Soil C:N:P Stoichiometry Succession and Land Use Effect after Intensive Reclamation: A Case Study on the Yangtze River Floodplain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Field Sampling and Laboratory Analyses
2.3. Statistical Analysis
3. Results
3.1. Dynamics of Soil Environmental Factors for Different Land Uses along the Chronosequence
3.2. Soil Nutrient Contents and Ratio Dynamics for Different Land Uses along the Chronosequence
3.3. Identification of Primary Environmental Drivers Affecting Soil C:N:P Stoichiometry
4. Discussion
4.1. Effects of Reclamation Duration on Soil C, N, and P Contents and Stoichiometric Ratios
4.2. Effects of Land Use Pattern on Soil C, N, and P Contents and Stoichiometric Ratios
4.3. Evolution of Soil Properties and Their Regulation of C:N:P Stoichiometry
4.4. Imbalance Risk of Soil C, N, and P Induced by Land Reclamation and Land Use Patterns
4.5. Discontinuous Evolution of Soil Properties along the Soil Chronosequence
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, S.M.; Xia, Y.H.; Hu, Y.J.; Chen, X.B.; Rui, Y.C.; Gunina, A.; He, X.Y.; Ge, T.D.; Wu, J.S.; Su, Y.R.; et al. Stoichiometry of carbon, nitrogen, and phosphorus in soil: Effects of agricultural land use and climate at a continental scale. Soil Till. Res. 2021, 209, 104903. [Google Scholar] [CrossRef]
- Tian, H.Q.; Chen, G.; Zhang, C.; Melillo, J.M.; Hall, C.A.S. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Finzi, A.C.; Austin, A.T.; Cleland, E.E.; Frey, S.D.; Houlton, B.Z.; Wallenstein, M. Responses and feedbacks of coupled biogeochemical cycles to climate change: Examples from terrestrial ecosystems. Front. Ecol. Environ. 2011, 9, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Hui, D.F.; Yang, X.T.; Deng, Q.; Liu, Q.; Wang, X.; Yang, H.; Ren, H. Soil C:N:P stoichiometry in tropical forests on Hainan Island of China: Spatial and vertical variations. Catena 2021, 201, 105228. [Google Scholar] [CrossRef]
- Ostrowska, A.; Porębska, G. Assessment of the C/N ratio as an indicator of the decomposability of organic matter in forest soils. Ecol. Indic. 2015, 49, 104–109. [Google Scholar] [CrossRef]
- Zhang, J.P.; Shen, C.D.; Ren, H.; Wang, J.; Han, W.D. Estimating change in sedimentary organic carbon content during mangrove restoration in southern China using carbon isotopic measurements. Pedosphere 2012, 22, 58–66. [Google Scholar] [CrossRef]
- Du, E.Z.; Doorn, M.; Vries, W. Spatially divergent trends of nitrogen versus phosphorus limitation across European forests. Sci. Total Environ. 2021, 771, 145391. [Google Scholar] [CrossRef]
- Güsewell, S.; Gessner, M.O. N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct. Ecol. 2009, 23, 211–219. [Google Scholar] [CrossRef]
- Peñuelas, J.; Sardans, J.; Rivas-ubach, A.; Janssens, I.A. The human-induced imbalance between C, N and P in Earth’s life system. Glob. Chang. Biol. 2012, 18, 3–6. [Google Scholar] [CrossRef]
- Wang, X.G.; Lü, X.T.; Zhang, H.Y.; Dijkstra, F.A.; Jiang, Y.G.; Wang, X.B.; Lu, J.Y.; Wuyunna; Wang, Z.W.; Han, X.G. Changes in soil C:N:P stoichiometry along an aridity gradient in drylands of northern China. Geoderma 2020, 361, 114087. [Google Scholar] [CrossRef]
- Guan, Y.J.; Zhou, W.; Bai, Z.K.; Cao, Y.G.; Huang, Y.H.; Huang, H.Y. Soil nutrient variations among different land use types after reclamation in the Pingshuo opencast coal mine on the Loess Plateau, China. Catena 2020, 188, 104427. [Google Scholar] [CrossRef]
