Biopriming with Bacillus subtilis Enhanced the Sulphur Use Efficiency of Indian Mustard under Graded Levels of Sulphur Fertilization
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Description
2.2. Treatment Details
2.3. Preparation of Inoculum and Biopriming of Seeds
2.4. Crop Management
2.5. Soil and Plant Sampling
2.6. Plant Analysis
2.7. Computation of Sulphur Use Efficiency
2.8. Soil Analysis
2.8.1. Urease Activity
2.8.2. Alkaline Phosphatase Activity
2.8.3. Dehydrogenase Activity
2.8.4. Arylsulphatase Activity
2.9. Statistical Analysis
3. Results
3.1. S Content
3.2. Sulphur Uptake
3.3. Urease Activity
3.4. Dehydrogenase Activity
3.5. Alkaline Phosphatase Activity
3.6. Arylsulphatase Activity
3.7. Sulphur Use Efficiency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAI. Fertilizer Statistics 2019–20, 65th ed.; The Fertiliser Association of India: New Delhi, India, 2020. [Google Scholar]
- Basak, N.; Sheoran, P.; Sharma, R.; Yadav, R.K.; Singh, R.K.; Kumar, S.; Krishnamurthy, T.; Sharma, P.C. Gypsum and pressmud amelioration improve soil organic carbon storage and stability in sodic agroecosystems. Land Degrad. Dev. 2021, 32, 4430–4444. [Google Scholar] [CrossRef]
- Sarkar, D.; Dubey, P.K.; Chaurasiya, R.; Sankar, A.; Shikha; Chatterjee, N.; Ganguly, S.; Meena, V.S.; Meena, S.K.; Parewa, H.P.; et al. Organic interventions conferring stress tolerance and crop quality in agroecosystems during the UN Decade on Ecosystem Restoration. Land Degrad. Dev. 2021, 32, 4797–4816. [Google Scholar] [CrossRef]
- Admas, B.F.; Gashaw, T.; Adem, A.A.; Worqlul, A.W.; Dile, Y.T.; Molla, E. Identification of soil erosion hot-spot areas for prioritization of conservation measures using the SWAT model in Ribb watershed, Ethiopia. Resour. Environ. Sustain. 2022, 8, 100059. [Google Scholar] [CrossRef]
- Rakesh, S.; Sinha, A.K.; Sarkar, D.; Roy, D.; Bodiga, D.; Sahoo, S.; Jha, P.K.; Dubey, P.K.; Rakshit, A. Active and passive carbon fractions in contrasting cropping systems, tillage practices, and soil types. Land 2023, 12, 365. [Google Scholar] [CrossRef]
- Rattan, R.K. Soil processes and climate change. J. Indian. Soc. Soil Sci. 2014, 62, S5–S24. [Google Scholar]
- Srinivasarao, C.; Ramesh Naik, M.; Subha Lakshmi, C.; Kumar, G.R.; Manasa, R.; Rakesh, S.; Kundu, S.; Prasad, J.V.N.S. Economic and environmental benefits of integrated nutrient management in Indian agriculture. Indian J. Fertil. 2020, 16, 1124–1137. [Google Scholar]
- Mandal, D.; Roy, T.; Kumar, G.; Yadav, D. Loss of soil nutrients and financial prejudice of accelerated soil loss in India. Indian J. Fertil. 2021, 17, 1286–1295. [Google Scholar]
- Gyeltshen, K.; Sharma, S. Integrated Plant Nutrition System Modules for Major Crops and Cropping Systems in South Asia SAARC Agriculture Centre; SAARC: Dhaka, Bangladesh, 2019; p. 176. Available online: https://hdl.handle.net/10568/111153 (accessed on 5 February 2022).
