresholds for upland soil phosphorus in China based on a meta-analysis. Sci. Total Environ. 2021, 780, 146677. [Google Scholar] [CrossRef]
- Martin, A.; Cooke, G.D. Health risks in eutrophic water supplies. Lake Line 1994, 14, 24–26. [Google Scholar]
- Zhang, W.W.; Zhan XYZhang, S.X.; Khalid, H.M.I.; Xu, M.G. Response of soil Olsen-P to P budget under different long-term fertilization treatments in a fluvo-aquic soil. J. Integr. Agric. 2019, 18, 667–676. [Google Scholar] [CrossRef]
Region | pH | SOM 1 (g kg−1) | Total Nitrogen (g kg−1) | Soil Olsen-P (mg kg−1) | Available Potassium (mg kg−1) | Mean Annual Temperature (°C) | Mean Annual Precipitation (mm) | DI |
---|---|---|---|---|---|---|---|---|
NE 2 | 6.40 ± 0.10 c 3 | 33.85 ± 1.74 b | 1.86 ± 0.05 a | 25.05 ± 4.17 a | 190.46 ± 14.74 a | 3.31 ± 0.55 e | 542.73 ± 14.88 d | 41.25 ± 5.56 a |
HH | 7.20 ± 0.26 b | 14.38 ± 0.89 d | 0.96 ± 0.05 b | 23.50 ± 2.59 a | 108.02 ± 7.63 ab | 13.97 ± 0.25 c | 722.34 ± 36.62 c | 30.13 ± 6.00 b |
YR | 6.44 ± 0.13 c | 26.11 ± 1.70 c | 1.60 ± 0.09 ab | 19.01 ± 2.22 a | 109.87 ± 6.32 ab | 16.51 ± 0.41 b | 1165.56 ± 48.93 b | 43.69 ± 9.03 a |
SC | 5.60 ± 0.25 d | 42.57 ± 7.29 a | 2.17 ± 0.30 a | 26.20 ± 4.57 a | 70.56 ± 8.05 b | 22.23 ± 0.77 a | 1742.28 ± 93.05 a | 54.24 ± 7.33 a |
SW | 6.44 ± 0.40 bc | 33.64 ± 8.44 ab | 1.81 ± 0.31 a | 27.73 ± 9.07 a | 127.74 ± 16.21 a | 16.73 ± 0.55 b | 1068.41 ± 58.04 b | 40.16 ± 6.48 a |
NW | 8.24 ± 0.07 a | 15.37 ± 1.16 d | 0.94 ± 0.06 b | 22.86 ± 3.26 a | 166.79 ± 14.40 a | 8.43 ± 0.66 d | 313.41 ± 52.34 e | 16.70 ± 9.34 c |
Region | Main Crop | Annual P Fertilizer Input (kg ha−1) | P Removal | Annual P | SPTE | ||
---|---|---|---|---|---|---|---|
O-P 1 | C-P | T-P | (kg ha−1) | surplus (kg ha−1) | (mg kg−1) | ||
NE 2 | Corn, rice, soybean | 5.34 ± 2.0 d 3 | 79.66 ± 5.29 b | 85.01 ± 5.47 c | 59.20 ± 6.88 ab | 25.81 ± 8.37 c | 1.22 ± 0.34 b |
HH | Wheat, corn, rice, soybean, rape, cotton, peanut, green manure crops, pepper | 33.23 ± 6.56 ab | 134.27 ± 7.67 a | 167.51 ± 8.25 a | 67.32 ± 6.59 a | 100.19 ± 8.50 ab | 0.91 ± 0.16 b |
YR | Wheat, corn, rice, soybean, rape, green manure crops, pepper | 11.49 ± 1.91 c | 120.62 ± 4.20 a | 132.12 ± 4.66 b | 68.29 ± 3.66 a | 63.82 ± 5.66 b | 1.04 ± 0.13 b |
SC | Rice | 10.12 ± 2.76 c | 118.23 ± 18.28 a | 128.35 ± 20.46 bc | 75.29 ± 6.47 a | 53.06 ± 21.87 b | 1.97 ± 0.57 a |
SW | Wheat, corn, rice, green manure crops | 24.41 ± 6.57 b | 85.33 ± 13.84 b | 109.74 ± 19.57 bc | 29.10 ± 10.06 c | 80.64 ± 9.81 b | 1.12 ± 0.24 b |
NW | Wheat, corn, rice, rape, green manure crops, tomato, celery, cowpea | 51.2 ± 12.40 a | 130.77 ± 10.13 a | 181.98 ± 20.09 a | 49.20 ± 6.03 b | 132.78 ± 22.49 a | 0.87 ± 0.12 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Guo, N.; He, W.; Abbasi, N.A.; Ren, Y.; Qu, X.; Zhang, S. Transformation of Soil Accumulated Phosphorus and Its Driving Factors across Chinese Cropping Systems. Agronomy 2023, 13, 949. https://doi.org/10.3390/agronomy13040949
Chen Y, Guo N, He W, Abbasi NA, Ren Y, Qu X, Zhang S. Transformation of Soil Accumulated Phosphorus and Its Driving Factors across Chinese Cropping Systems. Agronomy. 2023; 13(4):949. https://doi.org/10.3390/agronomy13040949
Chicago/Turabian StyleChen, Yanhua, Ning Guo, Wentian He, Naeem A. Abbasi, Yi Ren, Xiaolin Qu, and Shuxiang Zhang. 2023. "Transformation of Soil Accumulated Phosphorus and Its Driving Factors across Chinese Cropping Systems" Agronomy 13, no. 4: 949. https://doi.org/10.3390/agronomy13040949
APA StyleChen, Y., Guo, N., He, W., Abbasi, N. A., Ren, Y., Qu, X., & Zhang, S. (2023). Transformation of Soil Accumulated Phosphorus and Its Driving Factors across Chinese Cropping Systems. Agronomy, 13(4), 949. https://doi.org/10.3390/agronomy13040949