- Huang, L.M.; Thompson, A.; Zhang, G.L. Long-term paddy cultivation significantly alters topsoil phosphorus transformation and degrades phosphorus sorption capacity. Soil Till. Res. 2014, 142, 32–41. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Maestre, F.T.; Gallardo, A.; Bowker, M.A.; Quero, J.L.; Ochoa, V.; Gozalo, B.; García-Gómez, M.; Soliveres, S.; García-Palacios, P.; et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 2013, 502, 672–676. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, P.B.; Yin, A.J.; Yang, X.H.; Zhang, X.; Zhang, M.; Gao, C. Organic carbon and total nitrogen dynamics of reclaimed soils following intensive agricultural use in eastern China. Agric. Ecosyst. Environ. 2016, 235, 193–203. [Google Scholar] [CrossRef]
- Chen, L.M.; Zhang, G.L. Parent material uniformity and evolution of soil characteristics of a paddy soil chronosequence derived from marine sediments. Acta Pedol. Sin. 2009, 46, 753–763. (In Chinese) [Google Scholar]
- Chen, L.M.; Zhang, G.L.; Effland, W.R. Soil characteristic response times and pedogenic thresholds during the 1000-Year evolution of a paddy soil chronosequence. Soil Sci. Soc. Am. J. 2011, 75, 1807–1820. [Google Scholar] [CrossRef]
- Yin, A.J.; Gao, C.; Zhang, M.; Wu, P.B.; Yang, X.H. Rapid changes in phosphorus species in soils developed on reclaimed tidal flat sediments. Geoderma 2017, 307, 46–53. [Google Scholar] [CrossRef]
- Edwards, P.J.; Jordan, C.F. Nutrient Cycling in Tropical Forest Ecosystems. J. Ecol. 1987, 75, 280. [Google Scholar] [CrossRef]
- Du, L.; Zhang, X.Z.; Zheng, Z.C.; Li, T.X.; Wang, Y.D.; Huang, H.G.; Yu, H.Y.; Ye, D.H.; Liu, T. Paddy soil nutrients and stoichiometric ratios as affected by anthropogenic activities during long-term tillage process in Chengdu Plain. J. Soil Sediments 2020, 20, 3835–3845. [Google Scholar] [CrossRef]
- Zhou, Y.; Boutton, T.W.; Wu, X.B. Soil C:N:P stoichiometry responds to vegetation change from grassland to woodland. Biogeochemistry 2018, 140, 341–357. [Google Scholar] [CrossRef]
- Liu, X.; Ma, J.; Ma, Z.W.; Li, L.H. Soil nutrient contents and stoichiometry as affected by land-use in an agro-pastoral region of northwest China. Catena 2016, 150, 146–153. [Google Scholar] [CrossRef]
- Kong, X.B.; Zhang, F.R.; Wei, Q.; Xu, Y.; Hui, J.G. Influence of land use change on soil nutrients in an intensive agricultural region of North China. Soil Till. Res. 2006, 88, 85–94. [Google Scholar] [CrossRef]
- Roth, P.J.; Lehndorff, E.; Cao, Z.H.; Zhuang, S.Y.; Bannert, A.; Wissing, L.; Schloter, M.; Kögel-Knabner, I.; Amelung, W. Accumulation of nitrogen and microbial residues during 2000 years of rice paddy and non-paddy soil development in the Yangtze River Delta, China. Glob. Chang. Biol. 2011, 17, 3405–3417. [Google Scholar] [CrossRef]
- Li, J.G.; Wan, X.; Liu, X.X.; Chen, Y.; Slaughter, L.C.; Weindorf, D.C.; Dong, Y.H. Changes in soil physical and chemical characteristics in intensively cultivated greenhouse vegetable fields in North China. Soil Till. Res. 2019, 195, 104366. [Google Scholar] [CrossRef]
- Cui, J.; Liu, C.; Li, Z.L.; Wang, L.; Chen, X.F.; Ye, Z.Z.; Fang, C.M. Long-term changes in topsoil chemical properties under centuries of cultivation after reclamation of coastal wetlands in the Yangtze Estuary, China. Soil Till. Res. 2012, 123, 50–60. [Google Scholar] [CrossRef]
- Tian, L.M.; Zhao, L.; Wu, X.D.; Fang, H.B.; Zhao, Y.H.; Hu, G.J.; Yue, G.Y.; Sheng, Y.; Wu, J.C.; Chen, J.; et al. Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland. Sci. Total Environ. 2018, 622–623, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Tie, L.H.; Zhang, S.B.; Peñuelas, J.; Sardans, J.; Zhou, S.X.; Hu, J.X.; Huang, C.D. Responses of soil C, N, and P stoichiometric ratios to N and S additions in a subtropical evergreen broad-leaved forest. Geoderma 2020, 379, 114633. [Google Scholar] [CrossRef]
- Wang, X.H.; Yang, J.H.; Xie, X.F.; Chen, X.J.; Pu, L.J.; Zhang, X.W. Soil microbial succession with soil development since costal reclamation. Catena 2020, 187, 104393. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Yang, L.Z.; Cao, Z.H.; Ci, E.; Yin, S.X. Chronosequential changes of selected pedogenic properties in paddy soils as compared with non-paddy soils. Geoderma 2009, 151, 31–41. [Google Scholar] [CrossRef]