- Bhudevi, M.; Sarkar, D.; Rakshit, A.; Kar, S. Performance of improved sulphur formulations on growth, yield, and nutrient uptake of rice in an Inceptisol of Uttar Pradesh. Int. J. Agric. Environ. Biotechnol. 2018, 11, 253–258. [Google Scholar]
- Iqrar, S.; Ashrafi, K.; Khan, S.; Saifi, M.; Nasrullah, N.; Abdin, M.Z. Set of miRNAs involved in sulphur uptake and the assimilation pathway of Indian mustard (B. juncea) in response to sulphur treatments. ACS Omega 2022, 7, 13228–13242. [Google Scholar] [CrossRef]
- Buchner, P.; Stuiver, C.E.E.; Westerman, S.; Wirtz, M.; Hell, R.; Hawkesford, M.J.; De Kok, L.J. Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition. Plant Physiol. 2004, 136, 3396–3408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleem, M.; Elahi, E.; Gandahi, A.W.; Bhatti, S.M.; Ibrahim, H.; Ali., M. Effect of sulphur application on growth, oil content and yield of sunflower. Sarhad J. Agric. 2019, 35, 1198–1203. [Google Scholar] [CrossRef]
- Waraich, E.A.; Hussain, A.; Ahmad, Z.; Ahmad, M.; Barutçular, C. Foliar application of Sulphur improved growth, yield and physiological attributes of canola (Brassica napus L.) under heat stress conditions. J. Plant Nutri. 2022, 45, 369–379. [Google Scholar] [CrossRef]
- The Sulphur Institute—Status of Indian Soils. Available online: https://www.sulphurinstitute.org/about-sulphur/india/status-of-indian-soils/ (accessed on 10 March 2022).
- Messick, D. Agricultural Demand for Sulphur—The Challenges, The Future. 2014. Available online: http://www.firt.org/sites/default/files/TFI%20Outlook%20-20Agricultural%20Demand%20for%20Sulphur%20-%20TSI.pdf (accessed on 12 December 2021).
- Kumar, P.; Kumar, S.; Bhattacharjee, S.; Kumar, S. Smart sulphur management for increased productivity and quality of Indian mustard (Brassica juncea L.). AGRIALLIS Sci. Agric. Allied Sect. A Mon. e-NEWS Lett. 2020, 2, AL202058. [Google Scholar]
- Sarkar, D.; Rakshit, A. Amalgamation of farmers’ bio-priming knowledge in integrated nutrient management for sustainable management of red cabbage soil under Middle Gangetic Plains, India. Environ. Manag, 2022; Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Miljaković, D.; Marinković, J.; Tamindžić, G.; Đorđević, V.; Tintor, B.; Milošević, D.; Ignjatov, M.; Nikolić, Z. Bio-priming of soybean with Bradyrhizobium japonicum and Bacillus megaterium: Strategy to improve seed germination and the initial seedling growth. Plants 2022, 11, 1927. [Google Scholar] [CrossRef]
- Prasad, R.S.; Kamble, U.R.; Sripathy, K.V.; Bhaskar, K.U.; Singh, D.P. Seed bio-priming for biotic and abiotic stress management. In Microbial Inoculants in Sustainable Agricultural Productivity; Singh, D., Singh, H., Prabha, R., Eds.; Springer: New Delhi, India, 2016; pp. 211–228. [Google Scholar]
- Singh, V.; Upadhyay, R.S.; Sarma, B.K.; Singh, H.B. Seed bio-priming with Trichoderma asperellum effectively modulate plant growth promotion in pea. Int. J. Agric. Environ. Biotech. 2016, 9, 361–365. [Google Scholar] [CrossRef]