- Sun, L.; Xun, W.B.; Huang, T.; Zhang, G.S.; Gao, J.S.; Ran, W.; Li, D.C.; Shen, Q.R.; Zhang, R.F. Alteration of the soil bacterial community during parent material maturation driven by different fertilization treatments. Soil Biol. Biochem. 2016, 96, 207–215. [Google Scholar] [CrossRef]
- Sun, R.B.; Zhang, X.X.; Guo, X.S.; Wang, D.Z.; Chu, H.Y. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol. Biochem. 2015, 88, 9–18. [Google Scholar] [CrossRef]
- Dai, S.B.; Lu, X.X. Sediment load change in the Yangtze River (Changjiang): A review. Geomorphology 2014, 215, 60–73. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, X.L.; Huang, L.B.; Shan, Q.Y.; Hu, A.Y.; Yan, D.Z.; Zhang, J.; Long, X.E. Soil profile rather than reclamation time drives the mudflat soil microbial community in the wheat-maize rotation system of Nantong, China. J. Soil Sediments 2021, 21, 1672–1687. [Google Scholar] [CrossRef]
- Guo, L.Y.; Wang, D.L.; Wang, J.Y. Analysis of the arable land change and its causes in the eastern coastal China over the last decades. Chin. J. Agric. Resour. Reg. Plan. 2012, 33, 6–10. (In Chinese) [Google Scholar]
- Local Chronicles Compilation Committee of Wuwei County (LCCCW). Wuwei Prefectural Annals; Social Sciences Academic Press (China), SSAP: Beijing, China, 1993. (In Chinese) [Google Scholar]
- Records of Wuwei levee (RWL); Beijing Jiuzhou Publishing House: Beijing, China, 2005. (In Chinese)
- Madsen, A.T.; Murray, A.S. Optically stimulated luminescence dating of young sediments: A review. Geomorphology 2009, 109, 3–16. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Association of Agronomy: Madison, Wisconsin, 1982. [Google Scholar]
- Page, A.L. Methods of Soil Analysis, Part 2: Chemical and Microbial Properties, 2nd ed.; American Association of Agronomy: Madison, Wisconsin, 1982. [Google Scholar]
- Lu, R. Methods of Soil Agrochemistry Analysis; Agricultural Science and Technology Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Zhong, Z.K.; Wang, X.; Zhang, X.Y.; Zhang, W.; Xu, Y.D.; Ren, C.J.; Han, X.H.; Yang, G.H. Edaphic factors but not plant characteristics mainly alter soil microbial properties along a restoration chronosequence of Pinus tabulaeformis stands on Mt. Ziwuling, China. For. Ecol Manag. 2019, 453, 117625. [Google Scholar] [CrossRef]
- Zhang, H.; Yin, A.J.; Chen, Y.H.; Shao, S.S.; Wu, J.T.; Fan, M.M.; Chen, F.R.; Gao, C. Machine learning-based source identification and spatial prediction of heavy metals in soil in a rapid urbanization area, eastern China. J. Clean Prod. 2020, 273, 122858. [Google Scholar] [CrossRef]
- Tian, J.; Bu, L.Y.; Zhang, M.X.; Yuan, J.W.; Zhang, Y.L.; Wei, G.H.; Wang, H.L. Soil bacteria with distinct diversity and functions mediates the soil nutrients after introducing leguminous shrub in desert ecosystems. Glob. Ecol. Conserv. 2021, 31, e01841. [Google Scholar] [CrossRef]
- Jiang, S.; Xing, Y.J.; Liu, G.C.; Hu, C.Y.; Wang, X.C.; Yan, G.Y.; Wang, Q.G. Changes in soil bacterial and fungal community composition and functional groups during the succession of boreal forests. Soil Biol. Biochem. 2021, 161, 108393. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Šmilauer, P. CANOCO Reference Manual and User’s Guide: Software for Canonical Community Ordination (Version 5.0); Biometris: Wageningen, The Netherlands; České Budĕjovice, Czech Republic, 2002. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L. Manual on Setting Up, Using, and Understanding Random Forests V3.1. 2002. Available online: https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf (accessed on 10 October 2022).