- Entesari, M.; Sharifzadeh, F.; Ahmadzadeh, M.; Farhangfar, M. Seed biopriming with Trichoderma species and Pseudomonas fluorescent on growth parameters, enzymes activity and nutritional status of soybean. Int. J. Agron. Plant Prod. 2013, 4, 610–619. [Google Scholar]
- Waqas, M.; Korres, N.E.; Khan, M.D.; Nizami, A.S.; Deeba, F.; Ali, I.; Hussain, H. Advances in the concept and methods of seed priming. In Priming and Pretreatment of Seeds and Seedlings; Springer: Singapore, 2019; pp. 11–41. [Google Scholar] [CrossRef]
- Kumar, A.; Droby, S.; White, J.F.; Singh, V.K.; Singh, S.K.; Zhimo, V.Y.; Biasi, A. Endophytes and seed priming: Agricultural applications and future prospects. In Microbial Endophytes; Woodhead Publishing: Philadelphia, PA, USA, 2020; pp. 107–124. [Google Scholar] [CrossRef]
- Sarkar, D.; Rakshit, A.; Parewa, H.P.; Danish, S.; Alfarraj, S.; Datta, R. Biopriming with compatible rhizospheric microbes enhances growth and micronutrient uptake of red cabbage. Land 2022, 11, 536. [Google Scholar] [CrossRef]
- Sahu, D.; Priyadarshani, I.; Rath, B. Cyanobacteria–as potential biofertilizer. CIB Tech. J. Microbiol. 2012, 1, 20–26. [Google Scholar]
- Sarkar, D.; Ray, S.; Singh, N.K.; Rakshit, A.; Singh, H.B. Seed priming with bio-inoculants triggers nutritional enrichment in vegetables: A review. Int. J. Agric. Environ. Biotech. 2018, Special Issue, 727–735. [Google Scholar]
- Tandayu, E.; Borpatragohain, P.; Mauleon, R.; Kretzschmar, T. Genome-wide association reveals trait loci for seed glucosinolate accumulation in Indian mustard (Brassica juncea L.). Plants 2022, 11, 364. [Google Scholar] [CrossRef]
- Piri, I.S.S.A.; Sharma, S.N. Physiological analysis of growth and yield of Indian mustard as affected by irrigation and sulphur. Indian J. Plant Physiol. 2006, 11, 253. [Google Scholar]
- Kumar, S.; Verma, S.K.; Singh, T.K.; Shyambeer, S. Effect of nitrogen and sulphur on growth, yield and nutrient uptake by Indian mustard (Brassica juncea) under rainfed condition. Indian J. Agric. Sci. 2011, 81, 145–149. [Google Scholar]
- Patel, P.K.; Kadivala, V.A.H.; Patel, V.N. Role of sulphur in oilseed crops: A review. J. Plant. Dev. Sci. 2019, 11, 109–114. [Google Scholar]
- Cheema, H.S.; Arora, C.L. Sulphur status of soils in tubewell water and plant in some areas of Ludhiana under groundnut-wheat cropping system. Fertil. News 1984, 29, 28–31. [Google Scholar]
- Malhi, S.S.; Schoenau, J.J.; Grant, C.A. A review of sulphur fertilizer management for optimum yield and quality of canola in the Canadian Great Plains. Can. J. Plant Sci. 2005, 85, 297–307. [Google Scholar] [CrossRef]
- Rathore, S.S.; Shekhawat, K.; Kandpal, B.K.; Premi, O.P.; Singh., S.P.; Chand, G. Sulphur management for increased productivity of Indian mustard: A Review. Ann. Plant. Soil Res. 2015, 17, 1–12. [Google Scholar]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Black, C.A. Methods of Soil Analysis: Part I, Physical and Mineralogical Properties; American Society of Agronomy: Madison, Wisconsin, USA, 1965. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice-Hall of India Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for the determination of available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. 1954, 939, 1–9. [Google Scholar]
- Chesnin, L.; Yien, C.H. Turbidimetric determination of available sulfates. Soil Sci. Soc. Am. J. 1951, 15, 149–151. [Google Scholar] [CrossRef]
- Douglas, L.A.; Bremner, J.M. A rapid method of evaluating different compounds as inhibitors of urease activity in soils. Soil Biol. Biochem. 1971, 3, 309–315. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Klein, D.A.; Loh, T.C.; Goulding, R.L. A rapid procedure to evaluate dehydrogenase activity of soils low in organic matter. Soil Biol. Biochem. 1971, 3, 385–387. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Arylsulfatase activity of soil. Proc. Soil Sci. Soc. Am. 1970, 34, 225–229. [Google Scholar] [CrossRef]
- Rana, K.; Parihar, M.; Singh, J.P.; Singh, R.K. Effect of Sulphur fertilization, varieties and irrigation scheduling on growth, yield, and heat utilization efficiency of Indian mustard (Brassica juncea L.). Commun. Soil Sci. Plant Anal. 2020, 51, 265–275. [Google Scholar] [CrossRef]
- Blanchar, R.W.; Rehm, G.; Caldwell, A.C. Sulphur in plant materials by digestion with nitric and perchloric acid. Soil Sci. Soc. Am. J. 1965, 29, 71–72. [Google Scholar]
- Ansori, A.; Gholami, A. Improved nutrient uptake and growth of maize in response to inoculation with Thiobacillus and Mycorrhiza on an alkaline soil. Comm. Soil. Sci. Plant Anal. 2015, 46, 2111–2126. [Google Scholar] [CrossRef]
- Chaudhary, S.; Dhanker, R.; Singh, K.; Brar, B.; Goyal, S. Characterization of sulfur-oxidizing bacteria isolated from mustard (Brassica juncea L.) rhizosphere having the capability of improving sulfur and nitrogen uptake. J. Appl. Microbiol. 2022, 133, 2814–2825. [Google Scholar] [CrossRef]
- Anbazhagan, P.; Singh, R.; Viswanath, H.S.; Pandey, A.; Singh, A.K. Effect of Trichoderma harzianum and Pseudomonas fluorescens on the enhancement of drought tolerance and plant growth in tomato. Int. Res. J. Pure Appl. Chem. 2020, 21, 18–27. [Google Scholar] [CrossRef]
- Saxena, A.K.; Kumar, M.; Chakdar, H.; Anuroopa, N.; Bagyaraj, D.J. Bacillus species in soil as a natural resource for plant health and nutrition. J. Appl. Microbiol. 2020, 128, 1583–1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, D.; Rakshit, A. Bio-priming in combination with mineral fertilizer improves nutritional quality and yield of red cabbage under Middle Gangetic Plains, India. Sci. Hortic. 2021, 283, 110075. [Google Scholar] [CrossRef]
- Hu, Z.; Haneklaus, S.; Wang, S.; Xu, C.; Cao, Z.; Schnug, E. Comparison of mineralization and distribution of soil sulfur fractions in the rhizosphere of oilseed rape and rice. Commun. Soil Sci. Plant Anal. 2003, 34, 2243–2257. [Google Scholar] [CrossRef]
- Rehman, H.; Iqbal, H.; Basra, S.M.; Afzal, I.; Farooq, M.; Wakeel, A.; Ning, W. Seed priming improves early seedling vigor, growth and productivity of spring maize. J. Integr. Agric. 2015, 14, 1745–1754. [Google Scholar] [CrossRef]