- Chen, J.; Zhang, H.; Fan, M.M.; Chen, F.R.; Gao, C. Machine-learning-based prediction and key factor identification of the organic carbon in riverine floodplain soils with intensive agricultural practices. J. Soil Sediments 2021, 21, 2896–2907. [Google Scholar] [CrossRef]
- Tan, J.L.; Kang, Y.H. Changes in soil properties under the influences of cropping and drip irrigation during the reclamation of severe salt-affected soils. Agric. Sci. China 2009, 8, 1228–1237. [Google Scholar] [CrossRef]
- Wissing, L.; Kölbl, A.; Schad, P.; Bräuer, T.; Cao, Z.-H.; Kögel-Knabner, I. Organic carbon accumulation on soil mineral surfaces in paddy soils derived from tidal wetlands. Geoderma 2014, 228-229, 90–103. [Google Scholar] [CrossRef]
- Rowley, M.C.; Grand, S.; Adatte, T.; Verrecchia, E.P. A cascading influence of calcium carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils, Switzerland. Geoderma 2019, 361, 114065. [Google Scholar] [CrossRef]
- Adams, M.L.; Hawke, D.J.; Nilsson, N.; Powell, K.J. The relationship between soil solution pH and Al3+concentrations in a range of South Island (New Zealand) soils. Soil Res. 2000, 38, 141–154. [Google Scholar] [CrossRef]
- Rowley, M.C.; Grand, S.; Verrecchia, É.P. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 2018, 137, 27–49. [Google Scholar] [CrossRef]
- Huang, L.-M.; Thompson, A.; Zhang, G.-L.; Chen, L.-M.; Han, G.-Z.; Gong, Z.-T. The use of chronosequences in studies of paddy soil evolution: A review. Geoderma 2015, 237-238, 199–210. [Google Scholar] [CrossRef]
- Johnson, D.L.; Watson-Stegner, D. Evolution model of pedogenesis. Soil Sci. 1986, 143, 349–366. [Google Scholar] [CrossRef]
- Walker, T.W.; Syers, J.K. The fate of phosphorus during pedogenesis. Geoderma 1976, 15, 1–19. [Google Scholar] [CrossRef]
- Yavitt, J.B.; Harms, K.E.; Garcia, M.N.; Mirabello, M.J.; Wright, S.J. Soil fertility and fine root dynamics in response to 4 years of nutrient (N, P, K) fertilization in a lowland tropical moist forest, Panama. Austral Ecology 2011, 36, 433–445. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, M.; Huang, Z.; Lin, T.C.; Vadeboncoeur, M.A.; Searle, E.B.; Chen, H.Y. Temporal changes in soil C-N-P stoichiometry over the past 60 years across subtropical China. Glob. Chang. Biol. 2018, 24, 1308–1320. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.H.; Huang, Z.Q.; He, Z.M.; Yu, Z.P.; Wang, M.H.; Murry, R.D.; Yang, Y.S. Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil 2015, 387, 103–116. [Google Scholar] [CrossRef]
- Cong, R.H.; Wang, X.J.; Xu, M.G.; Zhang, W.J.; Xie, L.J.; Yang, X.Y.; Huang, S.M.; Wang, B.R. Dynamics of soil carbon to nitrogen ratio changes under long-term fertilizer addition in wheat-corn double cropping systems of China. Eur. J. Soil Sci. 2012, 63, 341–350. [Google Scholar] [CrossRef]
- Zhu, Z.K.; Zhou, J.; Shahbaz, M.; Tang, H.M.; Liu, S.L.; Zhang, W.J.; Yuan, H.Z.; Zhou, P.; Alharbi, H.; Wu, J.S.; et al. Microorganisms maintain C:N stoichiometric balance by regulating the priming effect in long-term fertilized soils. Appl. Soil Ecol. 2021, 167, 104033. [Google Scholar] [CrossRef]
- Deng, M.F.; Liu, L.L.; Sun, Z.Z.; Piao, S.L.; Ma, Y.C.; Chen, Y.W.; Wang, J.; Qiao, C.L.; Wang, X.; Li, P. Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperate Larix principis-rupprechtii plantations. New Phytol. 2016, 212, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Niu, S.L.; Yu, G.R. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: A meta-analysis. Glob. Chang. Biol. 2016, 22, 934–943. [Google Scholar] [CrossRef]