- Abdallah, M.; Dubousset, L.; Meuriot, F.; Etienne, P.; Avice, J.C.; Ourry, A. Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L. J. Exp. Bot. 2010, 61, 2635–2646. [Google Scholar] [CrossRef]
- Somagh, H.A.; Mousavi, S.M.; Omidi, H.; Mohammadian, E.; Hemmati, M. Canola seed germination and seedling growth in response to saline condition and bio-priming. Iran J. Plant Physiol. 2017, 7, 2149–2156. [Google Scholar] [CrossRef]
- Singh, D.; Raghuvanshi, K.; Chaurasiya, A.; Dutta, S.K.; Dubey, S.K. Enhancing the nutrient uptake and quality of pearlmillet (Pennisetum glaucum L.) through use of biofertilizers. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3296–3306. [Google Scholar] [CrossRef]
- Pellegrini, M.; Spera, D.M.; Ercole, C.; Del Gallo, M. Allium cepa L. inoculation with a consortium of plant growth-promoting bacteria: Effects on plants, soil, and the autochthonous microbial community. Microorganisms 2021, 9, 639. [Google Scholar] [CrossRef]
- Roy, S.; Roy, M. Characterization of plant growth promoting feature of a neutromesophilic, facultatively chemolithoautotrophic, sulphur oxidizing bacterium Delftia sp. strain SR4 isolated from coal mine spoil. Int. J. Phytorem. 2019, 21, 531–540. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, P.; Maheshwari, D.K. Reduction in dose of chemical fertilizers and growth enhancement of sesame (Sesamum indicum L.) with application of rhizospheric competent Pseudomonas aeruginosa LES4. Eur. J. Soil Biol. 2009, 45, 334–340. [Google Scholar] [CrossRef]
- Hridya, A.C.; Byju, G.; Misra, R.S. Effects of microbial inoculations on soil chemical, biochemical and microbial biomass carbon of cassava (Manihot esculenta Crantz) growing Vertisols. Arch. Agron. Soil Sci. 2014, 60, 239–249. [Google Scholar] [CrossRef]
- Vermassen, A.; de la Foye, A.; Loux, V.; Talon, R.; Leroy, S. Transcriptomic analysis of Staphylococcus xylosus in the presence of nitrate and nitrite in meat reveals its response to nitrosative stress. Front. Microbiol. 2014, 5, 691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinesh, R.; Srinivasan, V.; Hamza, S.; Manjusha, A. Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)]. Bioresour. Technol. 2010, 101, 4697–4702. [Google Scholar] [CrossRef]
- Chaudhary, P.; Chaudhary, A.; Parveen, H.; Rani, A.; Kumar, G.; Kumar, R.; Sharma, A. Impact of nanophos in agriculture to improve functional bacterial community and crop productivity. BMC Plant Biol. 2021, 21, 519. [Google Scholar] [CrossRef]
- Sharma, U.; Subehia, S.K. Effect of long-term integrated nutrient management on rice (Oryza sativa L.)-wheat (Triticum aestivum L.) productivity and soil properties in North-Western Himalaya. J. Indian Soc. Soil Sci. 2014, 62, 248–254. [Google Scholar]
- Kaur, G.; Reddy, M.S. Role of phosphate-solubilizing bacteria in improving the soil fertility and crop productivity in organic farming. Arch. Agron. Soil. Sci. 2014, 60, 549–564. [Google Scholar] [CrossRef]