- Seidel, F.; Lopez C., M.L.; Bonifacio, E.; Kurokawa, H.; Yamanaka, T.; Celi, L. Seasonal phosphorus and nitrogen cycling in four Japanese cool-temperate forest species. Plant Soil 2022, 472, 391–406. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Porder, S.; Houlton, B.Z.; Chadwick, O.A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 2010, 20, 5–15. [Google Scholar] [CrossRef]
- Salem, M.A.; Al-Ethawi, L.A.; Eldrazi, Z.; Nouraldien, A.I. A case study of the total and available phosphorus concentration in libyan agricultural soils in different depths and seasons in long-term chemical and animal manure fertilization. Int. J. Res. Stud. Biosci. 2014, 2, 1–9. [Google Scholar]
- Gamboa, A.M.; Galicia, L. Differential influence of land use/cover change on topsoil carbon and microbial activity in low-latitude temperate forests. Agric. Ecosyst. Environ. 2011, 142, 280–290. [Google Scholar] [CrossRef]
- Liu, Y.L.; Wang, P.; Pan, G.X.; Crowley, D.; Li, L.Q.; Zheng, J.W.; Zhang, X.H.; Zheng, J.F. Functional and structural responses of bacterial and fungal communities from paddy fields following long-term rice cultivation. J. Soils Sediments 2015, 16, 1460–1471. [Google Scholar] [CrossRef]
- Lin, S.Y.; Wang, W.Q.; Vancov, Y.; Lai, D.Y.F.; Wang, C.; Wiesmeier, M.; Jin, Q.; Liu, X.Y.; Fang, Y.Y. Soil carbon, nutrients and their stoichiometry decrement in relation to paddy field degradation: Investigation in a subtropical region. Catena 2022, 217, 106484. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, Y.Q.; Gong, X.W.; Niu, Y.Y.; Chen, Y.P.; Shi, X.P.; Li, W. Storage, pattern and driving factors of soil organic carbon in an ecologically fragile zone of northern China. Geoderma 2019, 343, 155–165. [Google Scholar] [CrossRef]
- Wei, L.; Ge, T.D.; Zhu, Z.K.; Luo, Y.; Yang, Y.H.; Xiao, M.L.; Yan, Z.F.; Li, Y.H.; Wu, J.S.; Kuzyakov, Y. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma 2021, 398, 115121. [Google Scholar]
- Zhao, Z.J.; Jin, R.; Fang, D.; Wang, H.; Dong, Y.; Xu, R.K.; Jiang, J. Paddy cultivation significantly alters the forms and contents of Fe oxides in an Oxisol and increases phosphate mobility. Soil Till. Res. 2018, 184, 176–180. [Google Scholar] [CrossRef]
- Zou, P.; Fu, J.R.; Cao, Z.H. Chronosequence of paddy soils and phosphorus sorption–desorption properties. J. Soil Sediments 2011, 11, 249–259. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S.Y.; Zhu, Z.L. Soil organic nitrogen composition and mineralization of paddy soils in a cultivation chronosequence in China. J. Soil Sediments 2017, 17, 1588–1598. [Google Scholar] [CrossRef]
- Ezrin, M.H.; Amin, M.; Anuar, A.R.; Aimrun, W. Rice yield prediction using apparent electrical conductivity of paddy soils. Eur. J. Sci. Res. 2009, 37, 575–590. [Google Scholar]
- Li, H.; Zhang, Y.Y.; Yang, S.; Wang, Z.R.; Feng, X.; Liu, H.Y.; Jiang, Y. Variations in soil bacterial taxonomic profiles and putative functions in response to straw incorporation combined with N fertilization during the maize growing season. Agric. Ecosyst. Environ. 2019, 283, 106578. [Google Scholar] [CrossRef]
- Statistical Bereau of Anhui Province (SBAP). Statistical Yearbook of Anhui Province. 2019. Available online: http://tjj.ah.gov.cn/oldfiles/tjj/tjjweb/tjnj/2019/cn.html (accessed on 22 November 2022).