- El-Sawah, A.M.; El-Keblawy, A.; Ali, D.F.I.; Ibrahim, H.M.; El-Sheikh, M.A.; Sharma, A.; Hamoud, Y.A.; Shaghaleh, H.; Brestic, M.; Skalicky, M.; et al. Arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria enhance soil key enzymes, plant growth, seed yield, and qualitative attributes of guar. Agriculture 2021, 11, 194. [Google Scholar] [CrossRef]
- Neetu, N.; Aggarwal, A.; Tanwar, A.; Alpa, A. Influence of arbuscular mycorrhizal fungi and Pseudomonas fluorescens at different superphosphate levels on linseed (Linum usitatissimum L.) growth response. Chil. J. Agric. Res. 2012, 72, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Sarkar, D.; Mehjabeen; Bhudevi, M.; Rakesh, S.; Singh, R.K.; Kar, S.; Rakshit, A. Advanced forms of sulphur formulations for improving use efficiency in crop species. Annu. Res. Rev. Biol. 2018, 27, 1–14. [Google Scholar] [CrossRef]
- Malik, K.M.; Khan, K.S.; Billah, M.; Akhtar, M.S.; Rukh, S.; Alam, S.; Munir, A.; Mahmood, A.A.; Rahim, M.; Qaisrani, M.M. Organic amendments and elemental sulphur stimulate microbial biomass and sulphur oxidation in alkaline subtropical soils. Agronomy 2021, 11, 2514. [Google Scholar] [CrossRef]
- Sharma, S.K.; Johri, B.N.; Ramesh, A.; Joshi, O.P.; Sai Prasad, S.V. Selection of plant growth-promoting Pseudomonas spp. that enhanced productivity of soybean-wheat cropping system in central India. J. Microbiol. Biotech. 2011, 21, 1127–1142. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, D.; Sankar, A.; Devika, O.S.; Singh, S.; Parihar, M.; Rakshit, A.; Sayyed, R.Z.; Gafur, A.; Ansari, M.J.; Danish, S.; et al. Optimizing nutrient use efficiency, productivity, energetics, and economics of red cabbage following mineral fertilization and biopriming with compatible rhizosphere microbes. Sci. Rep. 2021, 11, 15680. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, M.A.; Tahir, M.; Tanveer, A.; Yaseen, M. Evaluating role of plant growth promoting rhizobacteria for improving phosphorus use efficiency and productivity in sunflower (Helianthus annuus). Int. J. Agric. Biol. 2016, 18, 881–888. [Google Scholar] [CrossRef]
- Haokip, I.C.; Dwivedi, B.S.; Meena, M.C.; Datta, S.P.; Sharma, V.K.; Saharawat, Y.S. Effect of phosphorus fertilization and microbial inoculants on yield, phosphorus use-efficiency and available phosphorus in maize (Zea mays)-wheat (Triticum aestivum) cropping system. Indian J. Agric. Sci. 2019, 89, 806–812. [Google Scholar] [CrossRef]
- Pourbabaee, A.A.; Dinekaboodi, S.K.; Hosseini, H.M.S.; Alikhani, H.A.; Emami, S. Potential application of selected Sulphur-oxidizing bacteria and different sources of Sulphur in plant growth promotion under different moisture conditions. Comm. Soil. Sci. Plant Anal. 2020, 51, 735–745. [Google Scholar] [CrossRef]
- Ajnar, P.; Namdeo, S. Effect of integrated nutrient management on Indian mustard yield attributes and yield. J. Pharmacog. Phytochem. 2021, 10, 545–548. [Google Scholar] [CrossRef]
- Yaseen, M.; Malhi, S.S. Variation in yield, phosphorus uptake, and physiological efficiency of wheat genotypes at adequate and stress phosphorus levels in soil. Commun. Soil Sci. Plant Anal. 2009, 40, 3104–3120. [Google Scholar] [CrossRef]
- Rakesh, S.; Banik, G.C. Effect of sulphur levels and sources on growth, yield and quality of mustard in terai region of West Bengal. Annals Plant Soil Res. 2016, 18, 152–155. [Google Scholar]
- Rakesh, S.; Banik, G.C.; Ghosh, A.; Sarkar, D. Effect of sulphur fertilization on different forms of sulphur under mustard cultivation in an acid soil of terai region of West Bengal. Res. Crops. 2016, 17, 248–252. [Google Scholar] [CrossRef]
Particulars | Years | Method Followed | |
---|---|---|---|
2018 | 2019 | ||
a. Physical properties | |||
Sand (g kg−1) | 506.9 | 513.2 | Bouyoucos [35] |
Silt (g kg−1) | 262.1 | 259.6 | |
Clay (g kg−1) | 226.7 | 221.5 | |
Textural class | Sandy loam | ||
Bulk density (Mg m−3) | 1.38 | 1.41 | Black [36] |
Particle density (Mg m−3) | 2.63 | 2.61 | |
b. Chemical properties | |||
Organic carbon (g kg−1) | 4.5 | 4.6 | Walkley and Black [37] |
pH (1:2.5 soil:water) | 7.8 | 7.6 | Jackson [38] |
Electrical conductivity (dS m−1) | 0.44 | 0.46 | |
Available N (kg ha−1) | 202.7 | 208.4 | Subbiah and Asija [39] |
Available P (kg ha−1) | 15.43 | 17.28 | Olsen et al. [40] |
Available K (kg ha−1) | 237.4 | 239.8 | Jackson [38] |
Available S (mg kg−1) | 8.7 | 9.9 | Chesnin and Yien [41] |
c. Biological properties | |||
Urease (µg NH4+ g−1 hr−1) | 125.23 | 127.15 | Douglas and Bremner [42] |
Alkaline phosphatase (µg pNP g−1 hr−1) | 96.42 | 88.64 | Tabatabai and Bremner [43] |
Dehydrogenase (µg TPF g−1 day−1) | 25.57 | 25.16 | Klein et al. [44] |
Arylsulphatase (µg pNP g−1 hr−1) | 19.82 | 20.83 | Tabatabai and Bremner [45] |
Treatment Details | Notations Used |
---|---|
Bentonite sulphur @ 0 kg S ha−1 + No priming | T1 |
Bentonite sulphur @ 0 kg S ha−1 + Bacillus subtilis | T2 |
Bentonite sulphur @ 0 kg S ha−1 + Pseudomonas fluorescens | T3 |
Bentonite sulphur @ 20 kg S ha−1 + No priming | T4 |
Bentonite sulphur @ 20 kg S ha−1 + Bacillus subtilis | T5 |
Bentonite sulphur @ 20 kg S ha−1 + Pseudomonas fluorescens | T6 |
Bentonite sulphur @ 30 kg S ha−1 + No priming | T7 |
Bentonite sulphur @ 30 kg S ha−1 + Bacillus subtilis | T8 |
Bentonite sulphur @ 30 kg S ha−1 + Pseudomonas fluorescens | T9 |
Bentonite sulphur @ 40 kg S ha−1 + No priming | T10 |
Bentonite sulphur @ 40 kg S ha−1 + Bacillus subtilis | T11 |
Bentonite sulphur @ 40 kg S ha−1 + Pseudomonas fluorescens | T12 |
Treatments | Sulphur Content (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Root | Stover | Seed | |||||||
2018–19 | 2019–20 | Pooled | 2018–19 | 2019–20 | Pooled | 2018–19 | 2019–20 | Pooled | |
T1 | 0.05 f | 0.06 d | 0.06 g | 0.18 g | 0.20 e | 0.19 g | 0.52 f | 0.56 e | 0.54 g |
T2 | 0.07 def | 0.08 cd | 0.08 efg | 0.23 def | 0.25 cd | 0.24 de | 0.57 de | 0.59 cde | 0.58 efg |
T3 | 0.06 ef | 0.07 cd | 0.07 fg | 0.21 efg | 0.24 cd | 0.23 ef | 0.56 de | 0.57 de | 0.57 fg |
T4 | 0.06 ef | 0.06 d | 0.06 g | 0.20 fg | 0.22 de | 0.21 fg | 0.55 ef | 0.58 de | 0.57 fg |