- Lei, Y.; Song, B.; Saakes, M.; van der Weijden, R.D.; Buisman, C.J. Interaction of calcium, phosphorus and natural organic matter in electrochemical recovery of phosphate. Water Res. 2018, 142, 10–17. [Google Scholar] [CrossRef]
- Peng, Y.; Sun, Y.; Fan, B.; Zhang, S.; Bolan, N.S.; Chen, Q.; Tsang, D.C. Fe/Al (hydr)oxides engineered biochar for reducing phosphorus leaching from a fertile calcareous soil. J. Clean Prod. 2021, 279, 123877. [Google Scholar] [CrossRef]
- Silver, W.L.; Neff, J.; Mcgroddy, M.; Veldkamp, E.; Cosme, K.R. Effects of soil texture on belowground carbon and nutrient storage in a lowland amazonian forest ecosystem. Ecosystems 2000, 3, 193–209. [Google Scholar] [CrossRef]
- Chen, J.S.; Chiu, C.Y. Characterization of soil organic matter in different particle-size fractions in humid subalpine soils by CP/MAS 13C NMR. Geoderma 2003, 117, 129–141. [Google Scholar] [CrossRef]
- Hou, E.Q.; Chen, C.R.; Luo, Y.Q.; Zhou, G.Y.; Kuang, Y.W.; Zhang, Y.G.; Heenan, M.; Lu, X.K.; Wen, D.Z. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Glob. Chang. Biol. 2018, 24, 3344–3356. [Google Scholar] [CrossRef]
- Pan, W.L.; Kidwell, K.K.; McCracken, V.A.; Bolton, R.P.; Allen, M. Economically optimal wheat yield, protein and nitrogen use component responses to varying N supply and genotype. Front. Plant Sci. 2020, 10, 1790. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.L.; Wu, Q.X.; Zhu, J.Q. Nitrogen and phosphorus losses from paddy fields and the yield of rice with different water and nitrogen management practices. Sci. Rep. 2020, 10, 9734. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ye, Q.; Li, J.W.; Wang, X.D.; Li, X.; Ruan, L.; Tao, A. Determination for the uniformity of parent material of basalt-developed soil in the xinsheng basin. Chin. J. Soil Sci. 2021, 52, 253–260. (In Chinese) [Google Scholar]
- Huang, L.M.; Jia, X.X.; Shao, M.A.; Chen, L.M.; Han, G.Z.; Zhang, G.L. Phases and rates of iron and magnetism changes during paddy soil development on calcareous marine sediment and acid Quaternary red-clay. Sci. Rep. 2018, 8, 444. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, B.; Zhang, H.; Zhang, Y.; Shao, S.; Mouazen, A.M.; Jiao, H.; Yi, S.; Gao, C. Soil C:N:P Stoichiometry Succession and Land Use Effect after Intensive Reclamation: A Case Study on the Yangtze River Floodplain. Agronomy 2023, 13, 1133. https://doi.org/10.3390/agronomy13041133
Su B, Zhang H, Zhang Y, Shao S, Mouazen AM, Jiao H, Yi S, Gao C. Soil C:N:P Stoichiometry Succession and Land Use Effect after Intensive Reclamation: A Case Study on the Yangtze River Floodplain. Agronomy. 2023; 13(4):1133. https://doi.org/10.3390/agronomy13041133
Chicago/Turabian StyleSu, Baowei, Huan Zhang, Yalu Zhang, Shuangshuang Shao, Abdul M. Mouazen, He Jiao, Shuangwen Yi, and Chao Gao. 2023. "Soil C:N:P Stoichiometry Succession and Land Use Effect after Intensive Reclamation: A Case Study on the Yangtze River Floodplain" Agronomy 13, no. 4: 1133. https://doi.org/10.3390/agronomy13041133
APA StyleSu, B., Zhang, H., Zhang, Y., Shao, S., Mouazen, A. M., Jiao, H., Yi, S., & Gao, C. (2023). Soil C:N:P Stoichiometry Succession and Land Use Effect after Intensive Reclamation: A Case Study on the Yangtze River Floodplain. Agronomy, 13(4), 1133. https://doi.org/10.3390/agronomy13041133