T5 | 0.09 abcde | 0.09 abcd | 0.09 bcde | 0.25 bcd | 0.26 bc | 0.26 cd | 0.59 cd | 0.66 abc | 0.63 bcd |
T6 | 0.08 bcdef | 0.09 abcd | 0.09 cdef | 0.24 cde | 0.25 bcd | 0.25 cde | 0.58 de | 0.63 abcd | 0.61 cde |
T7 | 0.07 cdef | 0.08 bcd | 0.08 efg | 0.23 def | 0.24 cd | 0.24 de | 0.57 de | 0.61 bcde | 0.59 def |
T8 | 0.11 ab | 0.11 ab | 0.11 ab | 0.27 ab | 0.29 ab | 0.28 ab | 0.62 bc | 0.70 a | 0.66 ab |
T9 | 0.10 abc | 0.10 abc | 0.10 abcd | 0.26 abc | 0.28 abc | 0.27 bc | 0.61 bc | 0.67 ab | 0.64 abc |
T10 | 0.09 abcd | 0.10 abc | 0.10 abcd | 0.25 bcd | 0.27 bc | 0.26 cd | 0.59 cd | 0.64 abcd | 0.61 cde |
T11 | 0.12 a | 0.12 a | 0.12 a | 0.29 a | 0.31 a | 0.30 a | 0.65 a | 0.69 a | 0.67 a |
T12 | 0.10 abc | 0.11 ab | 0.11 abc | 0.28 ab | 0.29 ab | 0.29 ab | 0.64 ab | 0.68 ab | 0.66 ab |
Treatments | Agronomic Use Efficiency (g g−1) | Apparent Recovery Efficiency (%) | Physiological Use Efficiency (g g−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
2018–19 | 2019–20 | Pooled | 2018–19 | 2019–20 | Pooled | 2018–19 | 2019–20 | Pooled | |
T1 | - | - | - | - | - | - | - | - | - |
T2 | - | - | - | - | - | - | - | - | - |
T3 | - | - | - | - | - | - | - | - | - |
T4 | 5.28 | 5.18 | 5.23 | 05.77 c | 9.97 b | 7.87 d | 65.12 | 50.67 | 57.90 |
T5 | 6.60 | 5.26 | 5.93 | 11.17 bc | 15.56 ab | 13.37 cd | 74.28 | 66.45 | 70.37 |
T6 | 6.78 | 5.37 | 6.08 | 14.52 ab | 15.26 ab | 14.89 bcd | 48.91 | 45.85 | 47.38 |
T7 | 6.78 | 5.18 | 5.98 | 11.39 bc | 15.01 ab | 13.20 cd | 48.24 | 34.56 | 41.40 |
T8 | 8.69 | 7.30 | 8.00 | 17.56 ab | 23.76 a | 20.66 ab | 48.24 | 29.75 | 39.00 |
T9 | 8.76 | 6.45 | 7.61 | 20.28 a | 20.79 ab | 20.54 ab | 43.74 | 31.40 | 37.57 |
T10 | 8.92 | 5.75 | 7.34 | 15.51 ab | 20.31 ab | 17.91 abc | 50.12 | 27.51 | 38.82 |
T11 | 9.57 | 8.03 | 8.80 | 20.82 a | 23.92 a | 22.37 a | 46.12 | 35.05 | 40.59 |
T12 | 9.40 | 7.74 | 8.57 | 20.48 a | 21.25 a | 20.87 ab | 45.95 | 36.15 | 41.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Sarkar, D.; Rakesh, S.; Singh, R.K.; Rakshit, A. Biopriming with Bacillus subtilis Enhanced the Sulphur Use Efficiency of Indian Mustard under Graded Levels of Sulphur Fertilization. Agronomy 2023, 13, 974. https://doi.org/10.3390/agronomy13040974
Singh S, Sarkar D, Rakesh S, Singh RK, Rakshit A. Biopriming with Bacillus subtilis Enhanced the Sulphur Use Efficiency of Indian Mustard under Graded Levels of Sulphur Fertilization. Agronomy. 2023; 13(4):974. https://doi.org/10.3390/agronomy13040974
Chicago/Turabian StyleSingh, Sonam, Deepranjan Sarkar, S. Rakesh, Rajesh Kumar Singh, and Amitava Rakshit. 2023. "Biopriming with Bacillus subtilis Enhanced the Sulphur Use Efficiency of Indian Mustard under Graded Levels of Sulphur Fertilization" Agronomy 13, no. 4: 974. https://doi.org/10.3390/agronomy13040974
APA StyleSingh, S., Sarkar, D., Rakesh, S., Singh, R. K., & Rakshit, A. (2023). Biopriming with Bacillus subtilis Enhanced the Sulphur Use Efficiency of Indian Mustard under Graded Levels of Sulphur Fertilization. Agronomy, 13(4), 974. https://doi.org/10.3390/agronomy13040974